Date of Award
2008
Document Type
Honors Thesis (Open Access)
Department
Colby College. Physics and Astronomy Dept.
Advisor(s)
Robert T. Bluhm
Abstract
Recent investigations of various quantum-gravity theories have revealed a variety of possible mechanisms that lead to Lorentz violation. One of the more elegant of these mechanisms is known as Spontaneous Lorentz Symmetry Breaking (SLSB), where a vector or tensor field acquires a nonzero vacuum expectation value. As a consequence of this symmetry breaking, massless Nambu-Goldstone modes appear with properties similar to the photon in Electromagnetism. This thesis considers the most general class of vector field theories that exhibit spontaneous Lorentz violation-known as bumblebee models-and examines their candidacy as potential alternative explanations of E&M, offering the possibility that Einstein-Maxwell theory could emerge as a result of SLSB rather than of local U(1) gauge invariance. With this aim we employ Dirac's Hamiltonian Constraint Analysis procedure to examine the constraint structures and degrees of freedom inherent in three candidate bumblebee models, each with a different potential function, and compare these results to those of Electromagnetism. We find that none of these models share similar constraint structures to that of E&M, and that the number of degrees of freedom for each model exceeds that of Electromagnetism by at least two, pointing to the potential existence of massive modes or propagating ghost modes in the bumblebee theories.
Keywords
Hamiltonian systems, Lagrangian functions, Standard model (Nuclear physics), Unified field theories
Recommended Citation
Gagne, Nolan L., "Hamiltonian constraint analysis of vector field theories with spontaneous Lorentz symmetry breaking" (2008). Honors Theses. Paper 92.https://digitalcommons.colby.edu/honorstheses/92
Copyright
Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author.