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Abstract

Representation theory is a branch of mathematics that allows us to represent elements
of a group as elements of a general linear group of a chosen vector space by means of a
homomorphism. The group elements are mapped to linear operators and we can study
the group using linear algebra. This ability is especially useful in physics where much of
the theories are captured by linear algebra structures. This thesis reviews key concepts
in representation theory of both finite and infinite groups. In the case of finite groups we
discuss equivalence, orthogonality, characters, and group algebras. We discuss the im-
portance and implications of Maschke’s and Schur’s theorem. Our study of finite group
representations is concluded by an example of an application of the representation of the
permutation group S3 to a system of particles. In the case of infinite groups, we devote
all our attention to Lie group representations as applications of representation theory in
quantum physics predominantly rely on them. We develop a way to build operators that
could be used to capture invariant properties by means of representations of unitary Lie
groups.
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Chapter 1

Group Representations

In our first chapter we will look at some core definitions and properties of group repre-
sentations. These representations are homomorphisms from a group to a general linear
group of a vector space and thus allow us to study the represented groups in a new
way. However, group representation might be an unfamiliar concept to many, as it is
not usually touched upon in undergraduate mathematics. It is nevertheless an incredi-
bly rich area of mathematics that makes use of many fundamental properties and ideas.
The majority of the theory is algebraic, but there are plenty of analysis and even topology
concepts. Before starting our discussion of group representations, we state the definition
of a group. It should be noted that all the major results in this chapter can also be found
in many textbooks. The one we used, and the definitions, lemmas, and theorems follow
the form of Steinberg’s Representation of Finite Groups [8], unless otherwise specified, we
always assume we are working over C.

Definition 1.0.1. A set G is a group under a chosen operation if and only if this operation is
associative and the following holds under the operation:
i) G has an identity
ii) G is closed
iii) All elements of G have an inverse.

This definition does not specify what type of elements a group may contain. For exam-
ple, it is perfectly reasonable to have a group be a set of letters with a permuting operation
such that the definition of a group is satisfied. However, such a structure might not be
very convenient for calculations and the study of the group. Imagine, on the other hand,
if we could assign (and we can) these letters to linear operators over a vector field and
find an operation between them that models the permuting operation on the set of letters.

7



8 CHAPTER 1. GROUP REPRESENTATIONS

This is what representation theory, at its core, does. So how might we send the letters to
linear operators over a vector space? To answer this question, we turn to the definition of
a representation.

Definition 1.0.2. A representation of a group G is a homomorphism Φ : G −→ GL(V ), for some
finite dimensional vector space V and its general linear group GL(V ). The dimension of V is
called the degree of Φ. For g ∈ G, we shall write Φg for Φ(g) and Φgv for Φg(v), the action of Φg

on v ∈ V .

Now it should be clear that the reason we said send instead of match is that the repre-
sentation is a function that does not need to be surjective. It merely needs to preserve the
structure of the group, i.e. be a homomorphism. That is, it need not be an isomorphism.
Consider the following example:

Example 1. Let Φ : Z/4Z −→ GL(C) be the representation given by Φ([m]) = im. 4

The elements of the group of cosets Z/4Z are of the form {m+4x|x ∈ Z} and thus Z/4Z
only has four elements. We can choose four representative m’s to be the values (0, 1, 2, 3).
We see that the representation, i.e. the homomorphism, is one to one, but is not onto. In
addition, we can immediately observe that the operation is not the same in the C∗ space
as it was in the Z/4Z space. What is important, though, is that the action of the elements
on the remaining elements is preserved. For instance, when the element of Z/4Z with
m = 3 is added to the one with m = 1, we get the identity, m = 0. This action is preserved
as i3i1 = i4 = 1 = i0.
Thus, the group Z/4Z is represented in C∗ by the group (1, i,−1,−i) under multiplication
via the representation Φ. It is important to understand this distinction in terminology.
The representation is the homomorphism, but it allows for a group to be represented by
elements within another group.
There are many ways in which representation theory is used in physics. One is this sort
of direct analogy between a system and a group described above. Another place where
representation theory is used is a little more sophisticated than that. Quantum mechani-
cal state spaces (we will discuss these soon) are Hilbert spaces [6], and thus are complex
vector spaces. Any group action on a Hilbert space is a representation. Discussion of the
states of particles therefore uses representation theory all the time, because by represent-
ing these states in this way we can study their behaviour and properties are more easily
and intuitively.
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1.1 Equivalence and Order of Representations

At this point, a few questions arise naturally. The first is about the uniqueness of represen-
tations, and the second one about their classification. If we were to claim a representation
of a given groupG is unique, we would be saying there always only exists one homomor-
phism of G to a new space V . This is intuitively not the case. Consider the representation
in Example 1 but this time we replace iwith−i. This new representation is not the same as
the one discussed in the example and yet, both are homomorphisms from Z/4Z toGL(C).
We must turn to a different way of classifying. Instead, we will separate representations
into equivalence classes. We shall define these as follows.

Definition 1.1.1. Let Φ : G −→ GL(V ) and Ψ : G −→ GL(W ) be representations. Φ and Ψ

are said to be equivalent if there exists an isomorphism T : V −→ W s.t. Φg = TΨgT
−1 for all

g ∈ G. We write Φ ∼ Ψ.

Theorem 1.1.2. Equivalence of representations, as stated in Definition 1.1.1. is an equivalence
relation on the representations.

Proof. We need to prove that the relationship is reflexive, transitive, and symmetric. Since
the identity transformation satisfies the definition as follows Φg = IΦgI

−1 = IΦgI , the re-
lation is reflexive. Furthermore, if Φg = TΨgT

−1 and Ψg = HΥgH
−1 then Φg = T (HΥgH

−1)T−1.
Since both H and T must be isomorphisms, their composition is also an isomorphism.
Noting that (HT )−1 = H−1T−1 we conclude the relation is transitive. To show it is also
symmetric we assume Φg = TΨgT

−1, then since T is an isomorphism it also must hold
that ΦgT = TΨgT

−1T and T−1ΦgT = KΦgK
−1 = Ψg, where K = T−1.

What this definition really says is that representations are equivalent if they have the
same codomain and there is an isomorphism between the outputs of these homomor-
phisms in this codomain. We want to think of equivalent representations as the same
representation, but, loosely speaking, expressed in terms of a different basis system. We
now have a form of uniqueness. An important observation is that the codomains must
be vector spaces, by definition. Thus, if there is to be an isomorphism between them,
they must have the same dimension. The dimension of the vector space V from GL(V ) is
captured by the order of a representation.

Definition 1.1.3. Let Φ : G −→ GL(V ) be a representation, and let n be the dimension of V ,
then the order of Φ is ord(Φ) = n.

Combining the definition of equivalence and of the order we conclude that if two
representations of a group are equivalent, they must have the same order. Consider the
following example:
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Example 2. Let Ψ : Z/nZ −→ GL2(C) be given by Ψ[m] =

[
cos
(

2πm
n

)
− sin

(
2πm
n

)
sin
(

2πm
n

)
cos
(

2πm
n

) ]

and let Φ : Z/nZ −→ GL2(C) be given by Φ[m] =

[
e

2πmi
n 0

0 e
2πmi
n

]
.

We claim these are equivalent and are related by a transformation matrix A =

[
i −i
1 1

]
. As it is a

straightforward matrix multiplication, it can be easily verify that, indeed, AΨA−1 = Φ, where we
also need to make use of Euler’s identity. 4

1.2 Decomposability, Reducibility, and Irreducibility

Thus far we have shown that representations are homomorphisms and that some of them
are equivalent to each other. Now we will proceed to show that representations can be de-
composed into subrepresentations. This is an extremely useful observation as this will al-
low us to study the properties of both the representation and its final space better. We will
be able to observe that some representations cannot be decomposed any further, similarly
to how we cannot decompose prime numbers. We will also identify certain subspaces of
the representation’s codomain’s underlying vector space as invariant (or closed) under
the representation!

In order to understand the decomposability of representations we must have a way
of composing them. Though it is possible to think of multiple ways of adding two homo-
morphisms, we shall only focus on their external direct products.

Definition 1.2.1. Given the representations Φ(1) : G −→ GL(V1) and Φ(2) : G −→ GL(V2), the
external direct product Φ(1) ⊕ Φ(2) : G −→ GL(V1 ⊕ V2) is given by (Φ(1) ⊕ Φ(2))g(v1, v2) =

(Φ(1)(v1),Φ(2)(v2)).

The vector space over which the codomain of the composed representation lies is al-
ways higher dimensional than that of the vector spaces of the codomains of either of the
individual representations. To further illustrate how the direct sum works, consider the
trivial representation.

Definition 1.2.2. The trivial representation Φid : G −→ GL(V ), dim(V ) = 1 is given by
Φid(g) = I for all g ∈ G.

Note that the representation Φ : G −→ GLn(V ), for n > 1 given by Φg = I for all g ∈ G
is not equivalent to the trivial representation. That is, you cannot find an isomorphism
that will transform it into the trivial representation (identity in a one dimensional space) -
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there are no isomorphisms between spaces of different dimension. Rather, it is equivalent
to n copies of the trivial representation, composed via the external direct sum.
Composing k representations results in a matrix with k block matrices, coming from the
original representations, along its diagonal. See example below.

Example 3. Let Φ(1) : Z/nZ −→ C∗ and Φ(2) : Z/nZ −→ C∗ be given by Φ(1)[m] : e
2πim
n and

Φ(2)[m] : e−
2πim
n respectively. Then (Φ(1) ⊕ Φ(2))[m] =

[
e

2πim
n 0

0 e−
2πim
n

]
. Note that the final

representation is (Φ(1) ⊕ Φ(2)) : G −→ GL(C2). 4

To allow ourselves to continue our discussion we define G-invariance, which will help
us understand the behaviour of the representation’s outputs (e.g. the matrix given in
Example 3, for a specific m) in the vector space they act over (e.g. C2 in Example 3).

Definition 1.2.3. Let Φ : G −→ GL(V ) be a representation. A subspace W of V is G-invariant
if for all g ∈ G and w ∈ W , one has that Φgw ∈ W .

The notion that the representation can act on elements outside the G-invariant space
too can be a little uncomfortable. However, the importance of this definition is in that
there exist subspaces of the vector space over which the representation’s codomain lies
that are closed under the group actions Φg for all g ∈ G. In a certain sense, we are speaking
more about the properties of the given subspace than we are about the homomorphism.

The entire vector space over which the codomain (the general linear group) of a given
representation is, is always G-invariant. We conclude that there must be some G-invariant
subspaces in the codomain’s respective vector space of a representation if it is a composi-
tion of other representations, because their individual codomains are now over subpaces
of the composite representation codomain’s vector space V .

If we look at Example 3 again, we notice that any vector of the form (z, 0) ∈ C2, z ∈ C
will maintain its form under (Φ(1)⊕Φ(2))[m] for all m. That is, the space spanned by (z, 0)

is a G-invariant subspace of the composed representation. The same holds for the other
dimension ((0, z) ∈ C2) and thus Φ(1) and Φ(2) will now be called subrepresentations of
(Φ(1)⊕Φ(2)) and will be denoted Φ(i)|C. Following the intuitions of this example we come
to the following definitions.

Definition 1.2.4. A non-zero representation Φ of a group G is decomposable if V = V1 ⊕ V2

with V1, V2 non-zero G-invariant subspaces. Otherwise, it is called indecomposable.

Definition 1.2.5. A non-zero representation Φ : G −→ GL(V ) is said to be irreducible if the
only G-invariant subspaces of V are {0} and V .
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Definition 1.2.6. Let G be a group. A representation Φ : G −→ GL(V ) is said to be completely
reducible if V = V1 ⊕ V2 ⊕ ... ⊕ Vn, where Vi are G-invariant subspaces and Φ|Vi is irreducible
for all i = 1, 2, ..., n.

One of the outcomes of these definitions is that representations from any group to C
must be irreducible. This is the case as there is no proper non-zero subspace inC and thus
there is no proper G-invariant subspace either. As a consequence, any representation to C
has no subrepresentations. In addition, since C has dimension one, the order of the rep-
resentation is also one. Composing order one representations produces a diagonal matrix
(like in Example 3). As such, we can intuitively observe that complete reducibility of a
representation Φ : G −→ Cn must be related to diagonalizability of the matrices Φg for all
g ∈ G.

We have stated earlier that we want to think of equivalent representations as the same
representation via the equivalence relationship we proved. Now we would like to see that
some further properties are preserved, i.e. be invariant, within an equivalence class. This
should only further strengthen the notion that equivalent representations are the same
representation.

Lemma 1.2.7. Let Φ : G −→ GL(V ) be equivalent to a decomposable representation. Then Φ is
decomposable.

Proof. Let Φ : G −→ GL(W ) be a decomposable representation such that Φ ∼ Ψ. There-
fore, ∃ T : V −→ W such that Ψg = T−1ΦgT for all g ∈ G. By decomposability of Φ,
W = W1 ⊕W2 for some W1,W2 ≤ W . Thus, we have V1, V2 ≤ V , V1 = T−1(W1) and
V2 = T−1(W2).

If v ∈ V1 ∩ V2 then Tv ∈ W1 ∩ W2 = {0} and since T is injective it is precisely v = 0.
If v ∈ V then Tv = w1 +w2, with w1 ∈ W1, w2 ∈ W2. As such, v = T−1w1 +T−1w2 ∈ V1 +V2

and therefore V = V1 ⊕ V2. What’s left for us to show is that V1, V2 are G-invariant.

If v ∈ Vi then Ψgv = T−1ΦgTv. T must commute by definition and thus TΨg = ΦgT

for all g ∈ G. However, Tv ∈ Wi and Wi is G-invariant so ΦgTv ∈ Wi for all v. Thus,
Ψgv ∈ T−1(Wi) = Vi, i.e. Ψgv ∈ Vi for all v. Thus, Vi is invariant.

A very similar proof to the preceding one is used to prove both of the following lem-
mas. For this reason, they are merely stated here.

Lemma 1.2.8. Let Φ : G −→ GL(V ) be equivalent to an irreducible representation. Then Φ is
irreducible.
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Lemma 1.2.9. Let Φ : G −→ GL(V ) be equivalent to a completely reducible representation. Then
Φ is completely reducible.

1.3 Morphisms and Orthogonality

A lot of the concepts thus far resemble well known algebraic concepts, for example, com-
plete reducibility and diagonalisability, or equivalence and isomorphism. It is only nat-
ural to wonder in what way we could introduce orthogonality as that is one of the key
concepts of linear algebra. We will introduce orthogonality by defining an inner product
between representations. However, to be able to truly understand the orthogonality rela-
tions, many other concepts must be covered first. These new concepts will be all tied up
beautifully in the later chapters (Chapter 3).
We have discussed what it means for representations to be equivalent. However, we have
not really discussed how two non-equivalent representations might be related. If we
think back to the definition of equivalence, it requires the map from one representation
to the other be an isomorphism. Loosening that restriction allows for relation between
many more representations. These homomorphisms, together with the isomorphisms, of
a given representation are called its morphisms.

Definition 1.3.1. Let Φ : G −→ GL(V ) and Ψ : G −→ GL(W ) be representations. A mor-
phism from Φ to Ψ is a linear map T : V −→ W such that TΦg = ΨgT for all g ∈ G. In other
words, the diagram below commutes for all g ∈ G:

V V

W W

Φg

T T

Ψg

The space of all homorphisms between Ψ and Φ is denoted as HomG(Ψ,Φ).

Note that if T is invertible we have an equivalence relation. Another important obser-
vation is that T : V −→ V ∈ HomG(Φ,Φ) ⇔ TΦg = ΨgT ∀ g ∈ G. Since HomG(Φ,Ψ)

is the space of homomorphisms from V to W (see diagram in Definition 1.3.1. What this
means is that any morphism satisfying Definition 1.3.1 is, in fact, in the space of homo-
morphisms between the codomains’ vector spaces of the representations it relates. For
the following propositions, assume Φ and Ψ are defined as in Definition 1.3.1.

Proposition 1.3.2. Let T : V −→ W be in HomG(Φ,Ψ). Then ker(T ) is a G-invariant subspace
of V and T (V ) = Im(T ) is a G-invariant subspace of W .
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Proof. Let v ∈ ker(T ), that is, let v be such that T (v) = 0. We want to show that Φg(v) ∈
ker(T ) for all g ∈ G . Now, T (Φgv) = ΨgT (v) because TΦg = ΦgT ∀ g ∈ G. Since T (v) = 0

we have Ψg(0) = T (Φgv). Since Ψg is in GL(V ) for all g ∈ G, Ψg acting on the zero vector
in V must be zero. This completes the proof for ker(T ) being a G-invariant space. The
proof of Im(T ) being a G-invariant space follows a very similar structure.

Proposition 1.3.3. HomG(Φ,Ψ) is a subspace of Hom(V,W ).

Proof. Let T1, T2 ∈ HomG(Φ,Ψ) and let c1, c2 ∈ C. Now, (c1T + c2T )Φg = c1TΦg + c2TΦg =

c1ΨT + c2ΨT = Ψg(c1T + c2T ). This completes the proof.

Now that we have established what a morphism is and what the properties of the
space of morphisms are we are ready for Schur’s lemma. This lemma talks about the
relationship of inequivalent representations with each other as well as the relationship
of equal representations with each other. It does not talk about equivalent but not equal
representations. It gives a nice entry point into the understanding of the orthogonality
relations. We will prove this lemma here, but we will use it later, when proving Shur’s
orthogonality theorem, which is far more general.

Lemma 1.3.4 (Schur’s Lemma). Let Φ,Ψ be irreducible representations ofG, and T ∈ HomG(Φ,Ψ).
Then either T is invertible or T = 0. Consequently:
a) if Φ � Ψ then HomG(Φ,Ψ) = 0.
b) if Φ = Ψ then T = λI with λ ∈ C.

Proof. Let Φ : G −→ GL(V ), Ψ : G −→ GL(W ) and we also let T : V −→ W be such that
T ∈ HomG(Φ,Ψ). T = 0 is the trivial case and so we will assume T 6= 0. Since ker(T ) is
G-invariant, and both Φ and Ψ are irreducible, ker(T ) = V or 0. Since the former brings
us back to the trivial case, we assume ker(T ) = 0 and thus T is one to one. Furthermore,
Im(T ) is also G-invariant and since T 6= 0 it must be that Im(T ) = W and thus T is onto.
We see that T is invertible and so we are done with the proof of the first statement.
Statement a) follows from the fact that if there is a non-zero T in HomG(Φ,Ψ) then by
what we have just proven it is invertible, which means that Φ ∼ Ψ, contradiction to our
assumption that Φ � Ψ.
To prove statement b) we let λ be the eigenvalue of T (recall we are working over C).
Because I is in HomG(Φ,Φ) so is (λI − T ). Furthermore, it is not invertible by definition.
However, by the earlier statements of the lemma, all non-zero elements of HomG(Φ,Φ)

are invertible. Thus, (λI − T ) = 0 and so T = λI .

As we have stated earlier, this lemma talks about two specific cases only. It says what
must be true when representations are not equivalent and when they are equal. It does



1.3. MORPHISMS AND ORTHOGONALITY 15

not say anything about equivalent representations. If we think of non-equivalent repre-
sentations as, in a sense, orthogonal and equal representations as on the same line we see
how this lemma talks about orthogonality of representations. It would not be appropriate
to try to fit equivalent representations into this geometric visualisation. This is because
it could lead us to think some representations are more or less orthogonal than others,
which is not true. We will see they are simply either orthogonal or not.
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Chapter 2

Overview of Needed Concepts and
Notation in Physics

In this chapter we will review some of the relevant physics concepts and their mathemat-
ical formulations. We will largely refrain from proofs in this chapter as the mathematical
proofs are often not the source of these relationships or are not relevant for our discus-
sion. In creating this section I used notes collected in completion of my physics major.
However, the majority of these come from the notes I made in completion of my courses
on general relativity and quantum mechanics, which were taught by Dr. Bluhm and Dr.
Patton respectively. The textbooks used for those course and in this thesis are: A Short
Course in General Relativity [3] and An Introduction to Quantum Mechanics [6].

In quantum physics, particles are not points or spheres as one may imagine them ini-
tially. Rather, they are both a particle and a wave. This dual nature of particles is what
is behind all sorts of weirdness that arises in quantum physics. In essence, a particle is
described by its wavefunction, which is a probability distribution function representing
the fact that a particle has not one, but many locations at which it could be. The reason
why particle’s position cannot be known exactly is the Heisenberg uncertainty principle:

Definition 2.0.1. The uncertainty in momentum (∆p) and the uncertainty in the position (∆x)

of a particle must obey ∆p∆x ≥ ~/2. Here ~ is the Planck’s constant h divided by 2π.

This tells us that the more we know about the particles velocity, the less we know
about where it is located. There are many interpretations of this fact and a lot of material
on this topic can be easily found online, a good text is the one I used in this writing of
this section [6]. The only important notion for us is that a particle can be described by a
wavefunction.

17
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2.1 Wavefunctions

The wavefunction of a particle is its probability distribution function. Namely, it is a
function such that the squared norm of the wavefunction gives the probability of finding a
particle in a given interval. These wavefunctions are actually solutions to the Schrödinger
equation (SE):

ĤΨ = i~
∂

∂t
Ψ (2.1)

where Ĥ is the Hamiltonian operator and has the form Ĥ = − ~2
2m
∇2 + V (r, t). For

simpler situations, e.g. free particle, particle in a box, or a simple harmonic oscillator, it
can be solved analytically as the potential energy function V (r, t) is simple in these cases.

Example 4. For a free particle, V (r, t) = 0, so then the solution to the SE (i.e. the wavefunction)
is given by Ψ(x, t) = Ae

i(pr−Et)
~ , whereA is a complex constant, p is momentum, E is total energy,

and t is time. Let us find the probability that the particle is somewhere in space. That is, let us
integrate the probability values:∫∞
−∞ |Ψ|

2dx =
∫∞
−∞Ψ∗Ψdx = 1.

This is what we expect as it must exist somewhere in space. 4

In Example 4 we have only one possible wavefunction (up to scalar multiple). This is
not generally the case. For example the solution to a particle in a one-dimensional box
(i.e. in an interval on a line) is Ψ(x) =

√
2/L sin

(
nπ
L
x
)

where L is the size of the box and
n = 1, 2, ... is the energy level of the particle. As a result of the fact that all wavefunctions
for a particular situation are solutions to the same differential equation, they live in the
same space, which is a complex linear space and, moreover, is a Hilbert space. We now
define an inner product:

Definition 2.1.1. Suppose Ψ and Φ are in the same linear space of wavefunctions. We define the
inner product between them by 〈Ψ|Φ〉 =

∫∞
−∞Ψ∗Φdx.

The 〈|〉 notation is called the Dirac notation and its left half is called the ’bra’ and the
right a ’ket’. The ’braket’ notation is not limited to the inner product definition. In fact, it
is used to keep track of wavefunctions and linear operators that can act on them (e.g. the
Hamiltonian Ĥ). For example, we can think of these as not always joined together. Not
joined into a ’braket’, |Ψ〉 is simply Ψ, while 〈Ψ| is Ψ∗. Thus, the inner product notation
should be seen as a special case were the ’bra’ takes on the role of an operator acting on
the ’ket’. However, there are many different operators we can use to act on the bra or the
ket, or in between of them. As an example, consider the position operator x̂. To find the
average position of a particle described by Ψ we find 〈Ψ|x̂|Ψ〉 =

∫∞
−∞Ψ∗xΨdx. It is always
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the case that the ’braket’ implies integration as shown above. But it is possible to do
calculations and have operators act on either just the bra or the ket. To illustrate this, we
consider the ’ladder’ operators. These are used as follows: a+ |Ψ1〉 = |Ψ2〉 and a− |Ψ2〉 =

|Ψ1〉, where the subscript of the wavefunction indicates its energy level (e.g. different
modes of a simple harmonic oscillator or energy levels of the particle in a box problem
we discussed). The exact form of the ladder operator would depend on the situation and
so we will not include it here. The notation also allows us to see the wavefunctions as
elements of a linear space more easily- which allows us to use the power of linear algebra.
This theory is very complex and so are the uses of this notation. The text mentioned earlier
provides a very good introduction.We will satisfy ourselves with the following facts:

1. Particles are described by wavefunctions that are solutions to the Schrödinger equation.

2. Wavefunctions live in Hilbert spaces with a well defined inner product (Definition 2.1.1.).

3. All physical quantities in quantum mechanics have an associated hermitian operator that has
only real eigenvalues.

To see how this connects to the theory of representations, we see that the operators
despite being abstract mappings between states could, in fact, be Φg’s for some represen-
tation Φ and a group G, while the wavefunctions are vectors in V . One might to wonder
why we develop this notation and focus on a specific case of a vector space, even though
we have considered the general case already. The reason is simply that these vector spaces
and representations (we will see examples later) can give us information about physical
objects (like particles). It is not in any way implying the space of wavefunctions is math-
ematically more interesting than the other spaces. It is merely one of the few ’physical’
ones.

2.2 Spin and Spin States

”Spin” is a particular type of angular momentum particles can have. There are several val-
ues of spin combinations and states that can exist. We shall use the spin of an electron for
illustration. Spin states are eigenstates of the spin operator Ŝ2 and Ŝz with ~S = (Ŝx, Ŝy, Ŝz).
Ŝz can only have two states for an electron: up or down. The state in which it is determines
where in the atom it can be and what the energy of the system it is a part of is.

The easiest way to represent these two states is simply by the two standard basis vectors
of R2 with (1, 0) being the up state. As such, if an electron is acted on (by some mysterious
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force) in a way that induces spin change, we could simply represent this situation by a

left matrix multiplication by

[
0 1

1 0

]
. Now, this is not how it is done in actuality and there

are more matrices that are often used when dealing with spin. Ones we will encounter
later are the famous Pauli matrices. These are used when working in situations where
multiple particles have spin. They are often combined and create new operators to allow
for operations on spin vectors (e.g. (1, 0) as discussed above). For our intentions, we shall
recall what they are and that particles can have different spin states - simplest case being
only up or down.

Definition 2.2.1. The Pauli matrices are the following matrices in GL2(C):

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
.

We are slowly coming to see how we can use mathematical language to illustrate phys-
ical reality. Of course, that is not at all a new concept. However, what is rather interesting
is that in these examples we can see how representation theory might come into play. For
example, if a system of particles can have only certain type of well known and defined in-
teractions, it could be formulated mathematically to be a groupG. Once we have a group,
we are either already working with linear algebra structures or are just a representation
away from it!

2.3 Tensors

One of the reasons tensors are mentioned in this chapter is the notational differences be-
tween physics and mathematics. The easiest way to understand tensors is to start build-
ing our understanding and notation from the simplest tensors. Namely, a scalar is a de-
gree zero tensor, and has no special notation associated with it. The n-vectors are degree
one tensors and we shall use the following notation: Vα where α = (1, 2, ...n) so that Vα is
the whole vector, and Vi for a given i is the i-th entry of the vector. As we could predict,
the degree two tensors are n by m matrices and we will use the following notation: Γαδ

where α = (1, 2, ...n) and δ = (1, 2, ...m). It is still possible to imagine degree three tensors
as three dimensional data arrays n by m by k. It is not quite so visually clear what the
higher degree tensors are, and it is generally not a good idea to try to visualize them. We
can only see in three dimensions. To aid our understanding further, we should see how
tensor spaces are created (and why).
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Let V and W be two vector spaces. Since we will not encounter any other types of
tensors, we can assume these to be both Rn. However, these can be any vector spaces. In
this case both are n-dimensional as our goal is more easily illustrated that way, but they
need not be. To make it even easier to understand, let us consider a specific case where
both V and W are R2. We can create R4 via their external product V × W . If we have
a map L from this new space to e.g. R (but could be a different vector space too) that
is multilinear, we can eliminate this multilinearity by creating yet another space, via the
tensor product V ⊗W such that we can find a linear map L̂ from this space to R. This
space is defined by the map F : (V,W ) −→ V ⊗W , which is designed to allow for the
linearity of L̂. See diagram below:

R2 × R2 R2 ⊗ R2

R

F

L
L̂

Let v1 =

[
a

b

]
and v2 =

[
c

d

]
and let L(v1, v2) = (a + b)(c + d). Here we note that L is

multilinear. Now we choose an F that will allow us to later construct the linear map L̂ to

satisfy the diagram above. Let F (v1, v2) = v1⊗ v2
∼= v1 · v>2 =

[
ac ad

bc bd

]
. Thus the space we

created using the tensor product, in this case, is the space of all two by two matrices with

entries from R. A basis can be given by

[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

0 1

]
,

[
0 0

1 0

]
. To complete the

example, we let T =

[
a b

c d

]
and we let L̂ : M2×2(R) −→ R be given by L̂(T ) = a+b+c+d.

This map is linear, which we encourage the reader to check. Thus, our goal of lifting the
multilinearity has been accomplished.

Thinking back to our discussion of higher degree tensors, we see that visualising them
is not possible, but is also not necessary. We see their form may differ and thus we really
shouldn’t be too attached to the idea of tensors as being super-vectors. It is more impor-
tant to understand that they exist to allow linearity and that their indices can be chosen to
pick particular entries, analogously to the intuitive lower degree examples below. These
examples are not related to our previous example or to each other, they simply illustrate
the labelling of the entries:
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Vα =


V1

V2

...

Vn

, Tαβ =


T11 T12 ... T1m

T21 ...

...

Tn1 Tnm

.

One last convention we should mention is that there is an additional classification of
tensors in their given curvilinear spaces. Depending on whether we choose to use the
tangent, contravariant basis or the cotangent, covariant basis we write the tensors with
upper or lower indices respectively. For tensors of degree more than one it is possible to
have mixed indices.
Tensors, in this notation, are most used in general relativity and fluid dynamics, not the
theories we will concern ourselves much with. However, they are important when talking
about Lie groups and connecting them to Lie algebras, which we will use.

This chapter should make it more obvious where we may find the theory of represen-
tations to be useful. It should also sufficiently prepare us for the examples in the coming
chapters.



Chapter 3

Representations of Finite Groups

In this chapter, we will shift our attention towards representations of finite groups and
their use in physics. Applications of the representation theory of finite groups are often
in systems of finitely many states or particles. We will also prove Schur’s orthogonality
relations, which in my opinion, is one of the most beautiful theorems in representation
theory. For this chapter we return to using the notations and guidance of Representation of
Finite Groups [8].

3.1 Maschke’s Theorem

The codomains GL(V )’s of representations are over complex vector spaces V and thus
they are equipped with an inner product - the usual inner product between complex
numbers. Analogously to unitary matrices, unitary representations preserve the inner
product.

Definition 3.1.1. Let V be an inner product space. A representation Φ : G −→ GL(V ) is said
to be unitary if Φg is unitary for all g ∈ G, i.e. 〈Φgv,Φgw〉 = 〈v, w〉 for all v, w ∈ V . In other
words, Φ : G −→ U(V ).

Most of the time when we refer to unitary representations we are referring to repre-
sentations with Φg’s being unitary matrices. However, we must keep in mind that the
Φg’s are not limited to matrices. To illustrate the definition above, consider the following
example:

Example 5. Let Φ : G −→ GL1(C) (that is, Φ : G −→ C∗ and for all g ∈ G there is some z ∈ C
such that Φg = z). Now, if Φ is unitary then 〈z ∗ 1, z ∗ 1〉 = 1, which means zz̄ = 1 implying that
|z| = 1. That is, z is on the unit circle in C and so unitary representations into C∗ are always into
the unit circle. 4

23
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Note that Definition 3.1.1. is not restricted to finite groups, and neither is the follow-
ing proposition revealing some key properties of unitary representations.

Proposition 3.1.2. Let Φ : G −→ GL(V ) be a unitary representation of a group. Then Φ is either
irreducible or decomposable.

Proof. Let Φ : G −→ GL(V ) be unitary. Suppose that Φ is not irreducible. Thus, there
exists a W < V which is G invariant. W⊥ is also a subspace of V . We need to show that
W⊥ is also G-invariant to show that Φ is decomposable. Now, let v ∈ W⊥ and w ∈ W .
〈Φgv, w〉 = 〈Φ−1

g Φgv,Φ
−1
g w〉 = 〈v,Φ−1

g w〉 = 0 , where we used the fact that Φ is unitary. This
shows that Φgv is orthogonal to w and thus is still in W⊥, i.e. W⊥ is also G-invariant.

For the case of finite group representations, we have an even more interesting relation-
ship, which is going to largely change what representations we work with when working
with finite groups.

Proposition 3.1.3. Every representation of a finite group G is equivalent to a unitary representa-
tion.

We will prove this proposition momentarily, but we must first introduce a new inner
product.

(v, w) =
∑
g∈G

〈Φgv,Φgw〉

This is a true inner product, which we verify here:

(c1v1 + c2v2) =
∑
g∈G

〈c1v1 + c2v2, w〉

=
∑
g∈G

〈c1v1, w〉+ 〈c2v2, w〉

=(c1v1, w) + (c2v2, w)

(w, v) =
∑
g∈G

〈w, v〉 =
∑
g∈G

〈v, w〉

=(v, w)

(v, v) =
∑
g∈G

〈v, v〉 ≥ 0

(v, v) =0⇒ 〈v, v〉 = 0 ∀ g ⇒ v = 0
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Recall from Definition 3.1.1. that a unitary representation preserves inner product in
an inner product space. What Proposition 3.1.3. states is that we can find an equivalent
representation preserving an inner product in the codomain’s underlying vector space of
the given representation.

Proof. To prove the proposition, we let Ψ : G −→ GL(V ) where dimV = n. We choose a
basis B for V , and let T : V −→ Cn be an isomorphism. There must exist one as V and Cn

both have n dimensions. We define Φ : G −→ GLn(C) as Φg = TΨgT
−1 with respect to B

for all g ∈ G.
Now, (Φhv,Φhw) =

∑
g∈G〈ΦgΦhv,ΦgΦhv〉 =

∑
g∈G〈Φghv,Φghw〉. If we let x = gh, then as g

ranges over G, x ranges over all the elements of G. This is because if k ∈ G then g = kh−1,
x = k. Therefore, (Φhv,Φhw) =

∑
g∈G〈Φxv,Φxw〉 = (v, w). Thus Φ preserves (v, w) and is

unitary.

We have just shown that Φ ∼ Ψ, where Ψ is unitary. We know unitary representa-
tions are either irreducible and decomposable from Proposition 3.1.2.. In Chapter 1 we
showed that if one representation in an equivalence class is decomposable, so are all the
other representations in the class. The same holds for irreducibility. Thus, the following
corollary follows.

Corollary 3.1.4. Let Φ : G −→ GL(V ) be a non-zero representation of a finite group. Then Φ is
irreducible or decomposable.

In the preceding corollary, we require the group be finite as that guarantees it is equiv-
alent to a unitary group, which need not be the case for infinite group representations.
Now we are ready to state our first theorem of this thesis: Maschke’s theorem. It is beau-
tifully concise yet gives us a powerful insight into the structure finite group representa-
tions.

Theorem 3.1.5 (Maschke’s Theorem). Every representation of a finite group is completely re-
ducible.

Proof. We prove the theorem by induction. Let Φ : G −→ GL(V ) be a representation of a
finite G. If dim(V ) = 1, Φ is irreducible as there is no proper subspace. Now we assume
this is true for dim(V ) ≤ n. Now we let Φ : G −→ GL(V ) where dim(V ) = n + 1. If it is
irreducible than we are done. If it is not, by the preceding corollary it is decomposable. So
exist G-invariant V1, V2 such that V1 ⊕ V2 = V . Furthermore, since the dimension of V1, V2

are less than or equal to n, both are completely reducible by the inductive hypothesis.
Thus, V = V1 ⊕ V2 = U1 ⊕ U2 ⊕ ...Us ⊕ W1 ⊕ ...Wr, where V1 = U1 ⊕ U2 ⊕ ... ⊕ Us and
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V2 = W1 ⊕ W2 ⊕ ... ⊕ Wr and r = dim(V2), s = dim(V1). Therefore, Φ is completely
reducible.

3.2 Schur’s Orthogonality Relations

With Maschke’s theorem we have shown that every representation of a finite group is
completely reducible and built up of smaller irreducible subrepresentations. This is im-
portant in our study of Schur’s Theorem, as this theorem discusses the orthogonality
relations of irreducible representations. Furthermore, with this theorem we are also able
to discern the relationship between subrepresentations of single representation and see
which are orthogonal!

If we let Φ : G −→ GLn(C) be a representation then we observe that Φg is a matrix with
entries Φij(g) where 0 < i, j ≤ n. That is, i, j refer to the row and column of the given
entry, respectively. We write Φg = (Φij(g)), where this notation will be used to denote a
matrix with entries as given in the parentheses. Note that therefore Φij(g) ∈ C for all i, j
as given. Thus we have n2 functions of the form Φij : G −→ C. Using this notation we
can define group algebras in preparation for the statement of Schur’s theorem.

Definition 3.2.1. Let G be a group and define L(G) = CG = {f |f : G −→ C}. Then L(G) is
an inner product space in which (f1 + f2)(g) = f1(g) + f2(g), cf(g) = c(f(g)), and 〈f1, f2〉 =

1
|G|
∑

g∈G f1(g)f2(g). L(G) is the group algebra of G.

We see that the group algebras really are inner product spaces of functions. The im-
portance of defining these algebras is in the fact that the functions in these inner product
spaces are what Schur’s theorem uses to determine the orthogonality of representations.
We are now ready to state Schur’s theorem. Before proving it, however, we will need to
work a little more.

Theorem 3.2.2 (Schur’s Theorem). Suppose Φ : G −→ Un(C) and Ψ = G −→ Um(C) are
irreducible, unitary, and not equivalent to each other. Then:
I. 〈Φij,Ψkl〉 = 0

II. 〈Φij,Φkl〉 = 1/n if i = k, j = l, and 0 otherwise.

Note the theorem talks about the functions Φij , which belong to L(G), not the entries
in the matrices Φij(g). We start working towards our desired proof with the following
proposition, in which we define and show the key properties of a new linear map. We
will call this map T ] and as we will see, it helps us understand the effects of a morphism
T between two representations.
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Proposition 3.2.3. Let Φ : G −→ GL(V ) and Ψ : G −→ GL(W ) be representations and
suppose that T : V −→ W is a linear transformation. Then:
a) T ] = 1

|G|
∑

g∈G Ψg−1TΦg ∈ HomG(Φ,Ψ)

b) If T ∈ HomG(Φ,Ψ) then T ] = T .
c) The map P : Hom(V,W ) −→ Hom(Φ,Ψ) defined by P (T ) = T ] is an onto linear map.

Proof. We prove this proposition by direct computations:
a) T ]Φh = 1

|G|
∑

g∈G Ψg−1TΦgΦh = 1
|G|
∑

g∈G Ψg−1TΦgh. We let gh = x so that g−1 = hx−1.
Then, 1

|G|
∑

g∈G Ψg−1TΦgh = 1
|G|
∑

g∈G ΨhΨx−1TΦx = Ψh
1
|G|
∑

g∈G Ψx−1TΦx = ΨhT
].

b) T ∈ Hom(Φ,Ψ) implies TΦg = ΨgT . Using this fact we compute that:
T ] = 1

|G|
∑

g∈G Ψg−1TΦg = 1
|G|
∑

g∈G Ψg−1ΨgT = T .

c)We check its linearity: P (c1T1 + c2T2) = (c1T1 + c2T2)] = 1
|G|
∑

g∈G Ψg−1(c1T1 + c2T2)Φg =

c1
1
|G|
∑

g∈G Ψg−1T1Φg + c2
1
|G|
∑

g∈G Ψg−1T2Φg = c1T
]
1 + c2T

]
2 = c1P (T1) + c2P (T2). Now if

T ∈ HomG(Φ,Ψ) then T = T ] = P (T ). Thus, P is onto.

By defining T ] we have defined a certain type of average of the quantity Ψg−1TΦg over
all g ∈ G, which we will now use in the next proposition to express the orthogonality of
representations.

Proposition 3.2.4. Let Φ : G −→ GL(V ), Ψ : G −→ GL(W ) be irreducible representations of
G and let T : V −→ W be a linear map. Then:
a) if Φ � Ψ then T ] = 0.
b) if Φ = Ψ then T ] = Tr(T )

deg(Φ)
I

The form of this proposition is reminiscent of Shur’s lemma from Chapter 1 and it is
indeed similar in its implications too. It is often considered to simply be a different form
of the same lemma. It is different in what implications of the lemma it highlights and
what proofs it is useful for. In fact, we use Schur’s lemma to prove this proposition.

Proof. Statement a) is simply due to the fact that if Φ � Ψ then by Schur’s lemmaHomG(Φ,Ψ) =

0 and since P (T ) is onto, the result follows. To prove statement b) we also use Schur’s
lemma. We know that if Φ = Ψ, then T = λI for some λ ∈ C. Since T ] = V −→ V we
have Tr(λI) = λTr(I) = λ dim(V ) = λ deg(Φ). Therefore T ] = Tr(T ])

deg(Φ)
I .

These two propositions are the foundations for the Schur’s theorem. We now intro-
duce two lemmas which will provide us with a few missing pieces and help us tie our
developments into a singular proof.
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Lemma 3.2.5. Let A ∈ Mrn(C) and B ∈ Mns(C) and Eki ∈ Mnn(C). Then the following
formula holds: (AEkiB)lj = alkbij where A = (aij) and B = (bij).

We will not prove this technical lemma as it is primarily notational. An example is
more helpful in understanding it. Let us consider the following example.

Example 6. Let A and B be as given in the lemma. Let k = 1, i = 2 so that Eki = E12. Then

(AEkiB) =

[
a11 a12

a21 a22

][
0 1

0 0

][
b11 b12

b21 b22

]
=

[
a11b21 a11b22

a21b21 a21b22

]
.

Therefore, (AEkiB)11 = a11b21 = alkbij for the chosen k, j, l, i.
It is straightforward to check this works for all the other l, j pairs and that it also holds if we adjust
values of k and i. Though, the latter requires performing the entire calculation again.

4

Now we immediately use results of Lemma 3.2.5 in the following lemma, which is our
last piece needed to prove Schur’s Theorem.

Lemma 3.2.6. Let Φ : G −→ Un(C) and Ψ : G −→ Um(C) be unitary representations. Let
A = Eki ∈Mmn(C). Then A]jl = 〈Φij,Ψkl〉.

Proof. Ψ is unitary and thus Ψg−1 = Ψ−1
g = Ψ∗g. That is Ψkl(g) = Ψlkg

−1 (otherwise it would
not preserve the inner product). We can now compute:
A]lj = 1

|G|
∑

g∈G(Ψg−1EkiΦg)lj = 1
|G|
∑

g∈G(Ψlk(g
−1)Φij(g)) = 1

|G|
∑

g∈G(Ψkl(g)Φij(g)) = 〈Φij,Ψkl〉.

At last, we can prove the orthogonality relations of Schur’s Theorem and discuss their
implications. With the tools and machinery we have built in this section, the proof itself
becomes fairly simple.

Proof. Let A = Eki ∈ Mmn(C). By Proposition 3.2.4 A] = 0 and A]lj = 〈Φij,Ψkl〉. Thus,
〈Φij,Ψkl〉 = 0. This proves part a).

To prove part b) we let Φ = Ψ and let A = Eki ∈ Mn(C) where dim(V ) = n. Then
A] = Tr(Eki)

n
I , by Proposition 3.2.4.. Furthermore, by Lemma 3.2.6 A] = 〈Φij,Φkl〉.

If l 6= j then Iij = 0 and thus A]lj = 〈Φij,Φkl〉 = 0.
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If i 6= k then Eki has only zeros on its diagonal and thus Tr(Eki) = 0, which again
implies A]lj = 〈Φij,Φkl〉 = 0.

If i = k and j = l then Eki has a single 1 on the diagonal and all other entries are zero.
Thus, Tr(Eki) = 1 and so A]lj = 〈Φij,Φkl〉 = 1

n
. This completes the proof.

We now have a concept of orthogonality between representations (and thus a form of
geometry!), we also know there are no non-trivial morphisms relating orthogonal repre-
sentations. Schur’s theorem is also a beautiful theorem because of the way it connects
many core linear algebra concepts and objects. It makes the step allowing us to now use
these concepts not only as analogies, but as definitions and rules. To complete our dis-
cussion of Schur’s theorem, we present a resulting corollary.

Corollary 3.2.7. Let Φ be a unitary irreducible representation of G of degree d. Then
{
√
dkΦ

(k)
ij |1 ≤ i, j ≤ d} is an orthonormal set.

We see that the corollary follows from Schur’s theorem by a renormalisation. Since
all Φij are in L(G), the whole orthonormal set must be in L(G) too. Noting dimL(G) =

|G|, we conclude there can be at most |G| orthogonal equivalence classes, the following
proposition follows.

Proposition 3.2.8. Let G be a finite group. Let Φ(1),...,Φ(s) be a complete set of representatives of
the equivalence classes of irreducible representations of G and let di = degΦ(i), then the functions

{
√
dkΦ

(k)
ij |1 ≤ k ≤ s, 1 ≤ i, j ≤ dk} form an orthonormal set in L(G) and hence

s ≤ d2
1 + ...+ d2

s ≤ |G|.

3.3 Character of a Representation and the Regular Repre-

sentation

In the previous section we shifted from studying representations to instead studying rep-
resentation classes. At this point, it should be clear why we consider equivalent represen-
tations to be the same representation. We will continue in the study of equivalence classes
by introducing the character of a representation, which will lead us to class functions and
the regular representation. Class functions are important in understanding the repre-
sentation in terms of its character, which allows us to determine orthogonality between
representations in an easier way.
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Definition 3.3.1. Let Φ : G −→ GL(v) be a representation. The character χΦ : G −→ C of Φ is
defined by χΦ(g) := Tr(Φg). The character of an irreducible representation is called an irreducible
character.

We immediately see that the character of a degree one representation is simply the
representation itself. The character of a representation gives us information about the
dimension of a representation.

Proposition 3.3.2. Let Φ be a representation of G. Then χΦ(1) = deg Φ.

Here deg Φ refers to the degree of representation as discussed in Chapter 1. That is, the
degree of a representation is the dimension of the vector space over which the codomain
(the general linear group) of a representation lies.

Proof. Tr(Φ1) = Tr(I) = dim(V ) = deg Φ.

Now we can see that if we have a representation Φ that is actually a direct sum of
subrepresentations, then the character χΦ(1) = deg Φ must be the sum of the characters of
the subrepresentations. This is due to the fact that the degrees of the subrepresentations
add to give the degree of the full representation.

Lemma 3.3.3. Let Φ = Ψ⊕Υ then χΦ = χΨ + χΥ.

Proof. Follows from Definition 1.2.1. and Example 3.

Because equivalence classes helped us find a form of uniqueness between representa-
tions, we would like to relate character to these classes. In particular, we will be able to
define an equivalence class by its character and thus check for a representation’s mem-
bership in the given equivalence class.

Proposition 3.3.4. Let Φ : G −→ GL(V ) and Ψ : G −→ GL(V ) be equivalent representations
of G. Then χΦ = χΨ.

Proof. Since the two representations are equivalent, there exists a T in GL(V ) such that
Φg = TΨgT

−1 for all g ∈ G. Using the fact that Tr(AB) = Tr(BA), we find that χΦ(g) =

Tr(Φg) = Tr(TΨgT
−1) = Tr(ΨgTT

−1) = Tr(Ψg) = χΨ(g).

Intuitively, we may already see that since g = hgh−1 for g, h ∈ G, then it should hold
that χΦ(g) = χφ(hgh−1) too. This can be proved rather quickly using the definition of
a character and the property Tr(AB) = Tr(BA). This is an important property of the
characters and so we shall give the functions with the property a name too.
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Definition 3.3.5. A function f : G −→ C is called a class function if f(g) = f(hgh−1) for all
g, h ∈ G, or equivalently if f is constant on conjugacy classes of G. The space of class functions is
denoted Z(L(G)).

The notation of the space of class functions coincides with the notation of the center
of L(G), which is the group algebra as defined in Definition 3.2.1. This is because they
actually are the same. We will not show that in detail as it is not pertinent to our discus-
sion. We do claim that Z(L(G)) is a subspace of L(G), as that is something we need to be
aware of.

Proposition 3.3.6. Z(L(G)) is a subspace of L(G).

The formal proof of this proposition is omitted, as the result follows immediately from
Definition 3.2.1 and Definition 3.3.5. A second fact we need is stated in the form of the
following proposition, which tells us how to define a basis for this space of class functions.

Proposition 3.3.7. The set B = {δC |C ∈ Cl(G)} is a basis for Z(L(G)). Consequently,
dim(Z(L(G))) = |CL(G)|, where C is a conjugacy class of G, Cl(G) is the set of all conjugacy
classes of G, and δC = 1 if g ∈ C and 0 otherwise.

Proof. We see that B ⊆ Z(L(G)) as all δC ’s are constant on conjugacy classes, and thus are
class functions. B spans Z(L(G)) since if f ∈ Z(L(G)) then f =

∑
C∈CL(G) f(C)δC . To see

that B is also orthogonal, we check the following.
Let C,C ′ ∈ CL(G) then 〈δC , δC′〉 = 1

|G|
∑

g∈G δCδC′ = |C|/|G| if C = C ′ or 0 if C 6= C ′.
Thus we have a basis for Z(L(G)) and we have that |B| = |Z(L(G))|, which completes the
proof.

We notice that for an abelian group, the basis B as defined above would be a basis of
the entire L(G). Realising this B is a basis of the center of the group algebra is a much
more impressive fact than it might seem at first. This is because the group algebra is ac-
tually a set of all functions from G to C, which is a very large space and depends on G.
At this point we have shown how the character relates to the representation and also
how it relates to other character within the inner product equipped space of characters.
Thinking back to Schur’s theorem we hope to transfer some of the ideas directly into the
language of characters. The following theorem captures these ideas, but it is largely a
consequence of Schur’s theorem.

Theorem 3.3.8. Let Φ,Ψ be irreducible representations of G. Then 〈χΦ, χΨ〉 =

1 Φ ∼ Ψ

0 Φ � Ψ

Thus, the irreducible characters of G form an orthonormal set of class functions.



32 CHAPTER 3. REPRESENTATIONS OF FINITE GROUPS

Proof. Without any loss of generality we can let Φ : G −→ Un(C) and Ψ : G −→ Um(C).
We can now compute the inner product:

〈χΦ, χΨ〉 =
1

|G|
∑
g∈G

χΦχΨ′

=
1

|G|
∑
g∈G

n∑
i=1

m∑
j=1

Φii(g)Ψjj(g)

=
n∑
i=1

m∑
j=1

1

|G|
∑
g∈G

Φii(g)Ψjj(g)

=
n∑
i=1

m∑
j=1

〈Φii(g),Ψjj(g)〉

At this point we can use Schur’s theorem and see that if Φ � Ψ we have 〈Φii(g),Ψjj(g)〉 =

0 = 〈χΦ, χΨ〉. On the other hand, if Φ ∼ Ψ then by Proposition 3.2.4. we see that Φ = Ψ.
Using Schur’s theorem again, we compute: 〈χΦ, χΨ〉 =

∑n
i=1〈Φii(g),Φii(g)〉 =

∑n
i=1

1
n

= 1.

An immediate consequence of this theorem is that there can be at most |CL(G)| equiv-
alence classes of irreducible representations ofG, because they form an orthonormal basis
and are in Z(L(G)), which has dim(Z(L(G)) = |CL(G)|.

We have now established several properties of irreducible representations and we
have also showed all representations of finite groups are completely reducible. It is time
to look at whether we can relate our developed theory to representations that are not irre-
ducible but can be reduced. We are interested in extending our theory to these represen-
tations as many representations are not irreducible, but are a composition of irreducible
representations. First, we define the multiplicity of an irreducible representation within
the decomposition. Note that this definition uses the results discussed in the preceding
paragraph.

Definition 3.3.9. If Φ ∼ m1Ψ(1) ⊕m2Ψ(2) ⊕ ... ⊕msΨ
(s), where Ψ(i)’s are irreducible, then mi

is the multiplicity of Ψ(i) in Φ. If mi > 0 then Ψ(i) is an irreducible constituent of Φ.

Using this definition, we state the following theorem:
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Theorem 3.3.10. Let Φ(1), ...Φ(s) be a complete set of representations of the equivalence classes of
irreducible representations ofG and let Φ ∼ Ψ(1)⊕m2Ψ(2)⊕ ...⊕msΨ

(s). Then, mi = 〈χΦ, χΨ(i)〉.
Consequently, the decomposition of Φ into irreducible constituents is unique and Φ is determined
up to equivalence by its character.

Proof. From Lemma 3.3.3. we know that χΦ = m1χ
(1)
Ψ + ... + msχ

(s)
Ψ and by the or-

thogonality relations of characters, we conclude that 〈χΦ, χΨ(i)〉 = m1〈χΨ(1) , χΨ(1)〉 + ... +

m1〈χΨ(s) , χΨ(i)〉 = mi, which proves the first part of the theorem. The rest is implied by
Proposition 3.3.4..

An immediate consequence of the theorem and of the orthogonality relations is the
following corollary.

Corollary 3.3.11. A representation is irreducible if and only if 〈χΦ, χΦ〉 = 1.

This is a very useful result, as otherwise it might be quite difficult to determine whether
a representation is irreducible. Namely, we would have to check for all possible G-
invariant subspaces and see if there are any non-trivial ones. This is also why until now
we always assumed or were given an irreducible representation, or we used a very sim-
ple one. We no longer have this issue. This is one of the major results of this section and
chapter as a whole.

Up to this point, we have observed how representations relate to one another and
form spaces. We will now make, or tighten, the connection between properties of the
group itself and its representations. We will define the regular representation, which is
the last concept in our discussion of finite groups. First, let:

CX = {
∑
x∈X

cxx|cx ∈ C}

such that ∑
x∈X

axx =
∑
x∈X

bxx⇔ ax = bx ∀x ∈ X∑
x∈X

axx+
∑
x∈X

bxx =
∑
x∈X

(ax + bx)x

〈
∑
x∈X

axx,
∑
x∈X

bxx〉 =
∑
x∈X

axbx.
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Note that the space CX is a vector space. We create the vector space from the combina-
tions of elements of X . Now we can define the regular representation.

Definition 3.3.12. Let G be a finite group. The regular representation of G is the homomor-
phism L : G −→ GL(CG) defined by Lg

∑
h∈G chh =

∑
h∈G chgh =

∑
x∈G cg−1xx for g ∈ G.

Since the group is assumed to be finite in this definition, the regular representation
must be at least equivalent to a unitary representation. This is satisfied as in fact, it itself
is a unitary representation, which we can prove by direct computation.

Proposition 3.3.13. The regular representation is unitary.

Proof. To prove the regular representation is unitary, we directly compute
〈Lg

∑
h∈G chh, Lg

∑
h∈G khh〉 = 〈

∑
x∈G cg−1xx,

∑
x∈G c〉 =

∑
x∈G cg−1xkg−1x.

Setting y = g−1x gives the final result:∑
cyky = 〈

∑
y∈G cyy,

∑
y∈G kyy〉.

We have explored a lot of properties of finite group representations, and we shall
conclude this chapter by looking at how understanding of some of these properties is
helpful in applications of representation theory.

3.4 The State Permutation Group, S3

It is finally time to talk about our first direct example of the application of representation
theory to physics. Let us first consider why the permutation group might be interesting
to a physicist. What permutation groups do is they permute a set of elements according
to some bijective function from the group into itself. Thus, any system in which only
a finite set of states is available, such that they can be changed by some (group) action
could be described by these groups. Why we would be interested in the representation,
as opposed to simply the bijective function that works is that this way we can then find
irreducible representations, invariant spaces, etc. All of these could have physical mean-
ing, e.g. G-invariance might correspond to a set of temporally stable states which only
interchange with each other (not the other states).

Now let us consider 3 particles in three single particle states i1, i2, i3. We can choose a
normal order of these states. This order is arbitrary but once fixed it must stay consistent.
Most natural is to pick the normal order in which the first particle is in the first state, the
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second particle in the second, and so on. As such, we can write the normal order as:

Ψ(X) = Ψ(x1, x2, x3) = ψi1(x1)ψi2(x2)ψi3(x3) = |i1i2i3〉

Where we can notice the ket notation being used. We can now use it as a vector, so that if
the order of the i’s is switched, it corresponds to switch in the functional expression. Now,
to tie this to an example, these three states could be the three energy sublevelsm = 1, 0,−1

of an electron shell with the orbital angular momentum of 1. That is, |i1i2i3〉 = |10− 1〉.

An element of a permutation group usually refers to a permutation on the particles,
that is (23) |10− 1〉 = |1− 10〉. However, we could also be interested in permuting the
states. To differentiate between the two, we let the ordinary permutations be denoted as
p() and the state permutations as s(). The difference between these two is not obvious
for the normal order state. But consider a situation where we have already permuted the
normal order, e.g. |i2i1i3〉. In that case, p(23) |i2i1i3〉 = |i2i3i1〉 while s(23) |i2i1i3〉 = |i3i1i2〉.
We can represent the permutation group as three-dimensional square matrices:

ψ(12) =

0 1 0

1 0 0

0 0 1

, ψ(123) =

0 0 1

1 0 0

0 1 0

, ψ(132) =

0 1 0

0 0 1

1 0 0

, ψ() =

1 0 0

0 1 0

0 0 1

,

ψ(23) =

1 0 0

0 0 1

0 1 0

, ψ(13) =

0 0 1

0 1 0

1 0 0

.

We satisfy Proposition 3.1.3 since this representation is already unitary. By Maschke’s
Theorem it should also be completely reducible or irreducible. It is not irreducible, which
we will show below and because of the fact that S3 has three conjugacy classes we expect
three inequivalent irreducible representations - one of the outcomes of this chapter! It is
not so clear what the character is here, so we express this representation as matrices (we
choose the standard representation) and the kets as proper n-vectors:

It is enough to look at these matrices and the state permutation and see that it is itself
just a permutation of this ordinary standard permutation. We use the inner product de-
fined in the section on characters to compute that 〈χψ, χψ〉 = 1

6
(1 + 0 + 0 + 9 + 1 + 1) = 2

and by Corollary 3.3.11 we conclude that the representation ψ is not irreducible. This
means that there exist non-trivial G-invariant subspaces. One of these subspaces is the
line defined by (1, 1, 1).

Note that these matrices and vectors represent the permutation and not the states
directly. If we look at the mentioned G-invariant space, it is saying that the only triplet of
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particles that is invariant under the permutation is one in which they are all in the same
state (or one particle is in all three states). Now this is not possible with our example as all
three states are single particle states and a given particle can only be in one state. Basically,
what we found is that identical particles can be interchanged without any problems - not
very surprising. It is important we took time looking at the invariance anyway.



Chapter 4

Representations of Infinite Groups

The representations of finite groups we discussed earlier are helpful in developing the
theory, but they are a little limited in their physical applications. The motivation of this
thesis comes from this chapter, the infinite group representations and their use in particle
physics. It is much more difficult to describe a representation of an infinite group than
a finite group. However, we will find our way to do that here. Namely, we will focus
most of our attention will be on Lie groups, as they truly are the heart of mathematics in
particle physics.

This section makes use of some of the notation from Chapter 2. It is key to remember
the indices in tensors can be chosen from an index list to then represent a particular en-
try. In development of the Lie group and Lie algebra theory we consulted and used the
notation of Group Representation Theory for Physicists [2]. For the interested reader, Repre-
sentation Theory [4] is another good resource we consulted. The latter of these two has a
more mathematical approach to the subject matter and less focus on in the applications.

4.1 Lie Groups

A Lie group is a special infinite group that also happens to be a differentiable manifold.
Manifold is a topological structure that is locally like Rn (or Cn). That is, at least locally we
can find a continuous function from the manifold to Rn (or Cn). To give this object more
clarity we state its definition:

Definition 4.1.1. Let R(a) = R(a1,a2,...,ar) be an element of a group G, where the parameters ai

vary over finite or infinite range and are from R. Then G is a Lie group of order r if R(a) obeys:
I. There exists R(a0) such that R(a0)R(a) = R(a)R(a0) = R(a) for all R(a) ∈ G.

37
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II. For all R(a), there exists R(a) such that R(a)R(a) = R(a0).
III. If R(c) = R(a)R(b) then c is in the space of parameters and c = f(a, b), f is a real function.
IV. [R(c)R(a)]R(b) = R(c)[R(a)R(b)].
V. Both c and a are analytic functions.

A Lie group is said to be compact if its parameters are bounded.

To give face to the name and to understand the notation we immediately consider
an example of a Lie group: GL(2,R). The elements of this group have the form R(a) =[
a11 a12

a21 a22

]
where aii are the real paramaters so that the order of this Lie group, as defined

in Definition 4.1.1 is 4. Note that for GL(2,C), the order is 8 as every parameter has a
complex and a real part, thus two real parameters for each. The reason why we use this
parameter notation is that Lie groups need not be matrices or objects easily described vi-
sually. However, it is once again the case that we will be primarily interested in the cases
of matrix Lie groups.

If we want to think about morphisms between Lie groups we must consider both their
group and manifold structure. Thus a morphism between Lie groups is a map that is a
group homomorphism and is differentiable. We also note that every compact Lie group
is automatically abelian.

4.2 Lie Algebras

4.2.1 Characterisation Near Identity

We see that the concepts of a set of generators and relations that we had while studying
the characters of finite group representations and their orthogonality do not really ap-
ply here. However, we can learn a lot about a Lie group from a neighbourhood of the
identity. We start by letting R(a) = R(0) + aρXρ + ... where Xρ = (

∂R(a)

∂aρ
)a=0. The Xρ are

called infinitesimal generators. For a Lie group of order n we will have n generators. In
the process of finding these generators we are actually locally linearising the group. This
formulation uses the tensor notation.

Now, if aρ only differs in one parameter from the identityR(0), thenR(a) = 1+εXρ and
R(b) = 1 + εXσ. Additionally, R(a)R(b) = R(c) = 1 + CτXτ , R(b)R(a) = R(c′) = 1 + C ′τXτ .
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We will use this notation and definition of generators to describe Lie algebras. Similarly
to the importance of group algebras in the finite case, these will be very important.

4.2.2 The Structure Constants

The structure constant of a Lie group is a tensor that holds information about the relation-
ships between the infinitesimal generators. To find the structure constant of a Lie group
we need to first know how to find the commutator between two generators. Recall that
the commutator between two operators, or other objects, is given by [A,B] = AB −BA.
We compute:
[R(a), R(b)] = R(a)R(b) −R(b)R(a) = R(c) −R(c′) = 1 + CτXτ − 1− C ′τXτ = (Cτ − C ′τ )Xτ

and we also note:
[R(a), R(b)] = ε2[Xρ, Xσ]

which leads us to define the structure constant of a Lie group:
Cτ
ρσ = (Cτ − C ′τ )/ε2 so that [R(a), R(b)] = ε2Cτ

ρσXτ .

If we try to visualise these constants, one way is to think of them as n-dimensional vec-
tors with τ being the index determining the position in the vector. The ρ and σ merely
show what generators we used to get the constant. These structure constants have the
following properties:

I. They are anti-symmetric, Cτ
ρσ = −Cτ

σρ.
II. The following is true: Cµ

ρσC
ν
µτ + Cµ

στC
ν
µρ + Cµ

τρC
ν
µσ = 0.

We now observe that the set of generators {Xρ} is closed under linear combinations
and multiplications defined by the commutator [, ]. Thus, it is an algebra. We will call
it the Lie algebra to its associated Lie group. It may not be immediately obvious, but
we have just reduced our search for irreducible representations of a Lie group to a finite
number of elements.

Definition 4.2.1. A Lie algebra is the set of infinitesimal generators of a Lie group, {Xρ},
equipped with the commutator [, ] operation.

In physics, Lie algebras often arise very naturally and often the Lie group itself is
harder to use and does not match the physical system as well as the Lie algebra. For this
reason we mostly deal with the Lie algebras directly. It is appropriate for us to consider a
simple example.
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Example 7. We again considerGL(2,R). Its generators are the usual basis matrices e11, e12, e21, e22.
The commutator and thus the structure constants can be found as follows: [eαβ, eγδ] = δβγeαδ −
δαδeγβ , where δ’s are delta functions. We encourage the reader to check that this indeed works by
choosing arbitrary combinations of α, β, γ, δ and calculating the result both as a classic matrix
commutator and also using the right hand side. 4

4.2.3 Lie Algebra and Lie Group Correspondence

As we want to use Lie algebras instead of Lie groups for the representations, such that
we will have representations Φ : g −→ V where g is the Lie algebra and V is a vector
space, we need to show and stress a few parallels. The full discussion and proof of this
connection is beyond the scope of this thesis. However, it is a very interesting one and
a good explanation of it can be found in Representation Theory [4]. The following are the
important outcomes.

a) Simple groups (no invariant subgroups) have simple algebras (no invariant subalge-
bras)
b) Semi-simple groups will have semi-simple algebras (no invar. abelian subalgebras)
c) Subgroups correspond to their own algebras which are subalgebras of the Lie algebra
d) Invariant subgroup has its own invariant algebra that is a subalgebra of the Lie algebra
e) An abelian group will have an abelian algebra
f) Compact Lie groups will have compact Lie Algebras

Note also that the matrices we have been visualising in our examples and discussion
are already the representations. The matrices represent the group actions on the vectors in
the n-dimensional space they operate in. This is a rather tricky idea and so it is important
to fully grasp this before moving onwards to the applications.

4.3 Representations used in Physics

In this section we will take a look (at last) at the most commonly used representations in
physics. We have already considered some finite group representations but the most com-
monly used ones are not finite but infinite (and Lie). There is some overlap between the
theories developed in the finite group representation sections and this section. Namely,
orthogonality, irreducibility, and invariance are examples of properties that carry over to
the infinite case almost unharmed.
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Many of these examples, if not for the reminders, would seem to be applications of linear
algebra in physics, not really representation theory. However, it is the connection between
Lie algebras (the matrices and linear algebra structures) and Lie groups that makes it so
that we are still making use of representation theory. In the end, if we only looked at the
following examples through the lenses of linear algebra, we would not understand their
whole structure and origin.

In this section, there will be some mathematical concepts we didn’t cover in detail.

It should be noted that the following applications were not taken from a singular
source nor fully developed in this thesis. Rather, they were informed by all of the fol-
lowing texts and articles, and then adjusted to fit the needs of this thesis:
Quantum Theory, Groups, and Representations - An Introduction [10]
Gauge Fields, Knots, and Gravity [1]
Crystallography: Symmetry Groups and Group Representations [5]
Algebraic Topology [7]

4.3.1 The Unitary Group, U(1)

As discussed in Section 2.1, particles in physics are described by wavefunctions that live
in Hilbert spaces with defined inner product. Computation of the inner product can often
tell us important information about the particle, e.g. position. We thus often wish to
preserve it when adding additional, position independent characteristics to the particle,
e.g. charge. That is, we sometimes wish to create operators that could be used to retrieve
some information about the particle without affecting the inner product. If we are to use
representation theory, we naturally look to unitary representations.

Let us consider an n-dimensional state space H (where wavefunctions live - also a
Hilbert space). Let U(1) be irreducible on H , then it has to be one dimensional. This is
true since if a group G is commutative, then for g, h ∈ G then Φ(g)Φ(h) = Φ(h)Φ(g). From
this we use Schur’s Lemma to conclude that all of the Φ(h) matrices are simply scalars
(i.e. one-dimensional).

Since the representation of U(1) is irreducible, one dimensional, and the elements of
the group are points on a unit circle, we can express it as eiθ. The whole state space is n-
dimensional and so we will need n of these irreducible representations summed together
via the external direct sum, which will give us a diagonal matrix. If we give each of these
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scalar representations a multiplication factor qi in their exponent to allow for different
angles, then we get the final representation:

Φ(eiQθ) =


eiq1θ 0 0 ...

0 eiq2θ 0 ...

...

0 ... 0 eiqnθ


Now, this is actually a map between manifolds from U(1) to GL(n,C), where the identity
of U(1) is taken to the identity of GL(n,C). That is, Φ is a representation of U(1). Since
U(1) is a Lie group we can find a differential of the map, namely QieiQθ where the matrix
Q is:

Q =


q1 0 0 ...

0 q2 0 ...

...

0 ... 0 qn


This matrix is the ”generator of the U(1) action on H” [10]. It is also one of the generators
of the Lie group near identity (i.e. when θ −→ 0) as we discussed them in the previous
sections. In this example, we will call it the charge operator as we wish to encode charge
in it (hence we named itQ), but it could be a different property of a particle that we would
wish to encode. The key observation here is that Q is an example of an observable. That
is, the wavefunctions in Hqi ⊂ H will be eigenvectors of this matrix and will have eigen-
values corresponding to the qi’s, where these eigenvalues are values of charge we will
physically measure if we experiment on the particles represented by the wavefunctions
in the state subspace. It is also another representation where we have the map from U(1)

to GL(n,C) and then another map to GL(n,C) (Φ(eiQθ) and Q live in the same space). It
is important to note that Q is not necessarily unitary, only Φ(eiQθ) is.

In this case it is charge, but we could have chosen other physical property that we
would wish to encode into a unitary representation (like we encoded Q into Φ(eiθ)) to
allow ourselves to perform operations on wavefunctions without changing their inner
product. That is, we can do calculations that impact the particle’s charge without, say,
altering its position.
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4.3.2 The Special Unitary Group, SU(2)

One of the first famous applications of representation theory in physics is isospin, now
a rather outdated theory in physics. We will talk about it anyway as it can show the
ways symmetry is encoded in these representations. The idea of isospin was developed
by Heisenberg when he tried to figure out why neutrons and protons are so similar and
”hang out” together in the nucleus so much [9]. He came up with the idea that they really
are the same particle, which he named nucleon, but in a different isospin state. Namely,
the proton is a spin up nucleon, while neutron is a spin down. It is a very simple idea,
which is maybe why it turned out to be not exactly correct.

How does this lead us to SU(2)? There are two spin states and thus the states of the
particle will live in a two dimensional state space H . If we want to use a representation
to represent spin change actions we will use some subgroup of the general linear group
of the 2D space. Now, note that the strong force (the force that holds nucleus together)
acts the same way no matter what state the nucleons are in. This hints that the isospin
needs a representation that does not interact with the strong force. The information of the
effects of the strong force are found by means of an inner product between the nucleon
wavefunctions, thus we will again need a unitary representation. We say that the strong
force is symmetric, as it treats all states of nucleons the same. Since nucleons have only
two different states, we are limited in our choices to the group of unitary matrices of
dimension 2, U(2), and its subgroups.

We construct a basis forU(2) by using exponents, not exactly analogously but similarly
to previous section. One of the basis matrices is simply the identity matrix exponentiated
to give unitary matrix, where θ is some angle that defines the orientation of the represen-
tation:

U1 =

[
eiθ 0

0 eiθ

]
Now, we need three more matrices if we wish to have a set of generators for the group
U(2), as that is a 4 dimensional space of 2 by 2 matrices. Three matrices that work are the
exponentiated Pauli matrices:

U2 =

[
0 eiθ

eiθ 0

]
, U3 =

[
0 eθ

e−θ 0

]
, U4 =

[
eiθ 0

0 e−iθ

]
We have already hinted that the exponentiated matrices come from the Pauli matrices and
the identity matrix; this is because those are the generators of the group action on H near
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identity. That is, they are the differentials of the generators of U(2) near identity, just like
the matrix Q was for our representation of U(1). At this point we can simply list the four
generators of the group action:

Û1 =

[
1 0

0 1

]
, Û2 =

[
0 1

1 0

]
, Û3 =

[
0 −i
i 0

]
, Û4 =

[
1 0

0 −1

]

These are multiplied by i in the differential form, but we drop that as that is simply
a scalar multiple. We can leave the multiplication factor out, as it still remains a set of
generators of the group action and in this form the eigenvalues of all of these are always
real. This is something we need if we are trying to determine an observable quantity -
something we can later measure in an experiment. We already have four generators of
group action, which could be the observables. They all have determinant equal to one
and, in fact, form a basis for generators of group action of SU(2) on H and are a basis for
Lie algebra of SU(2) with the bracket operation determining the commutation relations
as described in the section on Lie algebras.

Returning to our application, let us consider a situation where spin up nucleon (a pro-

ton) is represented by

[
1

0

]
and spin down nucleon (neutron) is represented by

[
0

1

]
. We

will now use our generators of group action to construct operators that will mimic the act
of raising and lowering the spin of the nucleons. We will also build the charge operator,
which is used to count the charge.

Let Q̂ be the charge operator that only ”counts” the charged particle and let â+/− be
the raising/lowering operators that turn a neutron into a proton and vice versa. Note
also that if we apply the lowering operator to a neutron (or raising operator to proton) we
wind up with no particle.

Q̂ =
1

2
(Û1 + Û4) =

[
1 0

0 0

]

â+ =
1

2
(Û2 + iÛ3) =

[
0 1

0 0

]

â− =
1

2
(Û2 − iÛ3) =

[
0 0

1 0

]

This representation is taken to much greater depth in the isospin theory. However, this
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provides us with a great illustration of the use of the representation of SU(2). Namely, the
matrices of exponents form a basis of SU(2), while the Pauli matrices and identity form
a representation of the SU(2) group. We used the fact that SU(2) is a Lie group when
finding the representation: that is how we knew the number of generators, and that they
exist in the given form.

4.3.3 The Rotation Group in 3D, SO(3)

SO(3) is the rotation group in three dimensions. Much like in the previous two applica-
tions, we will start by identifying a basis. In this case, it is directly the group SO(3) and
its basis is given by the three matrices below and the Identity.

O2 =

1 0 0

0 cos(θ) − sin θ

0 sin θ 1 cos(θ)

 O3 =

cos(θ) 0 sin θ

0 1 0

− sin θ 0 cos(θ)

 , O4 =

cos(θ) − sin θ 0

sin θ cos(θ) 0

0 0 1

 ,
Once again, to find the infinitesimal generators we find the differentials of these near

identity (as θ −→ 0). This leaves us with the following infinitesimal generators, i.e. the
generators of the group action of SO(3) on the state space H :

Ô1 =

1 0 0

0 1 0

0 0 1

 , Ô2 =

0 0 0

0 0 −1

0 1 0

 , Ô3 =

 0 0 1

0 0 0

−1 0 0

 , Ô4 =

0 −1 0

1 0 0

0 0 0


Again, these form a basis for the Lie algebra of the SO(3) group, where the bracket

determines the operation. The applications for this algebra are numerous and range from
very straightforward to complex. This is because what these matrices do is simply rotate
basis vectors by π/2 in their particular defined direction. An example of use is posi-
tion of atoms in molecules. Often, especially in organic chemistry, the orientation and
position of an atom in a molecule matters. Namely, sometimes molecules that are non-
superimposable mirror images of each other (have different chirality) have very different
properties. Thus, capturing which particular position an atom is in a molecule is im-
portant. Using representation theory we can find a way to encode this information into
matrices and operators that do not disturb our calculations and inner products.

The representation of this group was also used in the derivation of Dirac equation,
which is relativistic adjustment of the Schrödinger equation. Special theory of relativity
is a theory that deals with changing reference frames and how that affects observed quan-
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tities. A rotation group could be used to capture some of these relativistic notations. In
particular, we note that the Ôi matrices are also unitary and thus we would use them to
capture quantities that are invariant under reference frame changes.

In general, we note that once we found a way to build operators from representations
of unitary groups, we have allowed ourselves to represent a large variety of invariant
physical properties. We listed some examples in this thesis, but beyond these particular
examples, it is important to look at the ”recipe” for finding these desired operators and
what mathematical background and structure we need to do that.



Chapter 5

Conclusion

In this thesis, we explored the theory of representations. We managed to derive and
observe many important properties of the group representations, i.e. of the homomor-
phisms from the group to the general linear groups of our chosen vector space. Namely,
we derived and studied Schur’s and Maschke’s theorems, equivalence relations, we also
survey the theory of characters of representations, and Lie group representations. We
have uncovered many parallels between linear algebra and representation theory. For
example, we saw how diagonalisability of a matrix is analogous to the reducibility of a
representation into irreducible subrepresentations.

Close attention was given to the application of representation theory in physics. There
are many branches of mathematics that are used in physics. Most of the time, we think
of mathematical physics as mathematics related to differential equations and continuous
functions. However, in this thesis we explored another large section of mathematical
physics, which is one that dominates quantum mechanics and uses primarily linear alge-
bra. As discussed, representation theory takes us to these linear spaces and we managed
to use it to encode important information into operators over these spaces.

This thesis is only a quick look at the vast theory of representations and its uses in
physics. There are many textbooks developing this theory in greater depth, but in differ-
ent directions. For the interested reader, Representation Theory [4] is a good resource for
further exploration of this theory, while Group Representation for Physicists [2] provides in
depth explanation of many applications.
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