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Abstract 

Climate change poses a significant threat to global ecosystems and human societies, 

driven largely by CO2 emissions from various economic activities. This macroeconomic cross-

country study empirically assesses the effectiveness of carbon pricing in reducing CO2 emissions 

across three periods: 2012-2017, 2015-2019, and 2015-2020. Building on the foundational 

research by Best et al. (2020), the analysis extends to more recent data, capturing the evolving 

impacts of carbon pricing amid changing global economic and policy landscapes. A key 

advancement in this research is the creation and integration of two comprehensive indexes—a 

performance index and a policy index—constructed from 14 environmental performance or 

policy variables. These indexes control for a broader set of environmental and economic factors, 

thereby addressing omitted variable bias and enhancing the robustness of the analysis. The 

results strongly support carbon pricing as an effective tool for reducing CO2 emissions. 

However, the direct impact of carbon pricing is less significant when the performance and policy 

indexes are included, indicating that its effectiveness is intertwined with other environmental 

policies. This study emphasizes the importance of maintaining carbon pricing, adopting 

comprehensive policy frameworks, tailoring approaches to local contexts, and improving data 

collection standards. This research also offers a holistic view of policy impacts and sets the stage 

for future studies on the complexities of environmental policies in mitigating climate change. 

 

Keywords 

Climate change, carbon pricing, environmental policy, policy performance, index, CO2 emission 

reduction, environmental economics, cross-country analysis 
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1. Introduction 

Climate change due to greenhouse gas (GHG) emissions can bring irreversible 

changes to the ocean, ice sheets and global sea level, and pose threats to the longevity of 

global ecological balance (Wang, 2023; IPCC, 2021). At the same time 2022 was 

officially ranked by NOAA the sixth-warmest year on record since 1880, regions across 

the globe are already experiencing temperature increases exceeding the global average 

(NOAA, 2022; Allen et al., 2018). Human activities over the last 150 years are one of the 

main drivers of the increase in GHG in the atmosphere, therefore being identified as the 

dominant cause of global warming (EPA, 2020; Allen et al., 2018). By economic sector 

in the US in 2021, the transportation sector, with a share of 28% of total GHG emissions, 

is the most prominent source of GHG emissions, followed by the electricity production 

(25%) and the industry sectors (23%). Notably, GHG emissions from the three sectors are 

predominantly driven by fossil fuel combustion for vehicles and energy, which includes 

sources such as gasoline, diesel, coal, and natural gas (EPA, 2020). The escalating 

intensity of global warming and shifting climate patterns necessitate an urgent and 

decisive action to reduce GHG emissions. 

Carbon pricing has emerged as a constructive tool that could achieve emission 

reduction goals while leaving flexibility for private agents, households, and companies on 

choices of implementation and amount of reduction (Bureau et al., 2019; Mankiw, 2008). 

A carbon tax incentivizes households and businesses to reduce emissions, particularly 

from fossil fuel combustion, by leveraging their private information on marginal costs. 

This market-based mechanism is flexible and effective even when public authorities 

provide limited information about the costs of reducing emissions, in contrast to 
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command-and-control measures like standards that require more detailed information to 

implement efficiently. This tax also helps guide equipment choice and use, contrary to 

subsidies which often lead to the overuse of efficient equipment and reduce their 

effectiveness in emission reduction (Bureau et al., 2019). Moreover, a carbon tax has 

been shown to stimulate green innovation, particularly in renewable energy sources. This 

approach maintains maximum energy-use efficiency and offers benefits similar to those 

provided by subsidies but without the accompanying government costs. Additionally, the 

revenue generated from the carbon tax can be flexibly allocated to support various 

environmental and social programs, further enhancing its positive impact (Wang et al., 

2019; Wang et al. 2022).  

Despite the benefits of carbon pricing policies, their quantifiable effectiveness 

remains a topic of ongoing empirical investigation. The evolving literature in 

environmental economics provides an intricate perspective on the efficacy of carbon 

pricing mechanisms. A significant challenge lies in the lack of consensus regarding 

which policies should be recognized as implicitly pricing carbon (i.e. fuel taxes, removal 

of fossil fuel subsidies, etc.), complicating efforts to evaluate the effectiveness of carbon 

pricing mechanisms accurately (World Bank Group, 2019; Dominioni, 2022). Although 

carbon pricing is a central topic in global climate policy debates, empirical assessments 

of its true effects on emissions are both limited and inconsistent (Green, 2021). This 

complexity is further exacerbated by the absence of comprehensive cross-country 

empirical studies, highlighting the need for econometric models that consider both policy 

differences and other structural factors influencing the effectiveness of carbon pricing on 

CO2 emissions (Best et al., 2020). 
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Additionally, methodological limitations in current studies, such as a focus on 

predictive rather than evaluative analyses and challenges in establishing clear causal 

relationships, underscore the necessity for methodologically robust research (Vrolijk, 

2023). Specifically, addressing omitted variable bias (OVB) in policy evaluation is 

crucial. OVB occurs when a model fails to include one or more relevant variables, 

potentially leading to biased results that inaccurately attribute changes in emissions to 

carbon pricing alone. For instance, ignoring variables such as technological 

advancements or international trade impacts in the analysis could skew results, either 

overstating or understating the policy's effectiveness. To overcome these challenges, 

researchers must strive for a more comprehensive approach, incorporating a broader array 

of variables that influence emissions. This approach enhances the accuracy and reliability 

of findings, thereby providing policymakers with a clearer understanding of the true 

impact of carbon pricing policies. Conducting macroeconomic cross-country 

comparisons is particularly valuable because it demonstrates the wide applicability of the 

results across different national contexts. While much of the existing literature focuses on 

within-country natural experiments due to concerns about causality, this study's broad, 

comparative perspective offers a unique contribution by capturing diverse economic and 

policy environments. Such rigorous research is essential not only for refining policy 

designs but also for ensuring that these policies effectively contribute to global climate 

goals. 

The first part of this study aims to contribute to the empirical assessment of 

carbon pricing efficacy by building upon an existing cross-country study that evaluated 

the impact of carbon pricing– research by Best et al. (2020) employed a regression 
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analysis to explore the relationship between carbon price and changes in carbon 

emissions over the period from 2012 to 2017. Recognizing the dynamic nature of 

environmental policies and economic conditions, I seek to update this analysis by 

extending the dataset to include the most recent five-year period, from 2017 to 2022. This 

would allow conducting a comparative analysis of three five-year periods, which in turn 

has the potential to shed light on how the impact of carbon pricing has evolved over 

recent years, taking into account diverse national contexts and emerging trends in global 

emissions. 

To overcome the challenge of dissecting the impact of carbon pricing on 

emissions from other environmental and economic factors, the second part of the study 

introduces two indexes: the performance index and the policy index. These indexes are 

constructed from 14 environmental policy variables, thereby addressing omitted variable 

bias and improving the robustness of assessing the relationship between carbon pricing 

and emission changes. By integrating a range of environmental performance and policy 

variables within categories such as carbon emission reduction, fossil fuel, renewable 

energy, and deforestation, these indexes control for implicit policy outcomes that 

potentially drive carbon emissions. This promises a more nuanced and precise 

understanding of the interplay between carbon pricing instruments and their impact on 

emissions. 

This study conclusively establishes the effectiveness of carbon pricing in reducing 

CO2 emissions across various national contexts, underscoring the robust nature of carbon 

pricing as a critical tool for climate change mitigation. This research significantly 

contributes to the field of environmental economics by introducing comprehensive 
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performance and policy indexes that measure the collective impact of various 

environmental policies, including carbon pricing. By quantifying the interactions and 

cumulative effects of multiple policies, these indexes enhance the precision of policy 

evaluations. Unlike analyzing the interaction between specific policies, which can be 

fragmented and limited, the indexes provide a holistic view that captures the broad 

spectrum of policy influences, offering a more integrated and robust assessment of their 

overall effectiveness. Furthermore, the insights gained pave the way for future research to 

explore how these policies complement each other. This research also serves as a 

foundational model for evaluating the effectiveness of policy mixes across diverse 

economic and environmental contexts. This approach not only helps policymakers but 

also sets the stage for more effective climate change mitigation strategies globally. 

 

2. Literature Review 

2.1 Carbon Pricing Research Background 

According to Black et al. (2022), as of 2022, 46 countries have implemented 

carbon pricing mechanisms through either carbon taxes or emissions trading schemes 

(ETS). Collectively, these schemes cover about 30% of global emissions, with prices of 

carbon in some regions, like the European Union, rising as high as $90 per ton. For the 

breakdown between carbon taxes and ETS, in 2021, around 6% of global emissions were 

in countries or sectors with a carbon tax, and 20% were covered by an ETS, totaling 26% 

of global emissions under some form of carbon pricing (Ritchie & Rosado, 2022). More 

than 60 carbon tax and emissions trading programs exist at regional, national, and 

subnational levels. Recent significant initiatives include those launched in China and 
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Germany, along with the European Union's emissions price rising above €50 a ton, and 

Canada's announcement of its emissions price rising to CAN$170 a ton by 2030 (Parry, 

2020). 

The research on how carbon emissions respond to carbon pricing is broadly 

categorized into forward-looking ex-ante projections and retrospective ex-post 

evaluations, each offering unique insights. Theoretical models like input-output, 

computable general equilibrium (CGE), and integrated assessment models (IAMs) are 

used for ex-ante projections and provide quite varied policy response estimates. These are 

a priori-assumption-based models, and thus the application in real life is quite limited. 

For example, Cullen and Mansur (2017) focus on the electricity industry and estimate the 

effects of carbon pricing against the shale revolution. They find that both carbon pricing 

and lower natural gas prices reduce the cost advantage of coal-fired power plants and, 

hence, cause a shift in the location of natural gas-fired plants. At the same time, Cullen 

and Mansur (2017) show that a carbon tax of $10–$60 per ton could reduce emissions 

from 4% to 10%, respectively, with a better effectiveness profile at low natural gas 

prices. 

As for ex-post evaluations, which use observational data, Haites (2018) offers a 

critical look at the effectiveness of carbon price mechanisms, specifically carbon taxes 

and ETSs, from 2005 to 2015. He observes that these mechanisms were associated with 

reduced fuel consumption and greenhouse gas emissions. However, he warns that 

attributing these reductions directly to carbon pricing alone is challenging due to potential 

impacts from other policies and economic developments. Similarly, Wilson and Staffell 

(2018) scrutinize that the reduction of Britain's carbon emissions in 2016 was due to 
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switching from coal to natural gas generation, which has been promoted by strong carbon 

pricing and liberalization of the market. 

Rafaty et al. (2020) further extend the outreach with the study of the impact of 

carbon pricing on five industries of 39 countries across the years 1990-2016. Their novel 

approach and findings have suggested that carbon pricing has led to a modest reduction in 

the growth of CO2 emissions, particularly in the electricity and heat sectors. Gugler et al. 

(2020) then compare the effectiveness of Germany and Britain in reducing the CO2 

intensity of the power sector by looking into Britain’s carbon pricing and Germany’s 

renewable energy subsidies. They, however, conclude that the higher carbon price in 

Britain, supported by the Carbon Price Support (CPS), has been more effective in 

emissions reduction than the German approach. 

In a more focused study, Arbell et al. (2021) evaluate the UK's CPS using a 

unique ex-post approach that combines economic theory with machine learning. Their 

analysis reveals a 6.2% reduction in emissions, hence underscoring the variability of 

emissions abatement impacted by fuel prices rather than the carbon tax rate itself. Finally, 

Vrolijk and Sato (2023) review quasi-experimental evidence on carbon pricing, 

examining 47 studies from 2012-2022. They find that carbon taxation is effective in 

reducing emissions with minimal economic impact, particularly in the transportation and 

power sectors. 

Many of these articles also point to several risks and challenges facing carbon 

pricing research. A primary concern many of the ex-ante projections are founded on 

theoretical models developed upon a priori assumptions and quite often, therefore, limit 

their real-world applicability. However, based on observed data, ex-post evaluations have 
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difficulty attributing direct emissions reductions to carbon pricing since some external 

factors like fuel prices, economic activities, and other policies exist. Further, the study by 

Vrolijk and Sato (2023) identifies the leading methodological challenges like 

inappropriate choice of methods, incorrect implementation of empirical analysis, and 

limitations in available data. Additionally, there is a noted variability in the effectiveness 

of carbon pricing across different sectors and geographic regions, indicating a need for 

more fine-tuned, sector-specific, and regional studies. The research also reveals a gap in 

understanding the optimal levels of carbon pricing necessary to balance emission 

reduction goals with economic feasibility. While my study provides a broad, cross-

country perspective, highlighting general trends and outcomes, it underscores the need 

for further context-specific research to fully optimize carbon pricing effectiveness. This 

dual approach ensures that both wide applicability and detailed, localized insights 

contribute to more effective carbon emission reduction strategies. 

2.2 Policy Index Background 

Studies have sought to address the evident remaining challenges in the analysis of 

environmental policies, such as the lack of standard and consistent measures for assessing 

the stringency of environmental, climate, and energy policies, the multi-dimensional 

nature of environmental policies, and issues like sample self-selection. In the face of the 

underutilization of composite indicators in environmental policy stringency 

measurements, for example, Botta and Kózluk (2014) propose a composite policy index 

approach, particularly in the context of cross-country economic analyses, which 

aggregates individual indicators into a unified measure. This methodology involves 

carefully selecting and scoring various policy instruments, followed by an aggregation 
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process aimed at creating the Environmental Policy Stringency (EPS) index. Looking at 

different ways of constructing a policy index, Rogge (2012) presents the assessment of 

the Data Envelopment Analysis (DEA) approach, in particular, the Benefit of the Doubt 

(BoD) model. In particular, Rogge sees a potential application of the DEA in the 

development of composite indicators like the Environmental Performance Index (EPI). 

The flexibility of the BoD model allows countries to establish their desirable weights of 

the various indicators of performance. This may, however, be the downside of 

undesirable specialization, whereby a country gets to appear as a better performer 

through overemphasis on certain indicators. This flexibility in choosing, while perhaps 

beneficial in some ways, raises serious validity and reliability questions for global 

measures of performance. 

Factor Analysis is a statistical method that is primarily used to explore and 

identify the underlying relationships between measured variables, especially when there 

are latent variables that are not directly observable but can influence the observed 

variables. This method is powerful as it reduces a large set of variables into a small and 

interpretable set of factors without much information loss (Costello & Osborne, 2005). 

One of the major strengths of factor analysis is its ability to identify and describe what 

the underlying dimensions or constructs are—that is to say, those dimensions or 

constructs that are abstractly possessed but not directly visible (Fabrigar et al., 1999). 

This makes the factor analysis method, in particular, an ideal method for index 

construction, since it can condense many variables into one coherent index that will 

represent a good reflection of the conceptual domain area. The fact is, however, that the 

quality of the results is highly dependent on the size and quality of the dataset. It also 
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demands sample sizes so large as to be able to give reliable and valid results, considering 

the method of interpretation of the factors is quite subjective in this method. Furthermore, 

the method makes several assumptions, such as the linearity and normal distribution of 

variables, which may not always be met in practical scenarios. Nevertheless, factor 

analysis remains a popular and effective tool for the construction of indexes. Its ability to 

reduce data complexity and enhance interpretability makes it particularly useful in 

situations where researchers have a large number of interrelated variables and need to 

distill them into a more manageable form for analysis (Tabachnick & Fidell, 2007). 

As for factors that could potentially impact carbon emissions in a region, Qin et 

al. (2021) examine the roles of environmental policy, green innovation, and a composite 

risk index in G7 countries. Unifying in it are environmental-related taxes, political, 

financial, and economic risks, alongside renewable energy research and development to 

assess their collective impact on CO2 emissions. By constructing several models 

incorporating various variables, they found that for G7 countries to achieve real carbon 

neutrality, a comprehensive focus on improving GDP, environmental-related taxes, green 

innovation, and renewable energy research & development is essential. While Qin et al.'s 

analysis is comprehensive and provides valuable insights into the dynamics of carbon 

neutrality in G7 economies, my study expands on their approach by developing two 

distinct indexes: a performance index and a policy index. These indexes not only include 

a broader range of environmental policy variables but also extend the analysis to include 

countries beyond the G7. Unlike Qin et al.'s composite risk index, my indexes also 

separately measure the collective impact of various environmental policies and their 
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outcomes, thereby offering a more nuanced understanding of the effectiveness of specific 

policy measures across diverse national contexts. 

 

3. Data 

3.1 Temporal Trend in Carbon Pricing Efficacy 

 In this analysis, I adopt the foundational data framework established by Best et al. 

(2020), while extending the dataset to include more recent years. The study primarily 

relies on CO2 emissions data sourced from the International Energy Agency (IEA), now 

including editions up to 2022. It is important to note that, similar to the original study, the 

number of countries included in specific regression models may vary due to the 

availability of certain variables. The extended dataset encompasses 143 countries, 

capturing all significant global emitters including China, the United States, and the 

nations that make up the European Union. The dataset, while comprehensive, excludes 

certain smaller emitting countries, consistent with the criteria used by Best et al (2020).  

The data related to carbon pricing mechanisms were derived from multiple 

sources and constructed into several variables. Firstly, the binary carbon price variable 

was sourced from the World Bank. This dummy variable indicates whether a country has 

implemented carbon pricing instruments within a particular year. In 2015, 42 countries 

had implemented carbon pricing instruments, which include measures at both national 

and subnational levels (e.g., in the US and Japan). Notably, this variable specifically 

excludes other types of taxes like fuel excise taxes and does not consider voluntary or 

internal carbon pricing initiatives by firms or other entities. Additionally, the study 

introduces a duration-adjusted carbon price variable, calculated by multiplying the annual 
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binary carbon price by the proportion of the 5-year analysis period during which a carbon 

price was operational. This adjustment allows for a more nuanced understanding of the 

temporal presence of carbon pricing within the study period. Lastly, the Carbon Price 

Score (CPS) was employed to measure the extent to which countries have achieved the 

pricing of all energy-related carbon emissions at specified benchmark values. Initially 

relying on data from RISE in Best et al. (2020), the study had to pivot to data from the 

OECD due to a lack of updates from the former. The OECD dataset also provides a 

detailed account of progress towards carbon pricing benchmarks. For example, a CPS of 

100% against a benchmark of EUR 30 per ton of CO2 indicates that a country prices all 

its carbon emissions from energy at EUR 30 or above. Conversely, a CPS of 0% signifies 

no carbon pricing on emissions, with intermediate values indicating partial pricing 

adherence (OECD, 2021). 

Table 1. Descriptive Statistics  
 Variable  Obs  Mean  Std. Dev.  Min  Max 
 Carbon price, binary 143 .28 .45 0 1 
 Carbon price, binary, duration adjusted 143 .29 .45 0 1 
 Carbon Price Score (30B) 224 6.82 16.53 0 72.85 
 Carbon Price Score (60B) 224 5.65 13.85 0 69.91 
 Carbon Price Score (120B) 224 4.68 11.58 0 65.15 
 CO2 emission from fuel combustion (tonnes) 150 207417.11 870943.68 493.4 9134984 
 CO2 growth rate per year over 5 years 149 .02 .06 -.18 .23 
 Population 210 35149965 1.366e+08 10877 1.380e+09 
 Population growth rate per year over 5 years 210 .01 .01 -.03 .07 
 GDP per capita (PPP constant 2017 international $) 192 20713.93 21760.22 781.58 116855.53 
 GDP per capita growth per year over 5 years 190 .02 .02 -.1 .08 
 Coal share 143 .13 .18 0 .71 
 Oil share 143 .37 .21 .01 1 
 Gas share 143 .21 .23 0 .99 
 Transition economy, binary 143 .2 .4 0 1 
 Energy Intensity (MJ/$2011 PPP GDP) 197 4.9 3.15 .47 24.81 
 

While the full dataset includes multiple years expanding to 2020, Table 1 only 

shows data from 2015 the initial year of the updated study period, with the CO2 

emissions from fuel combustion data reported for 150 countries. This choice was made 

because presenting the entire dataset in one table would be overwhelming and potentially 
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confusing. By focusing on a single year, I aim to illustrate key patterns and relationships 

more clearly. The mean CO2 emissions amount to approximately 207,417 tonnes, 

accompanied by a high standard deviation of 870,943.68 tonnes, reflecting extensive 

variability in emissions among the countries. This variable ranges from 493.4 to 

9,134,984 tonnes, demonstrating the broad spectrum of emission levels across the 

sample. Both the binary carbon price variable and the duration-adjusted carbon price 

variable were sampled across 143 countries. The binary carbon price variable indicates an 

average implementation rate of 28%, with a standard deviation of 0.45, highlighting 

considerable variance in the adoption of carbon pricing policies. The duration-adjusted 

carbon price exhibits a similar distribution but with a marginally higher average of 29%, 

suggesting some temporal stability in pricing policies. Moreover, the study incorporates 

the CPS at three benchmarks: 30B, 60B, and 120B. The mean CPS values for these 

benchmarks are 6.82%, 5.65%, and 4.68% respectively, with standard deviations of 

16.53%, 13.85%, and 11.58%. These statistics underscore significant disparities in how 

different nations price carbon emissions relative to predefined benchmarks, illustrating 

the varied commitment levels towards carbon pricing.  

Additionally, economic and demographic indicators such as population, GDP per 

capita, and their respective growth rates over five years are also included. These variables 

provide a backdrop against which carbon emission levels and carbon pricing mechanisms 

can be analyzed, offering insights into the economic conditions and demographic factors 

that may influence or correlate with carbon management strategies. The inclusion of 

energy composition variables—coal, oil, and gas shares—in national energy 

consumption, and energy intensity (measured as MJ per dollar of GDP) is essential to 
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replicate the regression model constructed by Best et al. (2020). By including all of these 

controls, the analysis can more accurately isolate the impact of carbon pricing 

mechanisms on emissions, taking into account the underlying economic conditions and 

energy usage patterns. This comprehensive approach helps to ensure that the observed 

effects are not confounded by these critical factors, thereby providing more reliable 

insights into the effectiveness of carbon pricing. 

3.2 Performance and Policy Indexes  

Table 2. Descriptive Statistics for Index Variables 
 Variable  Obs  Mean  Std. Dev.  Min  Max 
 Environmental Taxes  125 1.42 1.09 0 4.15 
 Fossil Fuel Subsidies  168 5.4 6.42 0 48.51 
 Electricity Generation from Renewables  247 136414.63 576809.15 0 5516255 
 Electricity Generation from Non-renewables  248 468927.13 2016529.9 0 18812718 
 Trade in Low Carbon Tech Products  167 1.687e+10 1.120e+11 2132309.5 1.410e+12 
 Green Bonds  80 2.88 21.26 0 190.15 
 Terrestrial Biome Protection 220 10.07 6.17 0 17 
 Protected Areas Representativeness Index 217 .12 .06 .03 .31 
 PM2.5 exposure, Adjusted 198 1171.94 802.39 77.27 4388.48 
 Solid Fuels Pollution, Adjusted 198 1626.14 2301.26 .18 11677.11 
 Recycling  219 .8 .12 .33 .99 
 Emissions Growth for Methane, Adjusted 190 .01 .03 -.1 .09 
 Emissions Growth for Black Carbon, Adjusted 202 0 .04 -.14 .22 
 Projected GHG Emissions in 2050  190 394006.63 2153176.3 0 28236142 
 
 

To further enhance the robustness of the regression analysis exploring the 

relationship between carbon pricing and carbon emission levels, a performance index and 

a policy index will be developed to serve as control variables. These indexes are 

constructed from 14 variables presented in Table 2, sourced from the Environmental 

Performance Index (EPI) and the International Monetary Fund (IMF). Each variable is 

selected for its potential to influence or illustrate the effectiveness of environmental 

policies and economic practices across countries. 

From the IMF, the selection includes fiscal measures such as Environmental 

Taxes (% of GDP) and Fossil Fuel Subsidies (% of GDP). Environmental taxes are used 
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to evaluate the stringency of a country's policies aimed at reducing pollution and 

promoting efficient resource use. In contrast, fossil fuel subsidies represent a financial 

commitment to energy sources that can undermine environmental sustainability efforts by 

making high-emission fuels artificially cheap. Additionally, Electricity Generation from 

Renewables and Non-renewables (GWh) is included to delineate the energy profile of a 

nation, illustrating the balance between renewable and non-renewable energy sources, 

which has direct implications for carbon emissions. The economic engagement with 

environmental sustainability is further assessed through variables like Trade in Low 

Carbon Technology Products (USD) and Green Bonds (Billion USD), which gauge the 

market’s orientation towards low-carbon technologies and green financing. 

From the Environmental Performance Index (EPI), variables such as Terrestrial 

Biome Protection (% National Weights) and the Protected Areas Representativeness 

Index are included to measure the effectiveness of a country's efforts in conserving 

biodiversity and protecting natural habitats, critical for carbon sequestration. Pollution-

related health impacts, indicated by PM2.5 exposure and Solid Fuels Pollution using the 

number of age-standardized disability-adjusted life-years lost per 100,000 persons 

(DALY rate), provide insight into the environmental quality and its effects on public 

health. These are complemented by the Recycling measured in proportions, which 

reflects the efficiency of national recycling and waste management practices. Pollution 

control is further represented through variables measuring the Adjusted Emissions 

Growth for Methane and Black Carbon in proportions, highlighting efforts to manage 

pollutants that significantly affect climate change and air quality. Finally, projections and 

assessments of greenhouse gas emissions, including Projected Greenhouse Gas Emissions 
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in 2050 (Gg CO2-eq.), offer insights into the long-term environmental impact and current 

emission levels of each country. 

 

4. Methodology 

4.1 Roadmap 

The methodology section of this study is designed to build upon and extend the 

methodological framework established by Best et al. (2020), with a focus on assessing 

the efficacy of carbon pricing mechanisms. Unlike the original study, which analyzed 

data spanning from 2012 to 2017, this research extends the observational period to 2015-

2020. This extension is pivotal for capturing recent trends and the impacts of evolving 

policies in the field of carbon pricing, reflecting significant developments in this dynamic 

area of study. 

To maintain methodological consistency with Best et al. (2020) and facilitate 

comparative analysis, this study replicates the primary econometric models used in the 

referenced research. The models are predominantly cross-sectional growth-rate 

regressions, chosen for their relevance in analyzing the impact of policy over time. This 

replication ensures that any variations in findings can be attributed to changes in data or 

policy effectiveness rather than differences in analytical approach. 

A significant advancement in this study is the creation and integration of novel 

performance and policy indexes, as detailed in Section 4.3. The policy index is 

meticulously designed to control for a variety of environmental policy variables 

alongside other factors that may influence the reduction of carbon emissions. The 

performance index, on the other hand, captures the overall effectiveness and outcomes of 
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these policies in practice. Incorporating these indexes as additional control variables in 

the econometric models is intended to enhance the robustness and explanatory power of 

the analysis, providing a more nuanced understanding of the factors that impact carbon 

pricing efficacy. 

Central to the methodology is a comparative analysis between the findings 

derived from the extended data period (2015-2020) and the results reported by Best et al. 

(2020). This comparison aims to identify any temporal shifts in the effectiveness of 

carbon pricing policies over the newer timeframe. Furthermore, the study rigorously 

evaluates the effectiveness of the newly developed indexes by conducting regression 

analyses both with and without their inclusion. This step is crucial in assessing the 

indexes’ ability to account for unobservable variables that might otherwise confound the 

observed relationships between carbon pricing and emission reductions. 

4.2 Cross-Sectional Growth-Rate Regressions over Three Time Periods 

In their foundational study, Best et al. (2020) utilized cross-sectional growth-rate 

regression analysis to evaluate the immediate impacts of carbon pricing policies on the 

growth rates of CO2 emissions across a diverse set of nations. This methodological 

approach involves examining the correlation between the average annual growth rates of 

CO2 emissions and a range of policy measures, notably including carbon pricing. The 

primary rationale behind this approach is to discern the direct and immediate effects of 

policy implementations on emission trends, providing insights into the efficacy of these 

policies shortly after their introduction. 

Building upon this foundation, my research replicates and extends this method by 

analyzing the growth rates of CO2 emissions over the period from 2015 to 2020, 
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incorporating an additional analysis for the four-year period from 2015 to 2019 to control 

for the anomalous impacts of the COVID-19 pandemic. This study employs a similar set 

of variables to those used by Best et al., with an updated focus on how recent 

implementations of carbon pricing policies—including both taxes and ETS—along with 

other environmental policies, have influenced CO2 emission growth rates in various 

countries. 

This regression analysis is designed to shed light on the short-term effectiveness 

of these policies in mitigating emissions. In this regression model, Ec is CO2 emissions 

from fuel combustion, CPc is Carbon Price Variable (Binary, Duration-adjusted, or 

Score), and Xc encompasses the economic, demographic, and energy-related control 

variables. The anticipated sign for the coefficient 𝛽 is negative, which indicates that 

carbon pricing is effective in reducing the average annual CO2 growth rate.  

  

4.3 Performance and Policy Indexes 

4.3.1 Construction 

 I will introduce factor analysis to efficiently consolidate the 7 environmental 

policy variables and 7 environmental performance variables chosen into two coherent 

indexes. This statistical technique is particularly suited for my objective, as it allows for 

the reduction of dimensionality in the dataset while preserving as much of the original 

information as possible. 

 As previously mentioned in the data section, the 7 environmental policy variables 

include Environmental Taxes, which penalize environmentally harmful activities. Fossil 
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Fuel Subsidies assess government financial support for fossil fuel consumption. Trade in 

Low Carbon Tech Products measures the market for environmentally friendly 

technologies, and Green Bonds reflect national investments in green projects. Also 

included are Terrestrial Biome Protection and the Protected Areas Representativeness 

Index, both of which gauge conservation efforts. And lastly, recycling evaluates waste 

management efficiency.  

The 7 environmental performance variables include Electricity Generation from 

Renewables and Non-renewables indicates the balance between sustainable and 

traditional energy sources. PM2.5 Exposure and Solid Fuels Pollution provide indicators 

of air quality and pollution impacts. Emissions Growth for Methane and Black Carbon 

track the output of specific pollutants. Finally, Projected GHG Emissions in 2050 

forecasts overall future greenhouse gas emissions. 

The application of factor analysis begins with the assessment of the correlation 

matrix of each set of the 7 variables to evaluate the suitability of the data for this analysis. 

Key to this evaluation is the Kaiser-Meyer-Olkin (KMO) test for sampling adequacy and 

Bartlett’s test of sphericity, which together confirm the appropriateness of the data for 

extracting meaningful factors. Confirming that my data meets these preliminary criteria 

with a KMO value of 0.71 from the set of performance variables and 0.55 from the policy 

variables, the exploratory factor analysis is conducted to identify latent factors that 

explain the correlations among variables within each set. The number of factors retained 

is determined based on eigenvalues greater than 1.0—a commonly accepted criterion 

known as Kaiser’s criterion—and supported by the scree plots to ensure that each factor 

explains a significant portion of the variance within the dataset (Figure 1). 
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Figure 1. Scree plots of eigenvalues plotted against number of factors using measurement 

variables retained from the initial exploratory factor analysis. (a) Scree plot for the 

Environmental Performance variables; (b) Scree plot for the Environmental Policy variables 

To improve the clarity of the factors identified before calculating the index scores, 

a varimax rotation—an orthogonal rotation technique—is applied. This method facilitates 

the interpretation of the factors by maximizing the variance of squared loadings of 

variables on factors, thus producing factors that are as distinct as possible. The resulting 

factor loadings are used to compute scores for each factor for each observation, which are 

then aggregated to form a composite index by averaging these scores. 

The rationale for employing factor analysis in this research lies in its ability to 

distill a wide array of complex variables into a smaller, more interpretable set of factors 

without significant loss of information. This approach not only aids in handling the 

inherent complexities of environmental performance and policy analysis but also helps 

mitigate potential issues of multicollinearity in regression models. By capturing the latent 

structures within the dataset, the resulting two indexes serve as a pivotal explanatory 

variable in subsequent econometric analyses, thus enhancing our ability to assess the 

effectiveness of carbon pricing and other environmental policies.  
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 4.3.2 Integration to the Regression Model 

 With the comprehensive environmental performance and policy indexes 

constructed through factor analysis, the study proceeds to integrate the two indexes into 

the original regression model established by Best et al. (2020) but with the most recent 

data (2015-2020). The updated regression model now incorporates the indexes (Ic) to 

enhance the robustness of the analysis and to capture the multidimensional nature of 

environmental policies beyond carbon pricing alone. The coefficient β will elucidate the 

direct influence of carbon pricing on emission growth rates, while μ will illuminate the 

isolated impact of the indexes. Similar to the first set of regressions, a negative 

coefficient for β would indicate the effectiveness of carbon pricing in reducing the 

average annual CO2 growth rate. 
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5. Results 

5.1 Cross-Sectional Growth-Rate Regressions over Three Time Periods 

Table 3. Cross-Sectional Growth-Rate Regressions Results 

Dependent variable: Avg. annual CO2 growth rate           
  2012-2017   2015-2020 
  (1) (2) (3)   (4) (5) (6) 
Carbon price score -0.0006***    -0.0005***   

 (0.0002)    (0.0002)   
Carbon price, binary  -0.043***    -0.032***  

  (0.013)    (0.010)  
Duration-adjusted 
carbon price   -0.048***    -0.030*** 

   (0.014)    (0.010) 
Initial log CO2 -0.022 -0.020 -0.020  0.011 0.011 0.010 

 (0.022) (0.021) (0.021)  (0.017) (0.017) (0.017) 
Initial log GDP per 
capita 0.020 0.024 0.026  -0.020 -0.016 -0.016 

 (0.020) (0.019) (0.019)  (0.017) (0.017) (0.017) 
Initial log population 0.024 0.023 0.024  -0.010 -0.009 -0.008 

 (0.022) (0.020) (0.020)  (0.017) (0.017) (0.017) 
Initial log energy 
intensity -0.006 -0.006 -0.004  -0.030* -0.027 -0.027 

 (0.017) (0.016) (0.016)  (0.017) (0.016) (0.017) 
Initial coal share -0.003 -0.022 -0.021  -0.059 -0.066 -0.063 

 (0.059) (0.059) (0.058)  (0.050) (0.051) (0.051) 
Initial oil share -0.040 -0.050 -0.050  -0.058 -0.055 -0.054 

 (0.047) (0.047) (0.045)  (0.038) (0.037) (0.037) 
Initial natural gas share -0.003 -0.024 -0.031  0.004 -0.008 -0.006 

 (0.038) (0.039) (0.039)  (0.031) (0.033) (0.033) 
Transition, binary -0.002 0.008 0.012  -0.005 0.004 0.004 

 (0.009) (0.009) (0.009)  (0.010) (0.010) (0.010) 
CO2 growth 0.026 -0.061 -0.061  0.044 -0.001 0.005 

 (0.135) (0.137) (0.132)  (0.101) (0.099) (0.100) 
GDP per capita growth 0.610** 0.635*** 0.656***  0.844*** 0.904*** 0.887*** 

 (0.251) (0.229) (0.223)  (0.189) (0.206) (0.203) 
Population growth 0.692** 0.636** 0.639**  0.673* 0.691* 0.699* 

 (0.323) (0.314) (0.312)  (0.383) (0.389) (0.388) 
Constant -0.479 -0.484 -0.526  0.380 0.319 0.314 

 (0.501) (0.474) (0.472)  (0.412) (0.410) (0.413) 
        

Observations 134 134 134  133 133 133 
R-squared 0.443 0.479 0.493   0.485 0.496 0.493 
Robust standard errors in parentheses       
*** p<0.01, ** p<0.05, 
* p<0.1        

 



Zhou 28 
 

An integral part of this study was to examine the efficacy of carbon pricing in 

reducing carbon emissions over three distinct time frames. Utilizing a cross-sectional 

growth-rate regression model, the estimated effects of carbon pricing were observed for 

the periods 2012-2017 (replicated regression, regression results in Table 3/Appendix 

1a), 2015-2019 (a 4-year period regression to control for pandemic impacts, regression 

results in the Appendix 1b), and 2015-2020 (regression with most recent data, regression 

results in Table 3/Appendix 1c). To determine the consistency of carbon pricing's 

effectiveness across these periods, a series of statistical comparisons through Wald Chi-

Squared tests were conducted on the null hypothesis that the coefficients associated with 

carbon pricing would be equivalent across the specified periods, indicating no significant 

temporal variation in carbon pricing effectiveness.  

The first Wald test scrutinized the coefficients of the carbon price score variable 

from 2012 and 2015. The analysis yielded a chi-squared value of 0.62 and a p-value of 

0.7320. This high p-value suggests that the coefficients for the carbon price score from 

2012 to 2015 are not statistically distinguishable from each other, thus failing to reject the 

null hypothesis for this pair of time periods. Analogously, a subsequent test examined the 

binary carbon pricing variable over the three time periods. The resulting chi-squared 

statistic of 1.47 and the p-value of 0.4793 corroborated the initial test's outcome, 

indicating no significant difference in the impact of the binary carbon pricing variable 

across the compared periods. Finally, the comparison of the duration-adjusted binary 

carbon pricing variable across the full dataset span rendered a chi-squared statistic of 2.33 

with a p-value of 0.3112. This non-significant result further substantiates the prior 

findings, leading to a retention of the null hypothesis across all three comparisons. 
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Overall, the statistical evidence indicates a consistent efficacy of carbon pricing 

on CO2 emissions reduction over the periods of 2012-2017, 2015-2019, and 2015-2020. 

Given the statistical tests' outcomes, the null hypothesis—that the coefficients 

representing the effect of carbon pricing remain uniform across the specified time 

frames—cannot be rejected. The results, therefore, support the assertion that the 

effectiveness of carbon pricing as a policy instrument has not undergone significant 

changes over the studied periods. This temporal invariance justifies the utilization of the 

most recent dataset, encompassing the years 2015 to 2020, for the advancing phase of this 

research. With the validation of carbon pricing's steady impact over time, I will 

confidently integrate the policy index into the regression models using up-to-date data to 

evaluate the current and prospective influence of carbon pricing within the wider ambit of 

environmental policy mechanisms. 

Delving deeper into the specifics of the regression results, data from Table 3 

reveal that carbon pricing—represented by the carbon price score, the binary carbon 

pricing variable, and the duration-adjusted binary variable—displays a consistent and 

statistically significant negative association with CO2 emission growth rates across all 

investigated time periods. For the most recent span of 2015-2020 (as shown in Columns 

4, Table 3), the carbon price score exhibits a coefficient of -0.0005, which is significant 

at the 1% level. This relationship indicates that an elevation in the carbon pricing score 

corresponds with a decrease in the rate of growth for CO2 emissions, reinforcing the 

policy's intended effect. 

The binary carbon price variable also shows a consistently negative effect on 

emissions growth throughout the periods examined. However, it is noteworthy that there 
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is a slight, though non-significant, attenuation in this effect, diminishing from -0.043 in 

the earlier period (2012-2017, as depicted in Columns 2, Table 3) to -0.032 in the 2015-

2020 timeframe (as presented in Columns 5, Table 3). This trend suggests a marginally 

decreased impact of the binary carbon pricing mechanism over time, yet the change is not 

statistically significant, indicating that the efficacy of carbon pricing remains robust. 

Moreover, the duration-adjusted carbon price variable continues to exert a negative 

influence on emission growth rates across different model specifications, persistent 

through all periods. Such findings substantiate the role of carbon pricing—irrespective of 

its specific operationalization—as a crucial tool in the effort to curb CO2 emissions 

growth. 

Control variables in the study show mixed effects on emissions growth: the initial 

log CO2, while intuitively expected to be a predictor of future emissions growth due to 

historical emission levels, does not exhibit a statistically significant relationship in any 

model iteration. This lack of significance might suggest that past CO2 emission levels are 

not deterministic of future trends, possibly due to changes in national energy policies, 

technological advancements in emissions control, or shifts in industrial activities that 

decouple historical emission baselines from future emissions trajectories. Conversely, the 

initial log energy intensity shows a negative and statistically significant correlation with 

CO2 growth rates in several models, including in Appendix 1b. This relationship 

indicates that countries starting with higher energy efficiency—meaning lower energy 

use per unit of GDP—tend to experience slower rates of emissions growth. This finding 

could be interpreted as evidence that investments in energy efficiency technologies and 



Zhou 31 
 

practices yield tangible reductions in emissions growth, reinforcing the importance of 

energy efficiency measures in climate policy. 

Furthermore, economic growth, captured by GDP per capita growth and 

population growth rates, shows positive and significant coefficients. These relationships 

suggest that economic and demographic expansion are linked to increased CO2 

emissions. Specifically, as economies grow and populations increase, the demand for 

energy typically rises, often resulting in higher emissions unless offset by significant 

improvements in energy efficiency or a shift towards cleaner energy sources. It implies 

that without proactive and stringent environmental policies, the effects of economic and 

population growth may exacerbate the challenge of reducing emissions, particularly in 

rapidly developing regions where economic growth and urbanization are most intense.  

The R-squared values for the 2015-2020 period models suggest a strong model fit, 

explaining approximately 43.5% to 49.3% of the variance in CO2 growth rates. This 

substantial explanatory power indicates that the variables selected for inclusion in the 

model capture a significant portion of the factors influencing emissions growth. 

5.2 Performance and Policy Indexes 

5.2.1 Construction 

Exploratory factor analysis was conducted on two datasets incorporating 7 

environmental performance variables and 7 environmental policy variables, resulting in 

the extraction of one distinct factor from each dataset. These factors were deduced by 

analyzing the extent to which each performance or policy variable correlates with and 

contributes to underlying policy dimensions (Figure 2). 
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Figure 2. Correlation Matrix and Factor Loading Strength of the Two Sets of Variables 
(a) Environmental Performance variables; (b) Environmental Policy variables. The heatmap on 
the left visualizes the pairwise correlations among the environmental policy variables. 
The bar chart on the right represents the absolute factor loadings. The loading strength is 
a metric of how strongly each variable is associated with the factor, and the length of the 
bars in the chart corresponds to the magnitude of these loadings. The variables with the 
most extended bars on a particular factor are considered the most influential for that 
factor. 
 

In Figure 2 (a), the correlation matrix from the performance variables uncovers 

significant positive correlations between variables such as 'Electricity Generation from 

Non-renewables', 'Electricity Generation from Renewables' and 'Projected GHG 

Emissions in 2050'. These associations, all above 0.85, imply that nations with higher 

electricity output from both non-renewable and renewable sources tend to exhibit 

elevated GHG emissions. Additionally, a moderate positive correlation the pollution 

indicators like 'PM2.5 Exposure', 'Solid Fuels Pollution', and emissions of pollutants such 

as 'Black Carbon' and 'Methane' suggests that these pollution indicators are interrelated 
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and potentially influenced by similar factors. For instance, the use of solid fuels can 

contribute to both PM2.5 and methane emissions, while black carbon is a common 

byproduct of incomplete combustion processes. On the other hand, there are a few 

notable negative correlations. For instance, the moderate negative correlation between 

black carbon and renewables (-0.26) indicates that increasing the use of renewable energy 

sources leads to a decrease in black carbon emissions. This is because renewables, like 

wind and solar, do not produce black carbon, which is a byproduct of burning fossil fuels 

and biomass. Thus, more renewables mean less combustion and fewer emissions. 

Similarly, the negative correlation between black carbon and non-renewables (-0.24) 

could reflect the ongoing shift from high-emission fossil fuels to cleaner energy sources. 

As regulations and policies push for reduced greenhouse gas emissions, the use of coal 

and oil decreases, leading to lower black carbon emissions. 

As for the correlation matrix from the policy variables, there is a strong positive 

correlation (0.51) between green bonds and the trade in low carbon technology. This 

relationship suggests that the issuance of green bonds can potentially promote trade in 

low carbon technologies and can be leveraged to support technological advancements. 

There is also a strong positive correlation (0.49) between terrestrial biome protection and 

protected areas, indicating that efforts to protect terrestrial biomes are closely linked to 

the establishment and maintenance of protected areas. Recycling shows a moderate 

positive correlation (0.31) with fossil fuel subsidies. This somewhat unexpected 

relationship may indicate that regions or sectors with higher fossil fuel subsidies also 

invest in recycling initiatives, possibly as a way to mitigate some of the environmental 

impacts of fossil fuel use. There are also significant negative correlations highlighting 
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that certain policies or practices might conflict. For instance, there is a moderate negative 

correlation (-0.32) between protected areas and fossil fuel subsidies. This suggests that 

subsidies for fossil fuels could undermine efforts to expand protected areas, as financial 

support for fossil fuels may lead to increased exploitation of natural resources and habitat 

degradation, counteracting conservation efforts. Similarly, there is a moderate negative 

correlation (-0.27) between terrestrial biome protection and fossil fuel subsidies. This 

indicates that higher fossil fuel subsidies are associated with lower efforts to protect 

terrestrial biomes, reinforcing the notion that financial incentives for fossil fuels can be 

detrimental to environmental conservation. Additionally, there is a slight negative 

correlation (-0.20) between environmental taxes and the trade in low carbon technology. 

This relationship suggests that higher environmental taxes may not necessarily coincide 

with increased trade in low carbon technologies, possibly due to varying policy focuses 

or implementation challenges. 
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Figure 3. Specific loadings of the 15 variables on each factor 
The factor loading strengths of 15 environmental policy variables on two distinct factors are 
depicted by the varying shades where yellow signifies positive loadings and teal indicates 
negative loadings. The darker the color, the stronger the loading of that specific variable. Figure 
created using data from Appendix 2. 

 
Since there is a mix of two directions of each performance variable’s contribution 

to the factor, I assume the performance index is positively oriented, meaning the higher 

the score is for a country, the better its environmental performance is. This assumption is 

based on the overall nature and implications of the factor loadings observed in Figure 2 

(a) and Figure 3 (a). The positive loadings on variables such as 'Renewables' (0.95), 

'Non-renewables' (0.91), and '2050 GHG Emissions' (0.91) suggest that higher scores in 

these areas are associated with better environmental performance. Specifically, a high 

loading on 'Renewables' indicates that increased use of renewable energy sources 

contributes significantly to a positive environmental outcome, reducing dependence on 

fossil fuels and decreasing greenhouse gas emissions. Similarly, the positive loading on 

'Non-renewables' might reflect the transition and management efforts towards reducing 

the environmental impact of these energy sources, likely through efficiency 

improvements or cleaner technologies.  

Conversely, the negative loadings on variables such as 'Black Carbon' (-0.28), 

'Solid Fuels' (-0.16), and 'Methane' (-0.12) indicate that higher levels of these pollutants 



Zhou 36 
 

detract from environmental performance. The very weak negative loading on 'PM2.5' (-

0.03) further supports the assumption. While PM2.5 is a critical air pollutant, its minimal 

loading implies that its influence on the overall index is less significant compared to other 

factors. This may be because PM2.5 levels can be influenced by a variety of sources and 

mitigation efforts that are not as directly tied to the primary energy and emissions factors 

in this analysis. Given these loadings, it is reasonable to infer that the performance index 

rewards countries for positive environmental actions and outcomes, such as increasing 

renewable energy use and reducing harmful emissions. A higher score on the index likely 

indicates that a country is effectively managing its energy resources and minimizing its 

environmental footprint, thereby achieving better overall environmental performance. 

The policy index could also be positively oriented, meaning that higher scores on 

this index indicate more stringent or better-developed environmental policies in a 

country. This orientation is based on the interpretation of the factor loadings in Figure 2 

(b) and Figure 3 (b), which reflect the direction and magnitude of each variable's 

contribution to the overall index. Specifically, 'Terrestrial Biome Protection' has a loading 

of 0.66, 'Protected Areas' a loading of 0.56, and 'Environmental Taxes' a loading of 0.39, 

which are then identified as having the most significant positive contributions to the 

policy index. Conversely, 'Fossil Fuel Subsidies' shows a strong negative loading (-0.51), 

suggesting that financial support for fossil fuels undermines environmental policy 

effectiveness by promoting activities that contribute to pollution and greenhouse gas 

emissions. Similarly, 'Recycling' has a negative loading (-0.28), which might seem 

counterintuitive but could indicate that regions with lower recycling rates have more 

strict overall environmental policies due to other effective policies or practices. 'Low 
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Carbon Tech' also shows a negative loading (-0.20), which may reflect the current 

challenges and slow pace of adopting low carbon technologies despite their potential 

benefits. Lastly, 'Green Bonds' has a positive but relatively weak loading (0.10), 

indicating a modest contribution to the policy index. While green bonds are crucial for 

funding environmentally friendly projects, their impact might be less pronounced in 

comparison to other variables such as protected areas and terrestrial biome protection. 

Each index is then standardized on a scale of 0-100, offering a composite measure 

of a country's environmental policy and performance landscape. This standardization 

facilitates comparison across countries and provides a clear and consistent metric for 

evaluating environmental policy effectiveness. 

Table 4. Descriptive Statistics for Index Variables after Factor Analysis 
 Variable  Obs  Mean  Std. Dev.  Min  Max 
 PM2.5 exposure, Adjusted 61 826.66 781.99 77.27 4388.48 
 Solid Fuels Pollution, Adjusted 61 356.6 871.71 .27 4201.53 
 Emissions Growth for Methane, Adjusted 61 0 .02 -.08 .05 
 Emissions Growth for Black Carbon, Adjusted 61 -.02 .04 -.14 .06 
 Projected GHG Emissions in 2050 61 823000.56 3631003.1 0 28236142 
 Electricity Generation from Renewables 61 76348.1 199801.56 399.52 1381355.2 
 Electricity Generation from Non-renewables 61 238057.65 735200.98 4 4434057.7 
 Environmental Taxes 61 1.78 1.05 .02 4.12 
 Fossil Fuel Subsidies  61 4.57 5.11 .06 33.3 
 Terrestrial Biome Protection 61 12.72 4.68 .19 17 
 Protected Areas Representativeness Index 61 .13 .05 .04 .25 
 Green Bonds  61 .64 1.83 0 8.65 
 Trade in Low Carbon Tech Products  61 2.023e+10 4.206e+10 92797177 2.510e+11 
 Recycling 61 .73 .15 .33 .99 

 
Before synthesizing these findings into the regression model, it is important to 

note that there is a decreased sample size after applying factor analysis. Table 4 provides 

a detailed summary of the index variables for the final 61 countries included in this study. 

These variables were essential in calculating the two index scores—environmental 

performance and policy indexes—used in the final stage of the analysis. These 61 

countries have a mean CO2 emission from fuel combustion of 379,552 tonnes, a mean 

population of 70 million, and a mean GDP per capita of 34,359.5 dollars in 2020. This 
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reduction is due to the requirements of the factor analysis technique, which demands 

complete data for all variables included in the analysis. Missing values in any of the 

variables result in the exclusion of those observations from the factor analysis, leading to 

a smaller sample size. Consequently, while the resulting indexes provide a more 

streamlined and interpretable set of factors, the reduced sample size might limit the 

comparability and generalizability of the findings.   
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5.2.2 Integration to the Regression Model 

Table 5. Cross-Sectional Growth-Rate Regressions 2015-2020 
      
  2015-2020 
  (1) (2) (3) 
Carbon price score 0.00003     
  (0.0002)     
Carbon price, binary   -0.0223*   
    (0.0121)   
Duration-adjusted carbon price     -0.0179 
      (0.0113) 
Performance Index Score -0.0009*** -0.0007** -0.0008*** 
  (0.0003) (0.0003) (0.0003) 
Policy Index Score -0.0005** -0.0004** -0.0004** 
  (0.0002) (0.0002) (0.0002) 
Initial log CO2 0.0713*** 0.0716*** 0.0717*** 
  (0.0233) (0.0212) (0.0221) 
Initial log GDP per capita -0.0595*** -0.0553*** -0.0559*** 
  (0.0195) (0.0155) (0.0161) 
Initial log population -0.0626*** -0.0619*** -0.0622*** 
  (0.0213) (0.0190) (0.0199) 
Initial log energy intensity -0.0550*** -0.0512*** -0.0531*** 
  (0.0161) (0.0148) (0.0151) 
Initial coal share -0.2111*** -0.2267*** -0.2231*** 
  (0.0782) (0.0786) (0.0800) 
Initial oil share -0.0670* -0.0733** -0.0737** 
  (0.0343) (0.0312) (0.0324) 
Initial natural gas share -0.1878*** -0.1910*** -0.1916*** 
  (0.0553) (0.0534) (0.0548) 
Transition, binary 0.0153 0.0189** 0.0187** 
  (0.0093) (0.0081) (0.0083) 
CO2 growth 0.4404*** 0.3148*** 0.3497*** 
  (0.1325) (0.1153) (0.1161) 
GDP per capita growth 0.9423*** 1.0070*** 0.9720*** 
  (0.1855) (0.1778) (0.1753) 
Population growth 0.4539 0.2911 0.3540 
  (0.5215) (0.5149) (0.5074) 
Constant 1.5182*** 1.4645*** 1.4780*** 
  (0.5040) (0.4343) (0.4530) 
        
Observations 61 61 61 
R-squared 0.6936 0.7177 0.7114 
Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1       
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In the last stage of our regression analysis, as shown in Table 5, the integration of 

the constructed performance and policy indexes profoundly influences the relationship 

between carbon pricing and CO2 growth rates. This addition offers a multifaceted view 

of environmental policy effectiveness beyond carbon pricing alone. 

When the performance and policy indexes are included, the carbon price score's 

impact on CO2 growth rates diminishes from -0.0005 (p<0.01) to an insignificant 

coefficient of 0.00003 in Model 1 with the indexes. The positive yet not significant 

relationship observed between carbon pricing and average annual CO2 emission growth 

when the indexes are included indicates that carbon pricing might interact with other 

policies in complex ways. For instance, countries with aggressive carbon pricing 

mechanisms may also have robust renewable energy policies, energy efficiency 

programs, and other measures that collectively contribute to emission reductions. These 

complementary policies may absorb some of the effects that would otherwise be 

attributed to carbon pricing alone, thereby diluting its isolated impact in the statistical 

model. Additionally, the performance index measures the overall effectiveness of a 

country's environmental policies, while the policy index accounts for the specific 

regulatory framework. These indexes likely capture the synergies between various policy 

instruments that drive emission reductions. As a result, the direct impact of carbon 

pricing appears less significant when the broader policy context is taken into account. 

Similarly, the binary carbon price variable shows a reduction in its negative 

effect, moving from -0.032 (p<0.01) to -0.0223 (p<0.10, Model 2). The duration-adjusted 

carbon price also sees a decrease in its negative coefficient, from -0.030 (p<0.01) to -

0.0179 (p>0.10, Model 3), highlighting the relative impact of comprehensive policy 
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frameworks on CO2 emissions. The persistence of negative coefficients, although 

reduced, indicates that carbon pricing remains an influential tool. It suggests that while 

carbon pricing alone might not be sufficient, it contributes to emission reductions when 

used alongside a suite of supportive environmental policies. This continued negative 

association, even if attenuated, underscores the importance of maintaining and possibly 

enhancing carbon pricing mechanisms as part of a broader, integrated climate strategy. 

The performance index itself presents a significant negative coefficient (ranging 

from -0.0009 to -0.0007, p<0.01), emphasizing the effectiveness of broad-based 

environmental strategies in curbing CO2 growth. This negative coefficient indicates that 

higher scores on the performance index, which reflect the overall success and impact of a 

country's environmental policies, are associated with lower CO2 growth rates. This 

finding suggests that when countries implement a wide array of effective environmental 

measures—such as increasing energy efficiency, promoting renewable energy, and 

reducing deforestation—these actions collectively contribute to significant reductions in 

carbon emissions. 

Similarly, the policy index shows significant negative coefficients (-0.0005 to -

0.0004, p<0.05), affirming the overall efficacy of an aggregated environmental policy 

approach. The policy index captures the presence and intensity of various environmental 

regulations and initiatives. The significant negative coefficients imply that countries with 

more comprehensive and stringent environmental policies experience greater reductions 

in CO2 growth rates. This result underscores the importance of not just isolated policy 

measures but also a cohesive and integrated policy framework that addresses multiple 

aspects of environmental management simultaneously. 
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The coefficients for control variables also shift in the presence of the performance 

and policy indexes. The initial log CO2 variable becomes significantly positive in the 

models with indexes (0.0713, p<0.01 in Model 1), suggesting that higher initial CO2 

levels are associated with increased CO2 growth rates when environmental policies are 

accounted for. The initial log GDP per capita becomes significantly negative in the 

models with indexes, ranging from -0.0595 to -0.0553 (p<0.01), indicating that more 

developed economies may experience lower CO2 growth rates with a broader suite of 

environmental policies. Similarly, initial log population coefficients become significantly 

negative (ranging from -0.0626 to -0.0619, p<0.01 in Model 2), underscoring that larger 

populations are associated with decreased CO2 growth rates within a strong policy 

environment. 

Moreover, the initial log energy intensity, along with initial shares of coal, oil, 

and natural gas, shows increasingly negative coefficients in the models with indexes. This 

pattern suggests that higher initial energy efficiency and a lower reliance on fossil fuels, 

coupled with comprehensive environmental policies, contribute to slower CO2 emissions 

growth. 

The emergence of significance in control variables upon the addition of the 

performance and policy indexes suggests that these indexes capture a broader spectrum of 

environmental policy influences that were previously unaccounted for. The indexes likely 

embody interactions and cumulative effects of various environmental policies extending 

beyond the scope of carbon pricing alone. By encompassing a wider range of policy 

instruments, the indexes may clarify the underlying dynamics between economic, 

demographic, and energy-related factors and CO2 emissions growth. This integrative 
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approach potentially highlights the indirect effects and synergies of comprehensive policy 

frameworks that could be overshadowed when examining isolated policy measures. 

Another explanation is that adding the performance and policy indexes reduced the total 

number of observations in the regression model. Hence, variables such as initial GDP, 

population, and energy intensity, which seemed inconsequential in isolation, are now 

revealed as significant factors within the context of a systemic policy environment. 

It is important to note that the reduction in the sample size to 61 countries after 

the index construction poses a limitation in the comparability of these models to previous 

ones. The decreased sample size means that the models with the performance and policy 

indexes might not fully capture the broader trends observed in the larger dataset used in 

earlier stages of the analysis. While the inclusion of these indexes provides a more 

nuanced understanding of environmental policy effectiveness, they should be interpreted 

with caution, considering the constraints posed by the reduced number of observations. 

Overall, the R-squared values in the Models with indexes are significantly higher 

(0.694 to 0.718) than in the ones without, demonstrating that the inclusion of the 

performance and policy indexes offers superior explanatory power in the regression 

models. The stronger model fit indicates that these indexes capture additional variation in 

CO2 growth rates that is not explained by carbon pricing and other controls alone. 

  



Zhou 44 
 

6. Discussion and Conclusion 

The primary purpose of this research is to assess the efficiency of carbon pricing 

mechanisms from 2012 to 2020. Building on the foundational study by Best et al. (2020), 

this research aimed to update and extend the analysis to include more recent data, thereby 

capturing the evolving impacts of carbon pricing amid changing global economic and 

policy landscapes. By adding two comprehensive indexes—a performance index and a 

policy index—that act as controls for a wider set of both environmental and economic 

factors, I sought to enhance the robustness of this analysis. This dual approach not only 

aimed to validate the ongoing relevance of carbon pricing as a critical tool in climate 

policy but also to provide a deeper understanding of how integrated policy frameworks 

influence CO2 emissions. Overall, the goal was to offer actionable insights that could 

guide more effective and nuanced policy-making in the realm of climate change 

mitigation. 

From the results, my investigation of the interaction between carbon pricing, 

environmental policies, and CO2 emissions from 2012 to 2020 has provided strong 

support for the notion that carbon pricing is an effective mechanism to inhibit CO2 

emission growth. The fact that this observation holds true across significantly different 

countries—varying both economically and demographically—and despite recently 

shifted patterns of global emissions, suggests that carbon pricing maintains a solid 

position as one of the principal climate mitigation strategies. This robustness across 

diverse contexts underscores the universal applicability of carbon pricing as a tool to 

drive emission reductions. 
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Nonetheless, the addition of comprehensive performance and policy indexes has 

added an extra dimension to this relationship. The results show that the direct impact of 

carbon pricing as an isolated policy on emissions decline appears less significant when 

these indexes are included. This suggests that while carbon pricing is an important tool, 

its effectiveness cannot be fully understood without considering the broader policy 

environment. The indexes capture the overall policy landscape, indicating that carbon 

pricing's impact on reducing emissions is intertwined with other environmental measures 

and policies in place. 

Moreover, the indexes have illuminated the dynamics of policy interactions 

within the framework. They have revived non-significant control variables, indicating 

that these variables are interconnected with other policies, thus making them meaningful 

indicators. This reveals that the indexes successfully capture the complex interplay and 

cumulative effects of various complementary policies. By doing so, they allow for a more 

comprehensive understanding of the forces behind emission trends. The performance 

index, by measuring the overall impact of environmental policies, and the policy index, 

by detailing the presence of specific regulations, together provide a nuanced picture of 

how different policies interact to influence CO2 emissions. 

Based on those results, here are some policy recommendations and implications 

emerging from this study: 

1. Enduring Effectiveness of Carbon Pricing: The demonstrated effectiveness 

of carbon pricing across multiple time periods reinforces its viability as a 

central instrument in climate policy. Governments should continue to 
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implement and refine carbon pricing mechanisms, ensuring they are 

adequately stringent to incentivize significant reductions in carbon emissions. 

2. Comprehensive Policy Frameworks: The introduction of the performance 

and policy indexes in this study highlights the importance of comprehensive 

policy frameworks that include not only carbon pricing but also measures 

related to energy efficiency, renewable energy adoption, and pollution control. 

The significant role of these integrated policies suggests that governments 

should adopt a holistic approach to policy design, encompassing a range of 

strategies to address various aspects of emissions and environmental 

degradation. This could involve strengthening regulations on industrial 

emissions, providing incentives for renewable energy development, and 

implementing stricter fuel efficiency standards, among other measures. 

3. Tailored Approaches to Policy Implementation: The findings suggest that 

policymakers need to pay close attention to the socio-economic contexts 

within which these policies are implemented. The variability in the 

effectiveness of carbon pricing and other policies across different 

demographic and economic contexts underscores the need for tailored 

approaches that consider local economic conditions, cultural norms, and 

existing technological capacities. For example, developing countries might 

require more support and international collaboration to implement effective 

carbon pricing mechanisms that do not stifle economic growth. 

4. Improved Data Collection and Reporting Standards: The complexities and 

challenges identified in isolating the impact of carbon pricing from other 
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concurrent policies point to the need for improved data collection and 

reporting standards. Enhanced transparency and consistency in environmental 

data reporting by countries can greatly facilitate more accurate policy 

assessments and enable more informed policy decisions. International bodies 

and agreements could play a crucial role in setting these standards and 

providing frameworks for cooperation and data sharing among nations. 

My research also faced certain limitations. The most prominent one was the 

variable nature of environmental policies across countries, making it difficult to extract 

and combine a broadly comparable policy index. Another challenge was the quality and 

consistency of data, which is not always reported with integrity and regularity by all 

countries. Finally, many environmental policies are also intertwined with socio-economic 

aspects, which sometimes introduces an additional level of complexity and complicates 

establishing causal pathways.  

To further polish the evaluation, future research might consider decomposing the 

performance and policy indexes of evaluating the impact of individual policies. 

Expanding the dataset past 2020 could add the possibility to evaluate the long-term 

effects of policies, especially given the drastic shifts following the COVID-19 pandemic. 

Studies should also consider factors such as the enforcement of environmental policies, 

as some countries with carbon pricing might experience tax avoidance or non-

compliance. Additionally, qualitative research could complement the quantitative data, 

offering insights into the implementation challenges. 

All in all, my study sheds light on the topic of CO2 emissions using the multiple 

dimensions approach, highlighting the necessity of the complex of interconnected policy 
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mechanisms. My study also highlights the important place of indexes as a useful tool of 

analysis, offering new insights into the varieties of climate policy efficacy. Looking 

forward, my research creates a solid basis for further study of the interaction complexities 

of environmental policies and remains an area of high relevance for creating a sustainable 

future. 
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8. Appendix 

Appendix 1a. Average Annual CO2 Growth Rate Regression 2012-2017 (Replication) 

Dependent variable: Average annual CO2 growth rate   
  2012-2017 
  (1) (2) (3) 
Carbon price score -0.0006***   

 (0.0002)   
Carbon price, binary  -0.043***  

  (0.013)  
Duration-adjusted carbon price   -0.048*** 

   (0.014) 
Initial log CO2 -0.022 -0.020 -0.020 

 (0.022) (0.021) (0.021) 
Initial log GDP per capita 0.020 0.024 0.026 

 (0.020) (0.019) (0.019) 
Initial log population 0.024 0.023 0.024 

 (0.022) (0.020) (0.020) 
Initial log energy intensity -0.006 -0.006 -0.004 

 (0.017) (0.016) (0.016) 
Initial coal share -0.003 -0.022 -0.021 

 (0.059) (0.059) (0.058) 
Initial oil share -0.040 -0.050 -0.050 

 (0.047) (0.047) (0.045) 
Initial natural gas share -0.003 -0.024 -0.031 

 (0.038) (0.039) (0.039) 
Transition, binary -0.002 0.008 0.012 

 (0.009) (0.009) (0.009) 
CO2 growth, binary 0.026 -0.061 -0.061 

 (0.135) (0.137) (0.132) 
GDP per capita growth 0.610** 0.635*** 0.656*** 

 (0.251) (0.229) (0.223) 
Population growth 0.692** 0.636** 0.639** 

 (0.323) (0.314) (0.312) 
Constant -0.479 -0.484 -0.526 

 (0.501) (0.474) (0.472) 
    

Observations 134 134 134 
R-squared 0.443 0.479 0.493 
Robust standard errors in parentheses   
*** p<0.01, ** p<0.05, * p<0.1    
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Appendix 1b. Average Annual CO2 Growth Rate Regression 2015-2019 (Pre-Pandemic) 

 

 

  

Dependent variable: Average annual CO2 growth rate 
  2015-2019   
  (4) (5) (6)   
Carbon price score -0.0004**     

 (0.0002)      
Carbon price, binary  -0.024***     

  (0.009)     
Duration-adjusted carbon price   -0.025***    

   (0.009)    
Initial log CO2 0.018 0.018 0.018    

 (0.018) (0.018) (0.018)    
Initial log GDP per capita -0.027 -0.024 -0.023    

 (0.017) (0.017) (0.017)    
Initial log population -0.016 -0.015 -0.015    

 (0.018) (0.018) (0.018)    
Initial log energy intensity -0.044** -0.041** -0.042**    

 (0.018) (0.018) (0.018)    
Initial coal share -0.057 -0.064 -0.064    

 (0.050) (0.051) (0.051)    
Initial oil share -0.066 -0.066 -0.066    

 (0.043) (0.042) (0.042)    
Initial natural gas share -0.016 -0.026 -0.027    

 (0.032) (0.034) (0.034)    
Transition, binary 0.002 0.009 0.009    

 (0.009) (0.009) (0.009)    
CO2 growth, binary 0.141 0.104 0.104    

 (0.085) (0.085) (0.085)    
GDP per capita growth 0.647*** 0.701*** 0.695***    

 (0.152) (0.169) (0.168)    
Population growth 0.747** 0.783** 0.789**    

 (0.365) (0.362) (0.362)    
Constant 0.558 0.507 0.502    

 (0.437) (0.440) (0.440)    
       

Observations 133 133 133    
R-squared 0.505 0.513 0.514    
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1       
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Appendix 1c. Average Annual CO2 Growth Rate Regression 2015-2020 (Most Recent) 

Dependent variable: Average annual CO2 growth rate 
  2015-2020        
  (7) (8) (9)       
Carbon price score -0.0005***         

 (0.0002)         
Carbon price, binary  -0.032***        

  (0.010)        
Duration-adjusted carbon price   -0.030***       

   (0.010)       
Initial log CO2 0.011 0.011 0.010       

 (0.017) (0.017) (0.017)       
Initial log GDP per capita -0.020 -0.016 -0.016       

 (0.017) (0.017) (0.017)       
Initial log population -0.010 -0.009 -0.008       

 (0.017) (0.017) (0.017)       
Initial log energy intensity -0.030* -0.027 -0.027       

 (0.017) (0.016) (0.017)       
Initial coal share -0.059 -0.066 -0.063       

 (0.050) (0.051) (0.051)       
Initial oil share -0.058 -0.055 -0.054       

 (0.038) (0.037) (0.037)       
Initial natural gas share 0.004 -0.008 -0.006       

 (0.031) (0.033) (0.033)       
Transition, binary -0.005 0.004 0.004       

 (0.010) (0.010) (0.010)       
CO2 growth, binary 0.044 -0.001 0.005       

 (0.101) (0.099) (0.100)       
GDP per capita growth 0.844*** 0.904*** 0.887***       

 (0.189) (0.206) (0.203)       
Population growth 0.673* 0.691* 0.699*       

 (0.383) (0.389) (0.388)       
Constant 0.380 0.319 0.314       

 (0.412) (0.410) (0.413)       
          

Observations 133 133 133       
R-squared 0.485 0.496 0.493       
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1          
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Appendix 2a. Factor Loadings of the 7 Environmental Performance Variables 

Variable Factor Loading 
PM2.5 -0.030424268 
Solid Fuels -0.15698873 
Methane  -0.117848423 
Black Carbon  -0.275275719 
2050 GHG Emissions 0.911129198 
Renewables  0.954050424 
Non-renewables  0.906241037 

 

Appendix 2b. Factor Loadings of the 7 Environmental Policy Variables 

Variable Factor Loading 
Environmental Taxes  0.393282845 
Fossil Fuel Subsidies  -0.511448319 
Terrestrial Biome Protection 0.661728896 
Protected Areas 0.563368746 
Green Bonds  0.101043018 
Low Carbon Tech -0.201161453 
Recycling -0.27622665 
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Appendix 3. STATA Codes 

Appendix 3a. Phase 1: Replication, Expansion, and Comparison 

//Phase 1 
//Last Editted: 2/13/2024 
ssc install outreg2 
clear 
import delimited "C:\Users\Student\Desktop\Thesis\Dataset construction\P1v1_wdacpbin.csv" 
 
*Initial GDPpc 
//preserve 
//keep if year == 2015 
//keep country gdppercapitapppconstant2017inter 
//rename gdppercapitapppconstant2017inter gdppc15 
//tempfile gdp2015 
//save gdp2015 
//restore 
 
//preserve 
//keep if year == 2014 
//keep country gdppercapitapppconstant2017inter 
//rename gdppercapitapppconstant2017inter gdppc14 
//tempfile gdp2014 
//save gdp2014 
//restore 
 
//merge m:m country using gdp2015, nogen 
//merge m:m country using gdp2014, nogen 
//save P1V2 
 
clear  
ssc install outreg2  
use P1V2 
*Adding subsectors 
    *primary energy supply 
 gen coal               = coalcp+peat+oilshale 
 gen oil                = crude+oilp 
  
 label variable coal      "Sum of coal/products, peat, oilshale from IEA World Energy 
Balances, ktoe"                  
    label variable oil           "Sum of oil/products, crude from IEA World energy balances, 
ktoe"                  
 
*Shares 
 gen coal_share         = coal     /totaltpes 
 gen oil_share          = oil      /totaltpes 
 gen gas_share          = gas      /totaltpes 
  
 label variable coal_share            "Coal share of energy" 
 label variable oil_share             "Oil share of energy" 
 label variable gas_share             "Natural gas share of energy" 
 
*still need pretaxsub15, ee15, re15 
*gen presub_pue = 1000*pretaxsub/(coal[_n-4] + oil[_n-4] + gas[_n-4]) 
 
*rename 
rename gdppercapitapppconstant2017inter gdppc17 
rename energyintensitylevelofprimaryene en_inten 
rename populationtotalsppoptotl pop 
rename ghgfromfuelcombustion co2 
rename gdppc14 gdppcc14 
rename gdppc15 gdppcc15 
 
 
*clean 
** CPS fron RISE is missiong, so I used the ones from OECD instead 
keep country year gdppc17 gdppc11 gdppcc14 gdppcc15 en_inten pop co2 coal_share oil_share 
gas_share transition cpbin cpbin_12to17p cpbin_15to19p cpbin_15to20p ross value120ball2012 
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value120ball2015 value30ball2012 value30ball2015 value60ball2012 value60ball2015 cpbin_tax 
cpbin_ets 
 
*logs 
 gen lngdppc17          = ln(gdppc17) 
 gen lngdppc11          = ln(gdppc11) 
 gen lngdppcc14         = ln(gdppcc14) 
 gen lngdppcc15         = ln(gdppcc15) 
 gen ln_en_in           = ln(en_inten)  
 gen ln_co2             = ln(co2/1000) 
 gen ln_pop             = ln(pop) 
  
 label variable lngdppc17             "Log GDP per capita (PPP, constant 2017 
international dollars)" 
 label variable lngdppc11             "Log GDP per capita (PPP, constant 2011 
international dollars)" 
 label variable lngdppcc14            "Log GDP per capita consistent 2014(PPP, constant 
2017 international dollars)" 
 label variable lngdppcc15            "Log GDP per capita consistent 2015(PPP, constant 
2017 international dollars)"  
 label variable ln_en_in              "Log energy intensity, level of primary energy 
(MJ/$2011 PPP GDP)" 
 label variable ln_co2                "Log fossil fuel combustion CO2 emissions" 
 label variable ln_pop                "Log population" 
 
  
*lags: 4 years  
 gen lag4_lngdppc17     = lngdppc17[_n-4] 
 gen lag4_lngdppc11     = lngdppc11[_n-4] 
 gen lag4_lnco2         = ln_co2[_n-4] 
 gen lag4_ln_enin       = ln_en_in[_n-4] 
 gen lag4_cpbin         = cpbin[_n-4] 
 gen lag4_cpbin_tax     = cpbin_tax[_n-4] 
 gen lag4_cpbin_ets     = cpbin_ets[_n-4] 
 gen lag4_cpbin_sn      = lag4_cpbin 
replace lag4_cpbin_sn      = 0 if country=="Japan"|country=="United States"|country=="Canada"  
 gen lag4_ross          = ross_y[_n-4] 
    gen lag4_lnpop         = ln_pop[_n-4] 
 gen lag4_co2           = co2[_n-4]/1000 
 gen lag4_gdppc11       = gdppc17[_n-4] 
 gen lag4_en_inten      = en_inten[_n-4] 
 gen lag4_pop           = pop[_n-4] 
 gen coal_share_lag4    = coal_share[_n-4] 
 gen oil_share_lag4     = oil_share[_n-4] 
 gen gas_share_lag4     = gas_share[_n-4] 
 
 label variable lag4_lngdppc11       "Log of GDP per capita 2011 international dollars 
PPP, lag 4"  
 label variable lag4_lngdppc17       "Log of GDP per capita 2017 international dollars 
PPP, lag 4"  
    label variable lag4_lnco2           "Log fossil fuel combustion CO2 emissions , lag 4" 
 label variable lag4_ln_enin         "Log energy intensity, level of primary energy 
(MJ/$2011 PPP GDP), lag 4" 
 label variable lag4_cpbin           "Carbon pricing instruments implemented, lag 4, 
binary variable" 
 label variable lag4_cpbin_tax       "Carbon pricing instruments implemented (tax), lag 4, 
binary variable" 
 label variable lag4_cpbin_ets       "Carbon pricing instruments implemented (ETS), lag 4, 
binary variable" 
    label variable lag4_ross            "Net gasoline tax (subsidy) using price gap of retail 
price and global benchmark (const 2015 USD per liter), lag 4"  
 label variable lag4_lnpop           "Log population, lag 4"  
    label variable lag4_co2             "Lag 4, fossil fuel combustion CO2 emissions" 
    label variable lag4_gdppc11         "Lag 4, GDP per capita"  
    label variable lag4_en_inten        "Lag 4, energy intensity" 
    label variable lag4_pop             "Lag 4, population" 
 label variable lag4_cpbin_sn        "Lag 4, carbon pricing, excluding subnational 
schemes, binary variable" 
 label variable coal_share_lag4      "Lag 4, Coal share of energy" 
 label variable oil_share_lag4       "Lag 4, Oil share of energy" 
 label variable gas_share_lag4       "Lag 4, natural gas share of energy" 
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*4 year growth  
 gen ch4_lngdppc11      = (lngdppc11-lngdppc11[_n-4])/4 
 gen ch4_lngdppc17      = (lngdppc17-lngdppc17[_n-4])/4 
 gen ch4_lnco2          = (ln_co2-ln_co2[_n-4])/4 
 gen ch4_pop            = (ln_pop-ln_pop[_n-4])/4  
  
 label variable ch4_lngdppc11        "Ann. avg. growth over 4yrs, GDP per capita 2011 
(PPP, constant 2011 international dollars)" 
 label variable ch4_lngdppc17        "Ann. avg. growth over 4yrs, GDP per capita 2017 
(PPP, constant 2011 international dollars)" 
 label variable ch4_lnco2            "Ann. avg. growth over 4yrs, fossil fuel combustion 
CO2 emissions" 
 label variable ch4_pop              "Ann. avg. growth over 4yrs, population" 
 
*Previous 
 gen ch4_lnco2_lag4         = ch4_lnco2[_n-4] 
 label variable ch4_lnco2            " Previous Ann. avg. growth over 4yrs, fossil fuel 
combustion CO2 emissions" 
 
*lags: 5 years  
 gen lag5_lngdppc17     = lngdppc17[_n-5] 
 gen lag5_lngdppc11     = lngdppc11[_n-5] 
 gen lag5_lnco2         = ln_co2[_n-5] 
 gen lag5_ln_enin       = ln_en_in[_n-5] 
 gen lag5_cpbin         = cpbin[_n-5] 
 gen lag5_cpbin_tax     = cpbin_tax[_n-5] 
 gen lag5_cpbin_ets     = cpbin_ets[_n-5] 
 gen lag5_cpbin_sn      = lag5_cpbin 
replace lag5_cpbin_sn      = 0 if country=="Japan"|country=="United States"|country=="Canada"  
 gen lag5_ross          = ross_y[_n-5] 
    gen lag5_lnpop         = ln_pop[_n-5] 
 gen lag5_co2           = co2[_n-5]/1000 
 gen lag5_gdppc11       = gdppc17[_n-5] 
 gen lag5_en_inten      = en_inten[_n-5] 
 gen lag5_pop           = pop[_n-5] 
 gen coal_share_lag5    = coal_share[_n-5] 
 gen oil_share_lag5     = oil_share[_n-5] 
 gen gas_share_lag5     = gas_share[_n-5] 
 
 label variable lag5_lngdppc11       "Log of GDP per capita 2011 international dollars 
PPP, lag 5"  
 label variable lag5_lngdppc17       "Log of GDP per capita 2017 international dollars 
PPP, lag 5"  
    label variable lag5_lnco2           "Log fossil fuel combustion CO2 emissions , lag 5" 
 label variable lag5_ln_enin         "Log energy intensity, level of primary energy 
(MJ/$2011 PPP GDP), lag 5" 
 label variable lag5_cpbin           "Carbon pricing instruments implemented, lag 5, 
binary variable" 
 label variable lag5_cpbin_tax       "Carbon pricing instruments implemented (tax), lag 5, 
binary variable" 
 label variable lag5_cpbin_ets       "Carbon pricing instruments implemented (ETS), lag 5, 
binary variable" 
    label variable lag5_ross            "Net gasoline tax (subsidy) using price gap of retail 
price and global benchmark (const 2015 USD per liter), lag 5"  
 label variable lag5_lnpop           "Log population, lag 5"  
    label variable lag5_co2             "Lag 5, fossil fuel combustion CO2 emissions" 
    label variable lag5_gdppc11         "Lag 5, GDP per capita"  
    label variable lag5_en_inten        "Lag 5, energy intensity" 
    label variable lag5_pop             "Lag 5, population" 
 label variable lag5_cpbin_sn        "Lag 5, carbon pricing, excluding subnational 
schemes, binary variable" 
 label variable coal_share_lag5       "Lag 5, Coal share of energy" 
 label variable oil_share_lag5        "Lag 5, Oil share of energy" 
 label variable gas_share_lag5        "Lag 5, natural gas share of energy" 
 
*5 year growth  
 gen ch5_lngdppc11      = (lngdppc11-lngdppc11[_n-5])/5 
 gen ch5_lngdppc17      = (lngdppc17-lngdppc17[_n-5])/5 
 gen ch5_lnco2          = (ln_co2-ln_co2[_n-5])/5 
 gen ch5_pop            = (ln_pop-ln_pop[_n-5])/5  
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 label variable ch5_lngdppc11        "Ann. avg. growth over 5yrs, GDP per capita 2011 
(PPP, constant 2011 international dollars)" 
 label variable ch5_lngdppc17        "Ann. avg. growth over 5yrs, GDP per capita 2017 
(PPP, constant 2011 international dollars)" 
 label variable ch5_lnco2            "Ann. avg. growth over 5yrs, fossil fuel combustion 
CO2 emissions" 
 label variable ch5_pop              "Ann. avg. growth over 5yrs, population" 
 
*Previous 
 gen ch5_lnco2_lag5         = ch5_lnco2[_n-5] 
 label variable ch5_lnco2            " Previous Ann. avg. growth over 5yrs, fossil fuel 
combustion CO2 emissions" 
 
*CPS 
 replace value30ball2012=0 if value30ball2012==. 
 replace value60ball2012=0 if value60ball2012==. 
 replace value120ball2012=0 if value120ball2012==. 
 replace value30ball2015=0 if value30ball2015==. 
 replace value60ball2015=0 if value60ball2015==. 
 replace value120ball2015=0 if value120ball2015==. 
 
  
ssc install asdoc 
asdoc sum if year==2015, replace dec(2) 
 
//Replication 
*Table 4, 5 years to 2017, not per capita     
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc11 ch5_pop value30ball2012                                                     
if year==2017 , r 
  outreg2 using p1.xls, dec(3) 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc11 ch5_pop lag5_cpbin                                                           
if year==2017 , r 
  outreg2 using p1.xls, dec(3)  
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc11 ch5_pop cpbin_12to17p                                                        
if year==2017 , r 
  outreg2 using p1.xls, dec(3)  
 *reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc ch5_pop c12price100          
lag5_ross presub_pue ee12_xcp100 re12_xcp100    if year==2017 , r 
  *estimates store res4 
 *reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc ch5_pop lag5_cpbin           
lag5_ross presub_pue ee12_xcp100 re12_xcp100    if year==2017 , r 
  *estimates store res5 
 *reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc ch5_pop cpbin_12to17p        
lag5_ross presub_pue ee12_xcp100 re12_xcp100    if year==2017 , r 
  *estimates store res6   
 *xml_tab res1 res2 res3 res4 res5 res6 , stats(N r2) below sheet("T4") format(nTLR3) 
append save(results_cpecce) 
 
//15to19 
 reg ch4_lnco2 lag4_lnco2 lag4_lngdppc17 lag4_lnpop lag4_ln_enin coal_share_lag4 
oil_share_lag4 gas_share_lag4 transition ch4_lnco2_lag4 ch4_lngdppc17 ch4_pop value30ball2015                                                     
if year==2019 , r 
  outreg2 using p1.xls, dec(3)   
 reg ch4_lnco2 lag4_lnco2 lag4_lngdppc17 lag4_lnpop lag4_ln_enin coal_share_lag4 
oil_share_lag4 gas_share_lag4 transition ch4_lnco2_lag4 ch4_lngdppc17 ch4_pop lag4_cpbin                                                           
if year==2019 , r 
  outreg2 using p1.xls, dec(3)   
 reg ch4_lnco2 lag4_lnco2 lag4_lngdppc17 lag4_lnpop lag4_ln_enin coal_share_lag4 
oil_share_lag4 gas_share_lag4 transition ch4_lnco2_lag4 ch4_lngdppc17 ch4_pop cpbin_15to19p                                                        
if year==2019 , r 
  outreg2 using p1.xls, dec(3)  
   
//15to20 
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 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop value30ball2015                                                     
if year==2020 , r 
  outreg2 using p1.xls, dec(3) 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop lag5_cpbin                                                           
if year==2020 , r 
  outreg2 using p1.xls, dec(3) 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop cpbin_15to20p                                                        
if year==2020 , r 
  outreg2 using p1.xls, dec(3) 
 
 
//ttest 
*Table 4, 5 years to 2017, not per capita     
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc11 ch5_pop value30ball2012                                                     
if year==2017  
  estimates store model1_1 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc11 ch5_pop lag5_cpbin                                                           
if year==2017  
  estimates store model1_2 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc11 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc11 ch5_pop cpbin_12to17p                                                        
if year==2017  
  estimates store model1_3 
 
//15to19 
 reg ch4_lnco2 lag4_lnco2 lag4_lngdppc17 lag4_lnpop lag4_ln_enin coal_share_lag4 
oil_share_lag4 gas_share_lag4 transition ch4_lnco2_lag4 ch4_lngdppc17 ch4_pop value30ball2015                                                     
if year==2019  
  estimates store model2_1 
 reg ch4_lnco2 lag4_lnco2 lag4_lngdppc17 lag4_lnpop lag4_ln_enin coal_share_lag4 
oil_share_lag4 gas_share_lag4 transition ch4_lnco2_lag4 ch4_lngdppc17 ch4_pop lag4_cpbin                                                           
if year==2019  
  estimates store model2_2 
 reg ch4_lnco2 lag4_lnco2 lag4_lngdppc17 lag4_lnpop lag4_ln_enin coal_share_lag4 
oil_share_lag4 gas_share_lag4 transition ch4_lnco2_lag4 ch4_lngdppc17 ch4_pop cpbin_15to19p                                                        
if year==2019  
  estimates store model2_3 
   
//15to20 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop value30ball2015                                                     
if year==2020  
  estimates store model3_1 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop lag5_cpbin                                                           
if year==2020  
  estimates store model3_2 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop cpbin_15to20p                                                        
if year==2020  
  estimates store model3_3 
 
suest model1_1 model1_2 model1_3 model2_1 model2_2 model2_3 model3_1 model3_2 model3_3 
test [model1_1_mean]value30ball2012 = [model2_1_mean]value30ball2015 = 
[model3_1_mean]value30ball2015 
test [model1_2_mean]lag5_cpbin = [model2_2_mean]lag4_cpbin = [model3_2_mean]lag5_cpbin 
test [model1_3_mean]cpbin_12to17p = [model2_3_mean]cpbin_15to19p = [model3_3_mean]cpbin_15to20p 
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Appendix 3b. Factor Analysis & Index Construction 

//FA based on EPI+IMF Raw data 
//Last Editted: 5/15/2024 
clear 
ssc install factortest 
 
//cleaning 
use imf2 
replace iso = "LIE" if country == "Liechtenstein" 
replace iso = "MAC" if country == "China, P.R.: Macao" 
replace iso = "BMU" if country == "Bermuda" 
replace iso = "SMR" if country == "San Marino, Rep. of" 
replace iso = "JEY" if country == "Jersey" 
replace iso = "GGY" if country == "Guernsey" 
save imf20152 
 
 
clear 
import excel "C:\Users\Student\Desktop\Thesis\Policy Index\FA\Raw2015.xlsx", sheet("Sheet1") 
firstrow case(lower) clear 
 
foreach var in tbn tbg par tcl grl wtl pmd had ozd noe soe coe voe rec cha fga nda bca ghn gib 
ghp { 
  replace `var'=. if `var'==-7777 
  replace `var'=. if `var'==-8888 
  replace `var'=. if `var'==-9999 
  replace `var'=. if `var'==-4444 
} 
 
 
//merge with IMF data 
merge m:m iso using imf20152 
sort _merge 
drop _merge 
 
rename ET et 
rename FFS ffs 
rename TRE tre 
rename NRE nre 
rename TLC tlc 
rename GB gb 
rename EPA epa 
rename EPE epe 
 
//performance index 
//global xlist tbn par tcl grl wtl pmd had ozd noe soe coe voe rec cha fga nda bca ghn gib ghp et 
ffs tre nre tlc gb 
global xlist pmd had cha bca ghn tre nre 
global id country 
global ncomp 2 
 
describe $xlist 
summarize $xlist 
corr $xlist 
 
//factor analysis 
factor $xlist, factors(2) 
screeplot, yline(1) title("Environmental Performance Index") 
 
factor $xlist, mineigen(1) blanks(.3) 
rotate, varimax 
estat kmo 
 
*export factor loadings 
matrix M = e(r_L) 
local rmax = rowsof(M) 
local cmax = colsof(M) 
putexcel set "Factor Loadings Table_perf.xlsx", sheet("Factor Loadings") 
putexcel A1 = (e(Factors)) B2 = matrix(M), rownames 
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*score 
predict f1 
*egen score = rowmean (f2 f1) 
*gen i_score = -1* f1 
 
rename f1 i_score 
 
//standard 1-100 
egen i_score_min = min(i_score) 
egen i_score_max = max(i_score) 
gen perf_score = (i_score - i_score_min) / (i_score_max - i_score_min) * 100 
drop i_score i_score_min i_score_max 
 
 
 
*policy index 
factor et ffs tbn par gb tlc rec  
screeplot, yline(1) title("Environmental Policy Index") 
 
factor et ffs tbn par gb tlc rec , mineigen(1) blanks(.3) 
rotate, varimax blanks(.3) 
estat kmo 
 
*export factor loadings 
matrix M = e(r_L) 
local rmax = rowsof(M) 
local cmax = colsof(M) 
putexcel set "Factor Loadings Table_pol.xlsx", sheet("Factor Loadings") 
putexcel A1 = (e(Factors)) B2 = matrix(M), rownames 
 
*score 
predict f1 
rename f1 i_score 
 
 
//standardize 1-100 
egen i_score_min = min(i_score) 
egen i_score_max = max(i_score) 
gen pol_score = (i_score - i_score_min) / (i_score_max - i_score_min) * 100 
drop i_score i_score_min i_score_max 
 
 
save standardized_scoresv2_test 
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Appendix 3b. Phase 2: Indexes Integration 
 
//P2 Policy Index Integration 
//Last Updated: 05/15/2024 
 
clear  
use standardized_scoresv2_test 
sum 
 
*ssc install asdoc 
*asdoc sum , replace dec(2) 
 
replace iso = "KSV" if country == "Kosovo" 
rename iso countrycode 
merge m:m countrycode using P1V2 
sort _merge 
drop if _merge == 1 
drop _merge 
*Adding subsectors 
    *primary energy supply 
 gen coal               = coalcp+peat+oilshale 
 gen oil                = crude+oilp 
  
 label variable coal                  "Sum of coal/products, peat, oilshale from IEA World 
Energy Balances, ktoe"                  
    label variable oil                   "Sum of oil/products, crude from IEA World energy 
balances, ktoe"                  
 
*Shares 
 gen coal_share         = coal     /totaltpes 
 gen oil_share          = oil      /totaltpes 
 gen gas_share          = gas      /totaltpes 
  
 label variable coal_share            "Coal share of energy" 
 label variable oil_share             "Oil share of energy" 
 label variable gas_share             "Natural gas share of energy" 
 
*rename 
ssc install asdoc 
asdoc sum , replace dec(2) 
rename gdppercapitapppconstant2017inter gdppc17 
rename energyintensitylevelofprimaryene en_inten 
rename populationtotalsppoptotl pop 
rename ghgfromfuelcombustion co2 
rename gdppc14 gdppcc14 
rename gdppc15 gdppcc15 
 
 
*clean 
** CPS fron RISE is missiong, so I used the ones from OECD instead 
*keep country countrycode year gdppc17 gdppc11 gdppcc14 gdppcc15 en_inten pop co2 coal_share 
oil_share gas_share transition cpbin cpbin_12to17p cpbin_15to19p cpbin_15to20p ross 
value120ball2012 value120ball2015 value30ball2012 value30ball2015 value60ball2012 value60ball2015 
cpbin_tax cpbin_ets  perf_score pol_score 
 
replace country = "Anguilla" if country =="ANGUILLA" 
 
merge m:m country using epi1416 
sort _merge 
drop _merge 
*save P2epifa 
save P2_v2 
 
//Main 
clear 
*use P2epifa 
use P2_v2 
sort country year 
 
*still need pretaxsub15, ee15, re15 
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*gen presub_pue = 1000*pretaxsub/(coal[_n-4] + oil[_n-4] + gas[_n-4]) 
 
*logs 
 gen lngdppc17          = ln(gdppc17) 
 gen lngdppc11          = ln(gdppc11) 
 gen lngdppcc14         = ln(gdppcc14) 
 gen lngdppcc15         = ln(gdppcc15) 
 gen ln_en_in           = ln(en_inten)  
 gen ln_co2             = ln(co2/1000) 
 gen ln_pop             = ln(pop) 
  
 label variable lngdppc17             "Log GDP per capita (PPP, constant 2017 
international dollars)" 
 label variable lngdppc11             "Log GDP per capita (PPP, constant 2011 
international dollars)" 
 label variable lngdppcc14            "Log GDP per capita consistent 2014(PPP, constant 
2017 international dollars)" 
 label variable lngdppcc15            "Log GDP per capita consistent 2015(PPP, constant 
2017 international dollars)"  
 label variable ln_en_in              "Log energy intensity, level of primary energy 
(MJ/$2011 PPP GDP)" 
 label variable ln_co2                "Log fossil fuel combustion CO2 emissions" 
 label variable ln_pop                "Log population" 
 
  
*lags: 4 years  
 gen lag4_lngdppc17     = lngdppc17[_n-4] 
 gen lag4_lngdppc11     = lngdppc11[_n-4] 
 gen lag4_lnco2         = ln_co2[_n-4] 
 gen lag4_ln_enin       = ln_en_in[_n-4] 
 gen lag4_cpbin         = cpbin[_n-4] 
 gen lag4_cpbin_tax     = cpbin_tax[_n-4] 
 gen lag4_cpbin_ets     = cpbin_ets[_n-4] 
 gen lag4_cpbin_sn      = lag4_cpbin 
replace lag4_cpbin_sn      = 0 if country=="Japan"|country=="United States"|country=="Canada"  
 gen lag4_ross          = ross_y[_n-4] 
    gen lag4_lnpop         = ln_pop[_n-4] 
 gen lag4_co2           = co2[_n-4]/1000 
 gen lag4_gdppc11       = gdppc17[_n-4] 
 gen lag4_en_inten      = en_inten[_n-4] 
 gen lag4_pop           = pop[_n-4] 
 gen coal_share_lag4    = coal_share[_n-4] 
 gen oil_share_lag4     = oil_share[_n-4] 
 gen gas_share_lag4     = gas_share[_n-4] 
 
 label variable lag4_lngdppc11       "Log of GDP per capita 2011 international dollars 
PPP, lag 4"  
 label variable lag4_lngdppc17       "Log of GDP per capita 2017 international dollars 
PPP, lag 4"  
    label variable lag4_lnco2           "Log fossil fuel combustion CO2 emissions , lag 4" 
 label variable lag4_ln_enin         "Log energy intensity, level of primary energy 
(MJ/$2011 PPP GDP), lag 4" 
 label variable lag4_cpbin           "Carbon pricing instruments implemented, lag 4, 
binary variable" 
 label variable lag4_cpbin_tax       "Carbon pricing instruments implemented (tax), lag 4, 
binary variable" 
 label variable lag4_cpbin_ets       "Carbon pricing instruments implemented (ETS), lag 4, 
binary variable" 
    label variable lag4_ross            "Net gasoline tax (subsidy) using price gap of retail 
price and global benchmark (const 2015 USD per liter), lag 4"  
 label variable lag4_lnpop           "Log population, lag 4"  
    label variable lag4_co2             "Lag 4, fossil fuel combustion CO2 emissions" 
    label variable lag4_gdppc11         "Lag 4, GDP per capita"  
    label variable lag4_en_inten        "Lag 4, energy intensity" 
    label variable lag4_pop             "Lag 4, population" 
 label variable lag4_cpbin_sn        "Lag 4, carbon pricing, excluding subnational 
schemes, binary variable" 
 label variable coal_share_lag4      "Lag 4, Coal share of energy" 
 label variable oil_share_lag4       "Lag 4, Oil share of energy" 
 label variable gas_share_lag4       "Lag 4, natural gas share of energy" 
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*4 year growth  
 gen ch4_lngdppc11      = (lngdppc11-lngdppc11[_n-4])/4 
 gen ch4_lngdppc17      = (lngdppc17-lngdppc17[_n-4])/4 
 gen ch4_lnco2          = (ln_co2-ln_co2[_n-4])/4 
 gen ch4_pop            = (ln_pop-ln_pop[_n-4])/4  
  
 label variable ch4_lngdppc11        "Ann. avg. growth over 4yrs, GDP per capita 2011 
(PPP, constant 2011 international dollars)" 
 label variable ch4_lngdppc17        "Ann. avg. growth over 4yrs, GDP per capita 2017 
(PPP, constant 2011 international dollars)" 
 label variable ch4_lnco2            "Ann. avg. growth over 4yrs, fossil fuel combustion 
CO2 emissions" 
 label variable ch4_pop              "Ann. avg. growth over 4yrs, population" 
 
*Previous 
 gen ch4_lnco2_lag4         = ch4_lnco2[_n-4] 
 label variable ch4_lnco2            " Previous Ann. avg. growth over 4yrs, fossil fuel 
combustion CO2 emissions" 
 
  
  
 
*lags: 5 years  
 gen lag5_lngdppc17     = lngdppc17[_n-5] 
 gen lag5_lngdppc11     = lngdppc11[_n-5] 
 gen lag5_lnco2         = ln_co2[_n-5] 
 gen lag5_ln_enin       = ln_en_in[_n-5] 
 gen lag5_cpbin         = cpbin[_n-5] 
 gen lag5_cpbin_tax     = cpbin_tax[_n-5] 
 gen lag5_cpbin_ets     = cpbin_ets[_n-5] 
 gen lag5_cpbin_sn      = lag5_cpbin 
replace lag5_cpbin_sn      = 0 if country=="Japan"|country=="United States"|country=="Canada"  
 gen lag5_ross          = ross_y[_n-5] 
    gen lag5_lnpop         = ln_pop[_n-5] 
 gen lag5_co2           = co2[_n-5]/1000 
 gen lag5_gdppc11       = gdppc17[_n-5] 
 gen lag5_en_inten      = en_inten[_n-5] 
 gen lag5_pop           = pop[_n-5] 
 gen coal_share_lag5    = coal_share[_n-5] 
 gen oil_share_lag5     = oil_share[_n-5] 
 gen gas_share_lag5     = gas_share[_n-5] 
 
 label variable lag5_lngdppc11       "Log of GDP per capita 2011 international dollars 
PPP, lag 5"  
 label variable lag5_lngdppc17       "Log of GDP per capita 2017 international dollars 
PPP, lag 5"  
    label variable lag5_lnco2           "Log fossil fuel combustion CO2 emissions , lag 5" 
 label variable lag5_ln_enin         "Log energy intensity, level of primary energy 
(MJ/$2011 PPP GDP), lag 5" 
 label variable lag5_cpbin           "Carbon pricing instruments implemented, lag 5, 
binary variable" 
 label variable lag5_cpbin_tax       "Carbon pricing instruments implemented (tax), lag 5, 
binary variable" 
 label variable lag5_cpbin_ets       "Carbon pricing instruments implemented (ETS), lag 5, 
binary variable" 
    label variable lag5_ross            "Net gasoline tax (subsidy) using price gap of retail 
price and global benchmark (const 2015 USD per liter), lag 5"  
 label variable lag5_lnpop           "Log population, lag 5"  
    label variable lag5_co2             "Lag 5, fossil fuel combustion CO2 emissions" 
    label variable lag5_gdppc11         "Lag 5, GDP per capita"  
    label variable lag5_en_inten        "Lag 5, energy intensity" 
    label variable lag5_pop             "Lag 5, population" 
 label variable lag5_cpbin_sn        "Lag 5, carbon pricing, excluding subnational 
schemes, binary variable" 
 label variable coal_share_lag5       "Lag 5, Coal share of energy" 
 label variable oil_share_lag5        "Lag 5, Oil share of energy" 
 label variable gas_share_lag5        "Lag 5, natural gas share of energy" 
 
*5 year growth  
 gen ch5_lngdppc11      = (lngdppc11-lngdppc11[_n-5])/5 
 gen ch5_lngdppc17      = (lngdppc17-lngdppc17[_n-5])/5 
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 gen ch5_lnco2          = (ln_co2-ln_co2[_n-5])/5 
 gen ch5_pop            = (ln_pop-ln_pop[_n-5])/5  
  
 label variable ch5_lngdppc11        "Ann. avg. growth over 5yrs, GDP per capita 2011 
(PPP, constant 2011 international dollars)" 
 label variable ch5_lngdppc17        "Ann. avg. growth over 5yrs, GDP per capita 2017 
(PPP, constant 2011 international dollars)" 
 label variable ch5_lnco2            "Ann. avg. growth over 5yrs, fossil fuel combustion 
CO2 emissions" 
 label variable ch5_pop              "Ann. avg. growth over 5yrs, population" 
 
*Previous 
 gen ch5_lnco2_lag5         = ch5_lnco2[_n-5] 
 label variable ch5_lnco2            " Previous Ann. avg. growth over 5yrs, fossil fuel 
combustion CO2 emissions" 
 
*CPS Clean 
 replace value30ball2012=0 if value30ball2012==. 
 replace value60ball2012=0 if value60ball2012==. 
 replace value120ball2012=0 if value120ball2012==. 
 replace value30ball2015=0 if value30ball2015==. 
 replace value60ball2015=0 if value60ball2015==. 
 replace value120ball2015=0 if value120ball2015==. 
 
//15to20 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop value30ball2015                                                     
if year==2020 , r 
  outreg2 using p2_v2t.xls, dec(4) 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop lag5_cpbin                                                           
if year==2020 , r 
  outreg2 using p2_v2t.xls, dec(4) 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop cpbin_15to20p                                                        
if year==2020 , r 
  outreg2 using p2_v2t.xls, dec(4) 
 
//With Indexes 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop value30ball2015 
perf_score pol_score                                                   if year==2020 , r 
  outreg2 using p2_v2t.xls, dec(4) 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop lag5_cpbin 
perf_score pol_score                                       if year==2020 , r 
  outreg2 using p2_v2t.xls, dec(4) 
 reg ch5_lnco2 lag5_lnco2 lag5_lngdppc17 lag5_lnpop lag5_ln_enin coal_share_lag5 
oil_share_lag5 gas_share_lag5 transition ch5_lnco2_lag5 ch5_lngdppc17 ch5_pop cpbin_15to20p  
perf_score pol_score                                       if year==2020 , r 
  outreg2 using p2_v2t.xls, dec(4)  
 
*sum stats of the 61 countries 
 estat e(sample) 
 sum pmd had cha bca ghn tre nre et ffs tbn par gb tlc rec if e(sample) 
 ssc install asdoc 
 asdoc sum pmd had cha bca ghn tre nre et ffs tbn par gb tlc rec if e(sample), replace 
dec(2) 
 sum year co2 gdppc17 pop if e(sample) 
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