Human ActivityImpacts on Belize Deforestation (1995-2010) and Future Trend Prediction

Xinyi Zheng
Colby College

Rui Fan
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/clas
Part of the Environmental Studies Commons

https://digitalcommons.colby.edu/clas/2015/program/30

This Poster is brought to you for free and open access by Digital Commons @ Colby. It has been accepted for inclusion in CLAS: Colby Liberal Arts Symposium by an authorized administrator of Digital Commons @ Colby. For more information, please contact mfkelly@colby.edu.
Predicted Probability of Deforestation in Belize

Rui "Tracey" Fan and Xin yi "Sola" Zheng
Colby College Environmental Studies Program, Waterville, ME
Spring 2015

Abstract
Belize is a Central American country that is known for its high biodiversity. According to the Water Center of the Humid Tropics of Latin America and the Caribbean (CATHALAC) and NASA, Belize’s forest cover decreased from 75.9% in the late 1980 to 62.7% in 2010. In this project, we developed a spatial model of deforestation in Belize. We hypothesized that factors influencing the potential of deforestation in Belize included elevation, distance to human-built facilities, distance to roads, and whether an area is protected. We performed a binary logistic regression to generate a best-fit model of deforestation probability. Whether an area is protected, and the distance to the nearest human-built facilities were statistically significant predictors of deforestation in Belize.

Methods
In ArcGIS 10.2.2, we located forested areas in Belize in 1995 and areas that were deforested between 1989 and 2010. We then created 100 random points within each set as our random and known points, respectively. We calculated the distance from each point to the nearest roads and to human-built facilities and performed an independent-samples t-test for significance of these factors on deforestation. We also tested the significance of elevation and whether an area is protected as predictors of deforestation. We input variables that significantly differed between random and known points into a binary logistic regression after normalizing the data. We then used the output constants and coefficients to generate an equation to predict the deforestation potential among the current forests in Belize. We built a GIS data model to calculate the potential for the current forest areas of the whole country using the equation. To test the validity of the model, we calculated the percentage of the areas that were actually deforested that fell in those with high deforestation potential in our model.

We obtained our data from the following datasets: Belize Forest Cover Change 1980-2010 (CATHALAC, MNRE, NASA, USAID, and SERVIR), GIS and Spatial Data for Belize (BERDS), and Belize Transportation Network as of 2000 (Belize Ministry of Natural Resources’ GeoNode Implementation). We performed all the statistical analyses with IBM SPSS Statistics 22, and all GIS data used the WGS_1984_UTM_Zone_16N coordinate system.

Results
Distance to roads, distance to human-built facilities, and whether an area was protected in 1995 significantly predicted the probability of deforestation in Belize. Elevation was not a significant predictor of deforestation (Table 1). The best-fit model for predicting the potential of deforestation at a certain location is

\[P(D = \text{deforestation}) = \frac{1}{1 + e^{-(a + b \cdot D \text{to roads} + c \cdot D \text{to human-built facilities} + d \cdot \text{protected})}} \]

where \(P(D = \text{deforestation}) \) is the probability of deforestation, \(D \) is whether an area is protected (protected = 1, not protected = 0), and \(D \text{to facilities} \) is the distance to the nearest human-built facilities. The model can account for 9.3% of the variance (\(R^2 = 0.093 \)).

Based on the regression result, about 43% of the current forests have a high potential of deforestation—the probability is greater than 0.5 (Figure 3 and Figure 4).

Figure 1. Rainforests in Belize
Figure 2. Illegal logging in Belize
Figure 3. Potential of deforestation in Belize. The raster layer was generated by calculating coefficients for each significant variable through a binary logistic model.
Figure 4. Areas where the probability of deforestation is greater than 0.5.

Discussion
Whether an area was protected and the distance to human-built facilities were the best predictors of deforestation in our model. It was surprising that even though the distance to roads significantly predicted deforestation alone, it did not when we combined all the variables in our model. This result might be due to the overwhelming effect of protected areas on deforestation potential.

This model appears to be a reasonably robust predictor of deforestation in Belize. Over 80% of all the deforested area since 1995 falls in the area where the deforestation probability is greater than 0.5 in our model. However, the method of building this model can still be improved by separating the country into two parts. We could have developed our model based on half of the country, and used the model to predict the deforestation potential of the other half. This method would allow us to test the model in a more accurate way.

References
2. GIS and Spatial Data for Belize (protected areas, elevation, boundaries and districts). Biodiversity and Environmental Resource Data System for Belize (BERDS). http://biological-diversity.info/GIS.htm

Acknowledgement
Thanks to Professor Philip Nyhus and Manny Gimond for their patient help and guidance.