
Colby College Colby College

Digital Commons @ Colby Digital Commons @ Colby

Honors Theses Student Research

2021

Counting Conjugacy Classes of Elements of Finite Order in Counting Conjugacy Classes of Elements of Finite Order in

Compact Exceptional Groups Compact Exceptional Groups

Qidong He

Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses

 Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons

Colby College theses are protected by copyright. They may be viewed or downloaded from this

site for the purposes of research and scholarship. Reproduction or distribution for commercial

purposes is prohibited without written permission of the author.

Recommended Citation Recommended Citation

He, Qidong, "Counting Conjugacy Classes of Elements of Finite Order in Compact Exceptional

Groups" (2021). Honors Theses. Paper 1314.

https://digitalcommons.colby.edu/honorstheses/1314

This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital
Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital
Commons @ Colby.

http://www.colby.edu/
http://www.colby.edu/
https://digitalcommons.colby.edu/
https://digitalcommons.colby.edu/honorstheses
https://digitalcommons.colby.edu/student_research
https://digitalcommons.colby.edu/honorstheses?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages

Counting Conjugacy Classes of Elements of Finite Order
in Compact Exceptional Groups

Qidong He

A thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Arts with Honors

Examined and approved on

by the following examiners:

Dr. Tamar Friedmann (advisor)

Dr. Fernando Gouvêa (reader)

Department of Mathematics and Statistics

Colby College

Acknowledgments

In temporal order, I thank (a) my parents for bringing me into this world and making me
the person I am today, (b) my middle school teacher Dr. Guoshuang Pan for supporting me
through my earliest journey in mathematics, (c) my high school teacher Angela Benjamin for
helping me develop an appreciation of physics and the applied sciences, (d) Dr. Ben Mathes
and Dr. Scott Taylor for providing me with an accessible and passionate introduction to
mathematical research, (e) Dr. Otto Bretscher, Dr. Evan Randles, and Dr. Nora Youngs
for their rich supply of mathematical jokes and helping me grow in mathematical maturity,
and (f) Dr. Robert Bluhm and Dr. Kelly Patton for demonstrating to me the prospects for
a mathematically rigorous formulation of theoretical physics.

I would particularly like to thank my thesis advisor Dr. Tamar Friedmann for suggesting
the topic of this thesis and providing me with invaluable advice pertaining to both research
and the application process for graduate programs as well as my academic advisor Dr. Fer-
nando Gouvêa for guiding me in almost all aspects of my college life.

It is due to all of you that I will soon be embarking on a new adventure to pursue graduate
studies in the theory and applications of mathematical physics.

1

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Lie Theory . 5
2.2 Combinatorics . 7
2.3 Linear Algebra . 9

3 A Gentle Example: G2 12
3.1 The Computation of N(G2,m) . 13
3.2 The Computation of N(G2,m, s) . 16

3.2.1 Determining the Number of distinct eigenvalues of t(xA, xB) 16
3.2.2 Determining when t(xA, xB) is fixed by some w ∈ W 19
3.2.3 Counting elements in E(T,m, s) fixed by some w ∈ W 20
3.2.4 Computing N(G2,m, s) . 22

3.3 A Brief Comparison with Sp(n) . 24

4 The General Method 27
4.1 The Computation of N(G,m) . 28
4.2 The Computation of N(G,m, s) . 31

4.2.1 Determining the number of distinct eigenvalues of t(x) 32
4.2.2 Determining when t(x) is fixed by some w ∈ W 34
4.2.3 Counting elements in E(T,m, s) fixed by some w ∈ W 34
4.2.4 Computing N(G,m, s) . 35

5 Future Work 38
5.1 A Brute-Force Approach via HNFs . 38
5.2 A Subtle Approach via Root Vectors . 39

2

Chapter 1

Introduction

Let G be the compact real form of a simple Lie group. Then, by the classification theorem
of simple Lie groups, G is isomorphic to one of

1. the compact classical groups, i.e., SU(n + 1) for n ≥ 1, SO(2n + 1) for n ≥ 2, Sp(n)
for n ≥ 3, and SO(2n) for n ≥ 4, or

2. the five compact exceptional groups, i.e., G2, F4, E6, E7, and E8.

In this thesis, we study the number of conjugacy classes of elements of finite order in
a compact exceptional group G. Specifically, given integers m, s ≥ 1, we are interested in
determining the number of conjugacy classes in G whose elements (1) have order dividing
m, or (2) have s distinct eigenvalues in addition to having order dividing m. To put this
more concisely, we follow the notation of [5] and define, for m ≥ 1,

E(G,m) = {x ∈ G : xm = 1}.

By viewing G as a matrix Lie group via its standard (i.e., smallest-degree faithful) repre-
sentation and treating the eigenvalues of the matrix corresponding to each x ∈ G as the
eigenvalues of x, we are able to define

E(G,m, s) = {x ∈ E(G,m) : x has s distinct eigenvalues} .1

Finally, define

N(G,m) = number of conjugacy classes of G in E(G,m),

N(G,m, s) = number of conjugacy classes of G in E(G,m, s).

We note that the preceding definitions can be readily extended, for instance, to the
compact classical groups. Here, we intentionally omit such extensions in the interests of
clarity.

1For G = G2, F4, E7, E8, we can alternatively define E(G, m, s) as the elements in E(G, m) with s
distinct conjugate pairs of eigenvalues. Our algorithm can be easily modified to compute N(G, m, s) under
the alternative definition by adjusting the s-function in Definition 4.2.3.

3

The quantities N(G,m) and N(G,m, s) have been studied for various simple Lie groups
in several different contexts. In [3, 4], N(G,m) is computed for all simple Lie groups using
certain high-powered machinery in Lie theory. In [5, 6], the study of N(G,m) and N(G,m, s)
is motivated by an explicit enumeration problem in string theory; the authors give a purely
combinatorial method to compute these quantities for the compact classical groups. The
purpose of this thesis is to provide a unified combinatorial method to compute both quantities
in the case that G is a compact exceptional group.2

This thesis is organized as follows. In Chapter 2, we provide an overview of certain
results from Lie theory, combinatorics, and linear algebra that will become relevant in the
later chapters. In particular, we seek to provide clues as to how the results presented therein
will be used later on, whenever and wherever appropriate. In Chapter 3, we use the smallest
exceptional simple Lie group G2 as a motivating example to introduce several ideas central
to the formulation of our general method. Owing to the great tractability of G2, we are able
to provide a large portion of the computational details for N(G2,m) and N(G2,m, s) within
a reasonable number of pages. In Chapter 4, we consolidate the results and ideas from the
previous chapters to develop our general algorithm. The appendix includes the raw code
for an implementation of our method in Sage. We give the full results for N(G,m), where
G = F4, E6, E7, E8, as well as partial results for N(F4,m, s) obtained using the program.3
Finally, in Chapter 5, we give a brief overview of the sort of practical issues that may arise
from implementing the algorithm and suggest ways to deal with said issues.

Throughout our writing, we assume that the reader is familiar with the basic concepts
and results in Lie theory. Occasionally, we may provide the reader with refreshers on certain
fundamental ideas, but we do so only when we believe that such discussions can fit nicely
into our narrative. Furthermore, when the exact technical details are of secondary concern
to our discussion, we may choose to omit a proof, to simplify the conditions of a theorem as
requiring certain objects to be “nice,” etc.

2As a side note for the attentive reader, we explain in Section 3.3 why the simple combinatorial treatment
of the problem used in [5, 6] cannot be applied to the compact exceptional groups without any modification.

3While the program is capable of producing the full results in approximately 30 minutes on a personal
laptop, the table that it produces is organized by m modulo 12252240, which precludes any effort to include
the full table as a part of this thesis.

4

Chapter 2

Preliminaries

In this chapter, we present select definitions and results from Lie theory, combinatorics, and
linear algebra that will be applied repeatedly in the later chapters.

2.1 Lie Theory
Generally speaking, it requires an incredible amount of hard work to explicitly describe a
compact exceptional group. The main reason is that such endeavors frequently necessitate
the use of certain algebraic structures built upon the non-associative octonion algebra O
[9]. For this reason, studying the conjugacy classes in a compact exceptional group from the
perspective of an explicit description will likely pose too great a logistical challenge, and it
behooves us to seek out an alternative approach.

In this section, we observe that certain topological properties possessed by a compact
exceptional group allow us to focus our attention entirely on one of its combinatorically well-
behaved subgroups, known as a maximal torus. We also explain how we can straightforwardly
obtain a desired matrix representation of a maximal torus from the implementation of the
results of [8] in Sage. As noted in [9], every compact exceptional group is compact, connected,
and simply connected. Hence, while the definitions and results that follow may be directed
at generic Lie groups that satisfy certain properties, it should be understood that all of them
apply, in particular, to the compact exceptional groups.

The definitions and propositions that follow are taken from [7].

Definition 2.1.1 (maximal torus). Let K be a compact, connected matrix Lie group. A
subgroup T of K is a torus if T ∼= U(1)k for some k ∈ N. If T is a torus that is not properly
contained in any other torus in K, then T is called a maximal torus of K.

The following proposition implies that every conjugacy class in a compact exceptional
group intersects with a fixed maximal torus. Hence, there is a correspondence between the
conjugacy classes in the group and the elements of a (fixed) maximal torus.

Proposition 2.1.2. Let K be a compact, connected matrix Lie group, and T ≤ K a maximal
torus. Then, every y ∈ K can be written as

y = xtx−1

5

for some x ∈ K and t ∈ T .

A natural question to ask is when do two elements in a maximal torus correspond to the
same conjugacy class. The answer is that this happens if and only if the elements themselves
are conjugate by an element of the finite group known as the Weyl group.

Definition 2.1.3 (Weyl group). Let K be a compact, connected matrix Lie group, and
T ≤ K a maximal torus. The Weyl group of K (with respect to T) is the quotient group

W = N(T)/T,

where N(T) = {x ∈ K : xTx−1 = T} is the normalizer of T .

Proposition 2.1.4. Let K be a compact, connected matrix Lie group, and T ≤ K a maximal
torus. Then, the corresponding Weyl group W is a finite group and acts on T by conjugation
(cf. Definition 2.2.1). Moreover, if t ∈ T satisfies t = xsx−1 for some x ∈ K and s ∈ T ,
then there exists w ∈ W such that s = w · t.

To recapitulate, in order to count the conjugacy classes in a compact exceptional group,
it is not necessary to work with (a matrix representation of) the full group. Rather, it suffices
to keep at our disposal (the corresponding matrix representations of) a maximal torus and its
associated Weyl group. Accordingly, we redirect our attention to the task of obtaining said
matrix representations. Our strategy is to exploit the construction of matrix representations
of the exceptional Lie algebras in [8].

The next proposition tells us that, to obtain a matrix representation of a compact ex-
ceptional group, it suffices to exponentiate a matrix representation of its Lie algebra.

Proposition 2.1.5. If K is a compact, connected matrix Lie group, then the exponential
map for K is surjective.

It is now straightforward to obtain a maximal torus T of K. By the following proposition,
we need only exponentiate a maximal commutative subalgebra t of the Lie algebra k of K.

Proposition 2.1.6. Let K be a compact, connected matrix Lie group with Lie algebra k. If
T is a maximal torus of K, then the Lie algebra t of T is a maximal commutative subalgebra
of k. Conversely, if t is a maximal commutative subalgebra of k, then the connected Lie
subgroup T of K with Lie algebra t is a maximal torus of K.

In comparison, it requires significantly more theoretical preparation to describe rigorously
and comprehensively how we can obtain a matrix representation of the Weyl group as a
quotient subgroup of K from the Lie algebra k. Since this can easily distract us from our
main objective, we present here only the essential points of the reasoning process. We refer
the curious reader to [2, 7] for full details.

Since a compact exceptional group G is simply connected, the complexification of its Lie
algebra, denoted by gC, is semisimple. The semisimple Lie algebra gC is associated with a
finite collection of vectors in Euclidean space that constitute its root system, denoted by R.
R is associated with a group of symmetries that is, not coincidentally, also called the Weyl
group. Here, the Weyl group is generated by reflections across the hyperplanes orthogonal

6

to the fundamental roots, which are a subset ∆ ⊆ R that satisfies special properties. It turns
out that the Weyl group in the context of the associated root system is isomorphic to the
Weyl group of the original compact exceptional group. An explicit description of this group
isomorphism can be found in Chapter 6 of [2].

We record in Table 2.1 the matrix representations of a maximal torus and the corre-
sponding Weyl group for each of the five compact exceptional groups, using the notation of
[8].

G ∆ T W
G2 {A,B} {∏α∈∆ exp(2πixα[ψ(eα), ψ(e−α)]) | xα ∈ R}

〈nα(1) · T | α ∈ ∆〉
F4 {A,B,C,D}
E6 {a, b, . . . , f}

{∏α∈∆ exp(2πixα[φ(eα), φ(e−α)]) | xα ∈ R}E7 {a, b, . . . , g}
E8 {a, b, . . . , h}

Table 2.1: Matrix representations of a maximal torus and the corresponding Weyl group in
each compact exceptional group, recorded here using the notation of [8].

2.2 Combinatorics
As we have hinted at in Section 2.1, the combinatorics of conjugacy classes in a compact
exceptional group is intimately connected to the conjugation action of the Weyl group on
a maximal torus. In this section, we formally define a group action and present a famous
group-theoretic result known as Burnside’s Lemma, which provides important combinatorial
information on a group action and will become the guiding theme of our algorithm. We end
the section with a brief introduction to Möbius inversion on a poset.

Definition 2.2.1 (group action). Let G be a group with the identity element e and X a
set. A (left) group action of G on X is a function α : G×X → X satisfying

α(e, x) = x

for all x ∈ X, and
α(g, α(h, x)) = α(gh, x)

for all g, h ∈ G and x ∈ X. If α is a group action of G on X, we say that G acts on X and
abbreviate α(g, x) as g · x for simplicity.

A group action induces a partition of the set.

Definition 2.2.2 (orbit). Let G be a group that acts on a set X. Given x ∈ X, the orbit
of x under the group action of G is defined as

G · x := {g · x : g ∈ G}.

We denote by X/G the collection of orbits of X under the action of G.

7

Proposition 2.2.3. If G acts on X, then the orbits of X under this group action constitute
a partition of X.

We can now formalize the correspondence between the conjugacy classes in a compact
exceptional groupG and the elements in a maximal torus T . Together, Propositions 2.1.2 and
2.1.4 indicate a one-to-one correspondence between the conjugacy classes in G and the orbits
of T under the (conjugation) action of the Weyl group W . Since the order and eigenvalues
of any element x ∈ G are invariant under conjugation, we conclude that

1. N(G,m) is the number of orbits of elements in T with order dividing m under the
action of W , and

2. N(G,m, s) is the number of orbits of elements in T with order dividingm and s distinct
eigenvalues under the action of W .

The central tool for counting these orbits that we will use later on is Burnside’s Lemma,
which relates the number of orbits under a group action to the number of set elements that
are unaffected by each element of the group.

Theorem 2.2.4 (Burnside’s Lemma). Let G be a finite group that acts on a set X. Then,
the number of orbits of X under the action of G is

|X/G| = 1
|G|

∑
g∈G
|Fix(g)| ,

where Fix(g) = {x ∈ X : g · x = x} is the set of fixed points of X under the action of g.

We can simplify the sum in Burnside’s Lemma using the following result.

Proposition 2.2.5. Let G be a finite group that acts on a set X. If g, h ∈ G are conjugate,
then |Fix(g)| = |Fix(h)|.

Theorem 2.2.6 (Burnside’s Lemma, reformulated). Let G be a finite group that acts on a
set X. Denote by Cl(G) the collection of conjugacy classes in G. Then, the number of orbits
of X under the action of G is

|X/G| = 1
|G|

∑
c∈Cl(G)

|c| |Fix(gc)| ,

where gc ∈ c is a representative of the conjugacy class.

The utility of the reformulated Burnside’s Lemma stems from the fact that while the Weyl
group of a compact exceptional group may be forbiddingly large, the number of conjugacy
classes inside the Weyl group is generally small. Hence, provided that we know the size and
a representative of each conjugacy class in the Weyl group, the sum in Theorem 2.2.6 is
much easier to evaluate than the one in Theorem 2.2.4. Fortunately, this information has
been completely determined in [1] and translated into an accessible form in GAP 3, which
we will use to our advantage.

8

Finally, we take a detour into the realm of posets (partially ordered sets). The reason for
their introduction is roughly as follows. In order to compute N(G,m, s), we will partition
the set E(T,m) by the “type” of repeats of eigenvalues that occur within each element. We
will then impose a partial order on the subsets based on how “restrictive” the corresponding
types are. This, in turn, will enable us to use the Möbius inversion to determine the number
of elements of E(T,m, s) “exclusive” to each type, which we can then use to formulate an
expression for N(G,m, s).

Definition 2.2.7 (poset). A partial order on a set P is a binary order � on P such that,
for all x, y, z ∈ P ,

1. (reflexivity) x � x;

2. (antisymmetry) if x � y and y � x, then x = y; and

3. (transitivity) if x � y and y � z, then x � z.

When equipped with a partial order �, the set P is called a poset.

Theorem 2.2.8 (Möbius inversion). Let (P,�) be a “nice” poset, and f, g : P → R. Then,

g(t) =
∑
s�t

f(s) for all t ∈ P

if and only if
f(t) =

∑
s�t

g(s)µ(s, t) for all t ∈ P.

Here, µ(s, t) is known as the Möbius function of P and is computed by

µ(s, u) =


1, if s = u

−∑s�t≺u µ(s, t), if s ≺ u

0, else
. (2.1)

2.3 Linear Algebra
In this section, we introduce two normal forms for rectangular matrices with integer entries,
the Hermite normal form and the Smith normal form, which will function as useful compu-
tational devices in our algorithm. Both rely on the notion of unimodularity, which refers to
the invertibility of a square integer matrix over Z.

Given positive integers m,n, let Mm(Z) (resp. Mm×n(Z)) denote the set of m×m (resp.
m× n) matrices with integer entries.

Definition 2.3.1 (unimodularity). A matrix P ∈ Mm(Z) is unimodular if detP = ±1, or,
equivalently, if P is invertible over Z.

The main utility of the Hermite normal form in our context is for optimizing the deter-
mination of the types of repeats of eigenvalues that can occur in an element of E(T,m, s)
(cf. the discussion preceding Definition 2.2.7). It is characterized by the following theorem.

9

Theorem 2.3.2. If A ∈ Mm×n(Z), then there exists a unimodular matrix P ∈ Mn(Z) such
that AP satisfies the following properties:

1. AP is lower triangular, and any column of zeros is located to the right of all the nonzero
columns;

2. the pivot of any nonzero column of AP is positive and strictly below the pivot of any
column to its left; and

3. any entry to the right of a pivot is zero, and any entry to the left of a pivot is nonneg-
ative and strictly smaller than the pivot.

Definition 2.3.3 (Hermite normal form). Let A ∈ Mm×n(Z). The (column) Hermite normal
form of A, denoted by HNF(A), is the matrix AP in the statement of Theorem 2.3.2.

The optimization makes use of integer lattices, which we define below.

Definition 2.3.4 (lattice generated by a matrix). Let A ∈ Mm×n(Z). The lattice generated
by A is the set

Λ(A) = {Av : v ∈ Zn} ⊆ Zm.

The Hermite normal form gives a necessary and sufficient condition for when two integer
matrices, not necessarily of the same size, generate the same integer lattice.

Proposition 2.3.5. Let A ∈ Mm×l(Z) and B ∈ Mn×l(Z). Then, Λ(A) = Λ(B) if and only
if HNF(A) and HNF(B) are or can be identified by adding or removing columns of zeros.

Now, we introduce the Smith normal form, which is characterized by the following theo-
rem.

Theorem 2.3.6. If A ∈ Mm×n(Z), then there exist unimodular matrices P ∈ Mm(Z) and
Q ∈ Mn(Z) such that

PAQ =



d1
. . .

dr
0

. . .

 ,

where each di 6= 0 and di | dj whenever i ≤ j. In particular, the di’s are unique up to a sign.

Definition 2.3.7 (Smith normal form). Let A ∈ Mm×n(Z). The Smith normal form of A,
denoted by SNF(A), is the matrix 

d1
. . .

dr
0

. . .


associated to A in the statement of Theorem 2.3.6. Further, the nonzero integers di are
called the elementary divisors of A.

10

The Smith normal form enables us to count certain objects inside the solution set of a
system of linear equations without needing to solve the system at all. In our context, such
objects may correspond to the fixed points in E(T,m) under the action of an element of the
Weyl group, or the elements in E(T,m) that are characterized by having a particular type
of repeats of eigenvalues.

Proposition 2.3.8. Let A ∈ Mn×l(Z). For any positive integer m, the map between the left
kernel over 1

m
Z/Z of A and that of SNF(A) = PAQ given by

φ : cokerA→ coker SNF(A)
v 7→ vP−1

is a bijection.

Corollary 2.3.9. Let A ∈ Mn×l(Z). For any positive integer m, the size of the left kernel
of A over 1

m
Z/Z is given by

|cokerA| = ml−r ·
r∏
i=1

gcd(di,m),

where d1, . . . , dr are the elementary divisors of A.

11

Chapter 3

A Gentle Example: G2

In this chapter, we piece together the ideas introduced in Chapter 2 to compute N(G,m)
and N(G,m, s) for the smallest compact exceptional group, G2.

First, we obtain the matrix representations of a maximal torus T in G2 and the generators
of its corresponding Weyl group W . Referring to Table 2.1, we find that

T =





e2πixA

e−2πi(xA−xB)

e2πi(2xA−xB)

1
e−2πi(2xA−xB)

e2πi(xA−xB)

e−2πixA




,

nA(1) =



1
−1

1
−1

1
1

−1


, and nB(1) =



1
1

−1
1

1
−1

1


,

using the expressions for ψ(e±α) computed in [8], where α ∈ {A,B}.
Remark 3.0.1. Note that an element

t(xA, xB) =



e2πixA

e−2πi(xA−xB)

e2πi(2xA−xB)

1
e−2πi(2xA−xB)

e2πi(xA−xB)

e−2πixA


∈ T

has order dividing m if and only if (xA, xB) ∈
(

1
m
Z
)2
. Since two pairs (xA, xB), (x′A, x′B) ∈

12

(
1
m
Z
)2

represent the same element of the maximal torus if and only if (xA−x′A, xB−x′B) ∈ Z2,

we will henceforth require that (xA, xB) ∈
(

1
m
Z/Z

)2
.

3.1 The Computation of N(G2,m)
By the discussion preceding Theorem 2.2.4, N(G2,m) is the number of orbits under the
action of W of the set {

t(xA, xB) : (xA, xB) ∈
(1
m
Z/Z

)2}
.

It then follows from Theorem 2.2.6 that

N(G2,m) = 1
|W |

∑
c∈Cl(W)

|c| |Fix(wc)| ,

where Cl(W) is the collection of conjugacy classes in W , and wc ∈ c is a conjugacy class
representative.

The results of [1] about the conjugacy classes in W can be accessed in GAP 3 using the
following command:
gap> ChevieClassInfo(CoxeterGroup("G",2));
rec(
classtext := [[], [2], [1], [1, 2], [1, 2, 1, 2],

[1, 2, 1, 2, 1, 2]],
classnames :=
["A_0", "\\tilde A_1", "A_1", "G_2", "A_2", "A_1+\\tilde A_1"],
classparams := [["A_0"], ["\\tilde A_1"], ["A_1"], ["G_2"],

["A_2"], ["A_1+\\tilde A_1"]],
orders := [1, 2, 2, 6, 3, 2],
classes := [1, 3, 3, 2, 2, 1])

Of particular interest to us are classes and classtext, which indicate the size and a repre-
sentative of each conjugacy class in W . See Table 3.1.1

It remains to determine |Fix(wc)| for each conjugacy class representative wc. Before we
begin, we note a necessary and sufficient condition for t(xA, xB) to be fixed by some w ∈ W .

Proposition 3.1.1. Let w ∈ W . Acting on t(xA, xB) by w results in a signed permutation
of the exponents in its first three diagonal entries. Further, t(xA, xB) is fixed by w if and
only if w · t(xA, xB) and t(xA, xB) agree in their first two diagonal entries.

As an example, we consider wc = (nB(1)nA(1))2 · T .
1We need to be cautious when using the generators nA(1) and nB(1) in conjunction with the information

in classtext, since they rely on different labelings of the Dynkin diagram of g2. For more details, see Remark
4.1.1.

13

|c| Representative wc ∈ c
1 I · T
3 nA(1) · T
3 nB(1) · T
2 nB(1)nA(1) · T
2 (nB(1)nA(1))2 · T
1 (nB(1)nA(1))3 · T

Table 3.1: The size and a representative of each conjugacy class c in the Weyl group of G2.

Example 3.1.2 (computing |Fix((nB(1)nA(1))2 · T)|). Conjugating

t(xA, xB) =



e2πixA

e−2πi(xA−xB)

e2πi(2xA−xB)

1
e−2πi(2xA−xB)

e2πi(xA−xB)

e−2πixA


by

w = (nB(1)nA(1))2 =



1
1

1
1

−1
−1

1


∈ (nB(1)nA(1))2 · T

gives
wt(xA, xB)w−1

=



e−2πi(2xA−xB)

e−2πixA

e−2πi(xA−xB)

1
e2πi(xA−xB)

e2πixA

e2πi(2xA−xB)


.

By Proposition 3.1.1, |Fix(w)| is the number of solutions to the system of linear equationsxA = −(2xA − xB)
−(xA − xB) = −xA

over 1
m
Z/Z. We can express the above system of equations using matrices as[

xA xB
] [3 0
−1 1

]
=
[
0 0

]
.

14

The Smith normal form of the coefficient matrix is

SNF
([

3 0
−1 1

])
=
[
1 0
0 3

]
.

Hence, it follows from Corollary 2.3.9 that

|Fix((nB(1)nA(1))2 · T)| = gcd(1,m) gcd(3,m) =

3 m ≡ 0 mod 3
1 m 6≡ 0 mod 3

.

wc ∈ c Associated System SNF |Fix(wc)|

I · T
[
xA xB

] [0 0
0 0

]
=
[
0 0

] [
0 0
0 0

]
m2

nA(1) · T
[
xA xB

] [2 2
−1 −1

]
=
[
0 0

] [
1 0
0 0

]
m

nB(1) · T
[
xA xB

] [0 3
0 −2

]
=
[
0 0

] [
1 0
0 0

]
m

nB(1)nA(1) · T
[
xA xB

] [2 1
−1 0

]
=
[
0 0

] [
1 0
0 1

]
1

(nB(1)nA(1))2 · T
[
xA xB

] [3 0
−1 1

]
=
[
0 0

] [
1 0
0 3

] 3 m ≡ 0 mod 3
1 m 6≡ 0 mod 3

(nB(1)nA(1))3 · T
[
xA xB

] [2 2
0 −2

]
=
[
0 0

] [
2 0
0 2

] 4 m ≡ 0 mod 2
1 m 6≡ 0 mod 2

Table 3.2: The number of fixed points in
{
t(xA, xB) : (xA, xB) ∈

(
1
m
Z/Z

)2
}
under the action

of each conjugacy class c ∈ Cl(W) as represented by wc ∈ c.

Repeating this for the other conjugacy classes in W yields Table 3.2. Finally, combining
the results on |c| and |Fix(wc)| using the equation

N(G2,m) = 1
|W |

∑
c∈Cl(W)

|c| |Fix(wc)| ,

we obtain the following theorem:

Theorem 3.1.3. For any positive integer m,

15

m mod 6 N(G2,m)

0 (m2 + 6m+ 12)/12

±1 (m2 + 6m+ 5)/12

±2 (m2 + 6m+ 8)/12

3 (m2 + 6m+ 9)/12

3.2 The Computation of N(G2,m, s)
We approach this more delicate enumeration problem in the same way as before. By Theorem
2.2.6 and the discussion preceding Theorem 2.2.4, we have

N(G2,m, s) = 1
|W |

∑
c∈Cl(W)

|c| |Fix(wc)| , (3.1)

where |Fix(wc)| is the number of fixed points of the set{
t(xA, xB) : (xA, xB) ∈

(1
m
Z/Z

)2
, t(xA, xB) has s distinct eigenvalues

}

under the action of the conjugacy class representative wc ∈ c.
Whereas the requirement that (xA, xB) ∈

(
1
m
Z/Z

)2
is easy to account for, it is not quite

clear at first glance as to how we can isolate such pairs (xA, xB) that give rise to s distinct
eigenvalues in t(xA, xB). Indeed, upon inspecting the set of eigenvalues of t(xA, xB),{

1, e±2πixA , e±2πi(xA−xB), e±2πi(2xA−xB)
}
, (3.2)

we may observe that the eigenvalues of t(xA, xB) are coupled in the sense that each of the
parameters, xA and xB, affects more than one conjugate pair of eigenvalues. Moreover, we
must pay special attention to when a pair (xA, xB) reduces one or more conjugate pairs to
1, from which no new eigenvalue arises (since 1 is already an eigenvalue of t(xA, xB)), or to
−1, from which only one new eigenvalue arises (i.e., −1).

3.2.1 Determining the Number of distinct eigenvalues of t(xA, xB)
For clarity, define

P1(xA, xB) = xA,

P2(xA, xB) = −(xA − xB), and
P3(xA, xB) = 2xA − xB.

We make the following observation.

16

Proposition 3.2.1. A pair (xA, xB) ∈
(

1
m
Z/Z

)2
leads to one or more repeats in (3.2) if and

only if

1. Pi = ±Pj for some i 6= j (whence e±2πiPi coincide with e±2πiPj),

2. Pi = 0 for some i (whence e±2πiPi = 1), or

3. 2Pi = 0 but Pi 6= 0 for some i (i.e., Pi = 1
2 , whence e

±2πiPi = −1).

We translate this into the language of matrices and kernels as follows. Corresponding to
each Pi, where i = 1, 2, 3, we define

v1 =
[
1
0

]
, v2 =

[
−1
1

]
, and v3 =

[
2
−1

]
.

By stacking together the distinct vectors (up to a sign) in the list

{v1 ± v2,v1 ± v3,v2 ± v3,v1,v2,v3, 2v1, 2v2, 2v3} ,

we form the matrix

P =
[
1 1 2 2 0 3 2 3 4
0 −1 −1 0 1 −1 −2 −2 −2

]
.2

Then, Proposition 3.2.1 implies the following.

Proposition 3.2.2. A pair (xA, xB) ∈
(

1
m
Z/Z

)2
leads to one or more repeats in (3.2) if and

only if (xA, xB) is in the left kernel of some 2× k submatrix of P , where k ≥ 1.

Example 3.2.3. Consider m = 3 and the submatrix

Q =
[
0 3 3
1 −1 −2

]

of P . It can be verified that
(

1
3 , 0

)
∈
(

1
m
Z/Z

)2
is in the left kernel of Q. Observe that[

0
1

]
= v1 + v2,

[
3
−1

]
= v1 + v3, and

[
3
−2

]
= −v2 + v3.

By the correspondence between vi and Pi for each i, we have that

P1

(1
3 , 0

)
= −P2

(1
3 , 0

)
, P1

(1
3 , 0

)
= −P3

(1
3 , 0

)
, and P2

(1
3 , 0

)
= P3

(1
3 , 0

)
.

Thus, in (3.2) with (xA, xB) =
(

1
3 , 0

)
,

e±2πixA , e±2πi(xA−xB), and e±2πi(2xA−xB)

2Since we are mostly interested in the left kernel of submatrices of P over 1
mZ/Z, we are free to change

the sign of any column of P as we see fit. Here, for aesthetic reasons, we require that the top nonzero element
in each column of P be positive.

17

all coincide. It can also be verified that Q is the largest submatrix of P having
(

1
3 , 0

)
in its

left kernel. Hence, we have fully captured the manner (in the sense of Proposition 3.2.1) by
which the eigenvalues of t

(
1
3 , 0

)
repeat. We conclude that{

1, e±2πixA

}
is the irredundant list of eigenvalues of t

(
1
3 , 0

)
. Thus, t

(
1
3 , 0

)
has three distinct eigenvalues.

Our next step is to generalize the idea used in Example 3.2.3 to a method for determining
the number of distinct eigenvalues of t(xA, xB) based on the interaction between (xA, xB) and
P . For convenience, we will treat

(
1
m
Z/Z

)2
as the left kernel of the unique 2× 0 submatrix

of P .
Let S be a 2 × k submatrix of P , where 0 ≤ k ≤ 9, and suppose that (xA, xB) ∈(

1
m
Z/Z

)2
is in the left kernel of S. If (xA, xB) is not in the left kernel of any other submatrix

of P properly containing S, then S completely characterizes the manner (in the sense of
Proposition 3.2.1) by which the eigenvalues of t(xA, xB) repeat. In this case, we define an
equivalence relation ≡S on the set

H =
{

0, 1
2 , 1, 2, 3

}
by the rules:

1. i ≡S j if vi ± vj is (up to a sign) a column vector of S;

2. i ≡S 0 if vi is (up to a sign) a column vector of S; and

3. i ≡S 1
2 if 2vi is (up to a sign) a column vector of S but vi is not.

The number of distinct eigenvalues of t(xA, xB) can then be expressed in terms of the number
of equivalence classes of the set under ≡S.

Proposition 3.2.4. Let S be a 2× k submatrix of P . Suppose that there exists (xA, xB) ∈(
1
m
Z/Z

)2
which is in the left kernel of S but not the left kernel of any other submatrix of P

properly containing S. Then, the number of distinct eigenvalues of t(xA, xB) is2 |H/ ≡S| − 3 if
∣∣∣[1

2

]∣∣∣ = 1

2 |H/ ≡S| − 2 else
. (3.3)

We strengthen Proposition 3.2.4 as follows.

Definition 3.2.5. Let S be the set of 2× k submatrices of P , where 0 ≤ k ≤ 9. We define
a partial order � on S by S1 � S2 if and only if S2 is a submatrix of S1.

Remark 3.2.6. By viewing each S ∈ S as a set of conditions imposed on the pairs in
(

1
m
Z/Z

)2
,

by which (xA, xB) meets the conditions if and only if (xA, xB) is in the left kernel of S, the
partial order � can be interpreted as “being more restrictive than.”

18

Proposition 3.2.7. For all (xA, xB) ∈
(

1
m
Z/Z

)2
, there exists a unique minimal element

S ∈ S having (xA, xB) in its left kernel. In particular, t(xA, xB) has the number of distinct
eigenvalues given by Equation (3.3).

Remark 3.2.8. Since the definition of the equivalence relation ≡S on H does not rely on
whether S meets the requirement of Proposition 3.2.4 as such, it makes sense to extend it
to all S ∈ S. Then, Equation (3.3) defines a function s : S → N given by

s(S) =

2 |H/ ≡S| − 3 if
∣∣∣[1

2

]∣∣∣ = 1

2 |H/ ≡S| − 2 else
.

Thus, Proposition 3.2.7 states the following: given (xA, xB) ∈
(

1
m
Z/Z

)2
, let S ∈ S be

the minimal element having (xA, xB) in its left kernel; then, t(xA, xB) has s(S) distinct
eigenvalues.

Example 3.2.9. Consider the matrix Q in Example 3.2.3. The equivalence classes in H
under the equivalence relation ≡Q are

{0} ,
{1

2

}
, {1, 2, 3} ,

so s(Q) = 2 · 3− 3 = 3. On the other hand, as we have seen in Example 3.2.3, when m = 3,(
1
3 , 0

)
∈
(

1
m
Z/Z

)2
is in the left kernel of Q but not that of any other submatrix of P properly

containing Q, and t
(

1
3 , 0

)
has three distinct eigenvalues.

3.2.2 Determining when t(xA, xB) is fixed by some w ∈ W
In relation to Equation (3.1), we have obtained a characterization of when (xA, xB) ∈(

1
m
Z/Z

)2
is such that t(xA, xB) has s distinct eigenvalues. To reiterate, this occurs if and

only if the minimal element S ∈ S associated to (xA, xB) satisfies s(S) = s. It remains
to determine the number of such pairs that give rise to fixed points under the action of an
element of W .

Here, we establish a correspondence between W and a certain subset of S, whereby
t(xA, xB) is fixed by some w ∈ W if and only if (xA, xB) lies in the left kernel of the element
in S corresponding to w. Recall that, ignoring the common factor of 2πi, the exponents of
the first three diagonal entries of t(xA, xB) are

(P1, P2, P3).

Let σ be the signed permutation on {1, 2, 3} that is associated to w by Proposition 3.1.1.
For i = 1, 2, 3, we define

σ(Pi) =

Pσ(i) σ(i) > 0
−P−σ(i) else

.

Thus, the exponents of the first three diagonal entries of w ·t(xA, xB) are, once again ignoring
the common factor of 2πi,

(σ(P1), σ(P2), σ(P3)).

19

Now, we consider when t(xA, xB) and w · t(xA, xB) agree in their ith diagonal entries, for
each i = 1, 2:

1. if σ(i) = i, then this happens no matter what;

2. if σ(i) = −i, then this happens if and only if 2Pi = 0, or (xA, xB) is in the left kernel
of 2vi;

3. if σ(i) = ±j, where j ∈ {1, 2, 3} and j 6= i, then this happens if and only if Pi∓Pj = 0,
or (xA, xB) is in the left kernel of vi ∓ vj.

By stacking together the distinct vectors obtained for each i = 1, 2, we obtain a matrix Sw
(possibly of size 2× 0) in S with the following property.

Proposition 3.2.10. Let w ∈ W and Sw ∈ S be defined as above. Then, t(xA, xB) is fixed
by w if and only if (xA, xB) is in the left kernel of Sw.

Remark 3.2.11. The matrices Sw, where w ∈ W is a conjugacy class representative of our
choice, have almost been computed in Table 3.2 and used in Example 3.1.2. The only
modification we have made here is that we are excluding any column of zeros or repeated
columns that may arise from comparing t(xA, xB) and w · t(xA, xB) in their first two diagonal
entries. See Table 3.3.

|c| wc ∈ c Swc

1 I · T ∅

3 nA(1) · T
[

2
−1

]

3 nB(1) · T
[

3
−2

]

2 nB(1)nA(1) · T
[

2 1
−1 0

]

2 (nB(1)nA(1))2 · T
[

3 0
−1 1

]

1 (nB(1)nA(1))3 · T
[
2 2
0 −2

]

Table 3.3: The matrices Swc , where wc ∈ c ⊆ W is a conjugacy class representative of our
choice, which we will use to detect when t(xA, xB) is fixed by each wc.

3.2.3 Counting elements in E(T,m, s) fixed by some w ∈ W
Equipped with the means to detect when t(xA, xB) has s distinct eigenvalues or is fixed by
some w ∈ W , we are ready to study the number of fixed points in E(T,m, s) under the
action of each w ∈ W . The approach that we take involves repeated exploitations of the
partial order � on S.

20

For each S ∈ S, let

Gm(S) =
{

(xA, xB) ∈
(1
m
Z/Z

)2
: (xA, xB)S = 0t

}
, and

Fm(S) =
{

(xA, xB) ∈
(1
m
Z/Z

)2
: (xA, xB)S = 0t, (xA, xB)T 6= 0t for all T ≺ S

}
,

and define, accordingly,

gm(S) = |Gm(S)| , and fm(S) = |Fm(S)| .

It follows from Proposition 3.2.7 that we have the partition

E(T,m, s) =
⋃

s(S)=s
{t(xA, xB) : (xA, xB) ∈ Fm(S)} . (3.4)

As we shall see, if Fm(S) 6= ∅, then each w ∈ W fixes either all or none of the t(xA, xB)
for (xA, xB) ∈ Fm(S). Hence, to determine the number of fixed points in E(T,m, s) under
the action of each w ∈ W , it makes practical sense for us to compute fm(S) in the event
that Fm(S) 6= ∅. We introduce a necessary condition for S ∈ S to satisfy Fm(S) 6= ∅.
Proposition 3.2.12. Let S ∈ S. If there exists a column vector v of P that is in Λ(S) but
is not a column vector of S, then fm(S) = 0.
Proof. Suppose that such a v exists. Let S ′ be the smallest submatrix of P containing both
S and v. Since v ∈ Λ(S), v is a Z-linear combination of the column vectors of S, and so the
left kernels of S and S ′ over 1

m
Z/Z coincide. Moreover, S ′ ≺ S. It follows from the definition

that Fm(S) = ∅, and so fm(S) = 0.

The contrapositive of Proposition 3.2.12 states that if Fm(S) 6= ∅, then every column
vector of P that is in Λ(S) is a column vector of S. Let M denote the subset of S that
consists of such matrices in S that satisfy the conclusion of the contrapositive statement.
Note thatM comes with a partially ordered structure that is inherited from S.

Observe that, for all S ∈ S,

gm(S) =
∑
T�S

fm(T) =
∑
T�S
T∈M

fm(T).

By restricting our attention to matrices in ∈M, the above identity reduces to

gm(S) =
∑
T�S

fm(T), for S, T ∈M.

Then, it follows from Theorem 2.2.8 that

fm(S) =
∑
T�S

µM(T, S)gm(T). (3.5)

With respect to computing fm(S), it remains to determine gm(T) for each T � S with
T ∈ M. However, by definition, gm(T) is the size of the left kernel of T over 1

m
Z/Z, and

so it can be directly computed using Corollary 2.3.9. Thus, in conjunction with Corollary
2.3.9, Equation (3.5) provides us with a practical method for computing fm(S).

Now, we address the following claim, to which we have briefly alluded earlier.

21

Proposition 3.2.13. If Fm(S) 6= ∅, then each w ∈ W fixes either all or none of the t(xA, xB)
for (xA, xB) ∈ Fm(S). In particular, w fixes all such elements if and only if S � Sw.

Proof. Suppose that Fm(S) 6= ∅, and fix w ∈ W . Suppose that for some (xA, xB) ∈ Fm(S),
t(xA, xB) is fixed by w. Then, by Proposition 3.2.10, (xA, xB) is in the left kernel of Sw ∈ S.
However, S is the unique minimal element of S having (xA, xB) in its left kernel, so S � Sw.
Hence, the left kernel of S is contained inside that of Sw. By Proposition 3.2.10, this implies
that w fixes all of the t(xA, xB), where (xA, xB) ∈ Fm(S).

In consideration of Equation (3.4), the number of fixed points of E(T,m, s) under the
action of some w ∈ W is the sum of the number of elements in each subset on the right-hand
side that are fixed by w. In view of Proposition 3.2.13, we have

|Fix(w)| =
∑
S∈M
s(S)=s
S�Sw

fm(S). (3.6)

3.2.4 Computing N(G2,m, s)
Combining Equations (3.1) and (3.6), we obtain an expression for N(G2,m, s):

N(G2,m, s) = 1
|W |

∑
c∈Cl(W)

|c|
∑
S∈M
s(S)=s
S�Swc

fm(S), (3.7)

where fm(S) can be computed using Equation (3.5).
We introduce a straightforward optimization to using Equation (3.7), which is based on

the following fact (see Chapter 5 for more details).
Fact 3.2.14. For all S ∈ S, there exists a 2 × k submatrix S ′, where 0 ≤ k ≤ 2, such that
Λ(S) = Λ(S ′).

Let col(P) denote the set of column vectors of P . Given any S ∈ M, the set of column
vectors of S coincides with Λ(S) ∩ col(P) by definition. Conversely, given any S ′ ∈ S, the
submatrix S of P with the set of column vectors Λ(S ′)∩ col(P) is necessarily inM. Hence,
M consists of the matrices in S having the set of column vectors Λ(S) ∩ col(P) for some
S ∈ S. With Fact 3.2.14, we can deduce the following.

Proposition 3.2.15. M consists of the matrices in S having the set of column vectors
Λ(S) ∩ col(P), where S ∈ S has no more than two columns.

It turns out that there are 19 matrices inM, which we list in Table 3.4 along with their s-
and gm-values. With this information, we are completely prepared to compute N(G2,m, s).
As an example, consider N(G2,m, 2).

Example 3.2.16 (computing N(G2,m, 2)). For convenience, let

S1 =
[
2 2 4
0 −2 −2

]
,

22

S ∈M s(S) gm(S)
∅ 7 m2[

2
0

]
,
[

2
−2

]
,
[

4
−2

]
6

2m m ≡ 0 mod 2
m else[

3
−2

]
,
[

3
−1

]
,
[
0
1

]
5 m

[
0 4
1 −2

]
,
[

3 2
−2 0

]
,
[

3 2
−1 −2

]
4


4 m ≡ 0 mod 4
1 m ≡ 1, 3 mod 4
2 else[

1 2
0 0

]
,
[

1 2
−1 −2

]
,
[

2 4
−1 −2

]
3 m[

3 3 0
−2 −1 1

]
3

3 m ≡ 0 mod 3
1 else[

2 2 4
0 −2 −2

]
2

4 m ≡ 0 mod 2
1 else[

2 0 2 2 4
−1 1 0 −2 −2

]
,[

1 3 2 2 4
0 −2 0 −2 −2

]
,[

1 3 2 2 4
−1 −1 0 −2 −2

] 2

2 m ≡ 0 mod 2
1 else

[
1 1 2 2 0 3 2 3 4
0 −1 −1 0 1 −1 −2 −2 −2

]
1 1

Table 3.4: The 19 matrices inM.

S2 =
[

2 0 2 2 4
−1 1 0 −2 −2

]
,

S3 =
[
1 3 2 2 4
0 −2 0 −2 −2

]
,

S4 =
[

1 3 2 2 4
−1 −1 0 −2 −2

]
, and

S5 =
[
1 1 2 2 0 3 2 3 4
0 −1 −1 0 1 −1 −2 −2 −2

]
= P.

We begin by computing the Möbius coefficients using Equation (2.1):

µ(S5, S4) = µ(S5, S3) = µ(S5, S2) = µ(S4, S1) = µ(S3, S1) = µ(S2, S1) = −1, and
µ(S5, S1) = − [µ(S5, S5) + µ(S5, S4) + µ(S5, S3) + µ(S5, S2)] = 2.

23

Then, we can compute fm(Si) for i = 1, . . . , 4 using Equation (3.5):

fm(S1) =
5∑
i=1

µ(Si, S1)gm(Si) =

4 m ≡ 0 mod 2
1 else

− 3 ·

2 m ≡ 0 mod 2
1 else

+ 2 = 0, and

fm(S2) = µ(S5, S2)gm(S5) + µ(S2, S2)gm(S2) =

1 m ≡ 0 mod 2
0 else

= fm(S3) = fm(S4).

Since fm(S1) = 0, it can be neglected for the purpose of applying Equation (3.7). To check
for fixed points, we observe that, by referring to Table 3.3,

1. S2, S3, S4 � SI·T , S(nB(1)nA(1))3·T ,

2. S2 � SnA(1)·T , and

3. S3 � SnB(1)·T .

Hence,

N(G2,m, 2) = 1
12 [(1 + 1) · (fm(S2) + fm(S3) + fm(S4)) + 3 · fm(S2) + 3 · fm(S3)]

=

1 m ≡ 0 mod 2
0 else

.

Repeating this for the other possible values of s, we obtain the following theorem.

Theorem 3.2.17. For any positive integer m and 1 ≤ s ≤ 7,

N(G2,m, s) s

m mod 12 1 2 3 4 5 6 7

0 1 1 m/2 1 (m− 6)/2 (m− 4)/4 m(m− 9)/12 + 2

1, 5, 7, 11 1 0 (m− 1)/2 0 (m− 1)/2 0 (m− 1)(m− 5)/12

2, 10 1 1 (m− 2)/2 0 (m− 2)/2 (m− 2)/4 (m− 2)(m− 7)/12

3, 9 1 0 (m+ 1)/2 0 (m− 3)/2 0 (m− 3)2/12

4, 8 1 1 (m− 2)/2 1 (m− 4)/2 (m− 4)/4 (m− 4)(m− 5)/12

6 1 1 m/2 0 (m− 4)/2 (m− 2)/4 (m− 3)(m− 6)/12

3.3 A Brief Comparison with Sp(n)
Before delving into the description of the general algorithm, we take a brief moment to
discuss the exact reason why the simple combinatorial approach taken by [5, 6] to study the

24

quantities N(G,m) and N(G,m, s) for the compact classical groups is not directly applicable
to the compact exceptional groups.

We use Sp(n) = Sp(n;C)∩U(2n) as an instructive example. Since Sp(n) is compact and
connected, the discussion in Section 2.1 transfers without difficult. It is known that, under
a suitable basis, Sp(n) has a maximal torus T consisting of elements of the form

t(x1, . . . , xn) =



e2πix1

. . .
e2πixn

e−2πixn

. . .
e−2πix1


,

where x1, . . . , xn ∈ R. Further, the Weyl group of Sp(n) is isomorphic to the signed permu-
tation group on {1, . . . , n}. With respect to T , the Weyl group induces all possible signed
permutations of the exponents of the first n diagonal entries of t(x1, . . . , xn), whereby its
last n diagonal entries are permuted accordingly. More concretely, if we write

t(x) = t(x1, . . . , xn),

where

x =


x1
...
xn

 ,
then for any n× n signed permutation matrix A, t(Ax) is conjugate to t(x) in Sp(n). Thus,
we conclude that every conjugacy class in E(Sp(n),m) has a unique representative of the
form 

e2πix1

. . .
e2πixn

e−2πixn

. . .
e−2πix1


,

which satisfies that each xi ∈ J =
{

0, 1
m
, . . . , 1

m

⌊
m
2

⌋}
, and x1 ≤ · · · ≤ xn. Hence, the

conjugacy classes in E(Sp(n),m) are in one-to-one correspondence with the non-decreasing
sequences of length n

(x1, . . . , xn)
having entries in J . The combinatorial properties of such sequences are quite well-understood,
and there are a number of elementary methods to count these sequences. Thus, we have
established that the problem of computing N(Sp(n),m) is equivalent to a well-studied enu-
meration problem in combinatorics.

In regard to N(Sp(n),m, s), [5, 6] have defined this quantity as the number of conju-
gacy classes in E(Sp(n),m) whose elements have s distinct conjugate pairs of eigenvalues.

25

In view of the discussion in the previous paragraph, it suffices to keep track of the exact
number of elements of J that appear in a particular sequence (x1, . . . , xn). Considering that
t(x1, . . . , xn) has the list of eigenvalues{

e±2πix1 , . . . , e±2πixn

}
,

it has s distinct conjugate pairs of eigenvalues if and only if exactly s distinct elements of
J appear in the sequence (x1, . . . , xn). The enumeration problem of these sequences is also
relatively straightforward to handle.

With respect to the other three classes of compact classical groups, their Weyl groups
are generally large enough to contain the symmetric group, which allows one to simplify the
computation of N(G,m) for these groups considerably. Oftentimes, one can reduce it to the
enumeration of certain non-decreasing sequences with entries in a similar set to J , which in
turn facilitates the computation of N(G,m, s). Even when this reduction proves to be too
naïve, one can use the Weyl group to introduce a convenient canonical form in T and work
with representatives in this canonical form, which generally simplifies the problem to a great
extent.

It is now quite clear as to why the simple combinatorial methods applicable to the
compact classical groups cannot be directly extended to the compact exceptional groups,
which include G2. For a compact exceptional group, its Weyl group is generally too small
to contain the full (signed) permutation group that would make possible the introduction of
a canonical form to its maximal torus. Furthermore, the parametrized entries in a typical
element of its maximal torus are generally too coupled for us to keep track of the number of
distinct eigenvalues that appear in a realistic manner via as simple a method as for Sp(n).

26

Chapter 4

The General Method

In this chapter, we summarize and generalize the method used in Chapter 3 to all compact
exceptional groups. Since almost everything transfer with only slight modification to the
general case, we will be somewhat cavalier about motivating or justifying any definition,
proposition, or result that we present here.

Let G be a compact exceptional group with rank r. Using Table 2.1, we can obtain the
matrix representations of a maximal torus T in G and the generators of its corresponding
Weyl group W . Let

t(x) = t(xδ1 , . . . , xδr)

denote the typical element of T , where (δ1, . . . , δr) are the fundamental roots of gC listed in
Table 2.1. In a suitable basis, t(x) takes the form

1. diag(exp(2πiP1), . . . , exp(2πiPt), 1, 1, exp(−2πiPϕ(t)), . . . , exp(−2πiPϕ(1))), where ϕ ∈
St, if G = G2, F4, for which t = 3, 12, respectively;

2. diag(exp(2πiP1), . . . , exp(2πiPt)), where t = 27, if G = E6;

3. diag(exp(2πiP1), . . . , exp(2πiPt), exp(−2πiPϕ(t)), . . . , exp(−2πiPϕ(1))), where t = 28
and ϕ ∈ St, if G = E7; or

4. diag(exp(2πiP1), . . . , exp(2πiPt), 1, . . . , 1︸ ︷︷ ︸
8

, exp(−2πiPϕ(t)), . . . , exp(−2πiPϕ(1))), where t =

120 and ϕ ∈ St, if G = E8.

Here, for each G, P1, . . . , Pt are distinct, nonzero, Z-linear combinations of xδ1 , . . . , xδr . A
generalization of Remark 3.0.1 remains true.
Remark 4.0.1. For a compact exceptional group G with rank r, the element t(x) ∈ T has
order dividing m if and only if x ∈

(
1
m
Z
)r
. Moreover, t(x) = t(x′) if and only if x−x′ ∈ Zr.

Hence, we shall require that x ∈
(

1
m
Z/Z

)r
.

To each Pi, we associate a vector vi ∈ Zr that is the coefficient vector of Pi with respect
to the ordered basis (xδ1 , . . . , xδr) (cf. the discussion following Proposition 3.2.1).

27

4.1 The Computation of N(G,m)
As before, N(G,m) is the number of orbits under the action of W of the set{

t(x) : x ∈
(1
m
Z/Z

)r}
by the discussion preceding Theorem 2.2.4. In view of Theorem 2.2.6, it suffices to determine
|Fix(wc)|, the number of fixed points of the above set under the action of a representative
wc ∈ c ⊆ W , for each conjugacy class c ∈ Cl(W).

We use the results of [1], which can be accessed in GAP 3 (cf. Section 3.1), to compute
a representative for each conjugacy class in W .
Remark 4.1.1. The matrix generators of W computed as per [8] rely on a different labeling
of the Dynkin diagram of gC than the conjugacy class representatives given by GAP 3. For
instance, for G2, [8] uses the labeling

B A

for its Dynkin diagram, whereas the labeling used by GAP 3 is

1 2 ,

which can be checked with the following command:
gap> PrintDiagram(ReflectionType(CartanMat("G",2)));
G2 1 >>> 2

Hence, the correspondence between the labelings of the fundamental roots of g2 in [8] and
GAP 3 is

A↔ 2, and B ↔ 1.

The upshot is that we must account for the different labelings of the fundamental roots used
by [8] and GAP 3 to ensure that we obtain correct results.

It turns out that an analogue of Proposition 3.1.1 still applies in the general case, which
provides a necessary and sufficient condition for t(x) to be fixed by some w ∈ W .

Proposition 4.1.2. Let w ∈ W . Acting on t(x) by w results in a signed permutation of the
exponents in its first t diagonal entries. Further, there exist r indices {i1, . . . , ir} ⊆ {1, . . . , t}
such that, for any w ∈ W , t(x) is fixed by w if and only if w · t(x) and t(x) agree in their
ijth diagonal entries for each j = 1, . . . , r.

Proof. Computationally verified.

The procedure for computing each |Fix(wc)| is then completely analogous to what we
have done in Example 3.1.2; see Algorithm 1.

28

Algorithm 1 An algorithm for computing the number of fixed points in E(T,m) under the
action of a conjugacy class representative wc.
Require: a conjugacy class representative wc
1: compute its matrix representation
2: compute wc · t(x) = wct(x)w−1

c

3: by equating the ijth entries of wc · t(x) and t(x) for each j = 1, . . . , r, write down a
system of linear equations in r variables: x1, . . . , xr

4: express the system in terms of the left kernel of an r × r coefficient matrix
5: compute the size of the left kernel using Corollary 2.3.9, which will be |Fix(wc)|
6: return |Fix(wc)|

With the size of each conjugacy class in W that is displayed under classes in GAP 3, we
apply Theorem 2.2.6 to compute

N(G,m) = 1
|W |

∑
c∈Cl(W)

|c| |Fix(wc)| .

Thus, we obtain the following theorems.
Theorem 4.1.3. For any positive integer m,

m mod 12 N(F4,m)

0 (m4 + 24m3 + 208m2 + 768m+ 1152)/1152

±1,±5 (m4 + 24m3 + 190m2 + 552m+ 385)/1152

±2 (m4 + 24m3 + 208m2 + 768m+ 880)/1152

±3 (m4 + 24m3 + 190m2 + 552m+ 513)/1152

±4 (m4 + 24m3 + 208m2 + 768m+ 1024)/1152

6 (m4 + 24m3 + 208m2 + 768m+ 1008)/1152

Theorem 4.1.4. For any positive integer m,

m mod 6 N(E6,m)

0 (m6 + 36m5 + 510m4 + 3600m3 + 14184m2 + 35424m+ 51840)/51840

±1 (m6 + 36m5 + 510m4 + 3600m3 + 13089m2 + 22284m+ 12320)/51840

±2 (m6 + 36m5 + 510m4 + 3600m3 + 13224m2 + 23904m+ 16640)/51840

3 (m6 + 36m5 + 510m4 + 3600m3 + 14049m2 + 33804m+ 38880)/51840

Theorem 4.1.5. For any positive integer m,

29

m mod 12 N(E7,m)

0 (m7 + 63m6 + 1617m5 + 22050m4 + 175224m3 + 830592m2 + 2239488m+
2903040)/2903040

±1,±5 (m7 + 63m6 + 1617m5 + 21735m4 + 162939m3 + 663957m2 + 1286963m+
765765)/2903040

±2 (m7 + 63m6 + 1617m5 + 22050m4 + 175224m3 + 830592m2 + 2176208m+
2126880)/2903040

±3 (m7 + 63m6 + 1617m5 + 21735m4 + 162939m3 + 663957m2 + 1304883m+
927045)/2903040

±4 (m7 + 63m6 + 1617m5 + 22050m4 + 175224m3 + 830592m2 + 2221568m+
2580480)/2903040

6 (m7 + 63m6 + 1617m5 + 22050m4 + 175224m3 + 830592m2 + 2194128m+
2449440)/2903040

Theorem 4.1.6. For any positive integer m,

30

m mod 60 N(E8,m)

0 (m8 + 120m7 + 6020m6 + 163800m5 + 2626008m4 + 25260480m3 +
142577280m2 + 445824000m+ 696729600)/696729600

±1,±7,±11,±13,
±17,±19,±23,±29

(m8 + 120m7 + 6020m6 + 163800m5 + 2616558m4 + 24693480m3 +
130085780m2 + 323507400m+ 215656441)/696729600

±2,±14,±22,±26 (m8 + 120m7 + 6020m6 + 163800m5 + 2626008m4 + 25260480m3 +
141860480m2 + 418876800m+ 435250816)/696729600

±3,±9,±21,±27 (m8 + 120m7 + 6020m6 + 163800m5 + 2616558m4 + 24693480m3 +
130802580m2 + 345011400m+ 348264441)/696729600

±4,±8,±16,±28 (m8 + 120m7 + 6020m6 + 163800m5 + 2626008m4 + 25260480m3 +
141860480m2 + 424320000m+ 516898816)/696729600

±5,±25 (m8 + 120m7 + 6020m6 + 163800m5 + 2616558m4 + 24693480m3 +
130085780m2 + 323507400m+ 243525625)/696729600

±6,±18 (m8 + 120m7 + 6020m6 + 163800m5 + 2626008m4 + 25260480m3 +
142577280m2 + 440380800m+ 587212416)/696729600

±10 (m8 + 120m7 + 6020m6 + 163800m5 + 2626008m4 + 25260480m3 +
141860480m2 + 418876800m+ 463120000)/696729600

±12,±24 (m8 + 120m7 + 6020m6 + 163800m5 + 2626008m4 + 25260480m3 +
142577280m2 + 445824000m+ 668860416)/696729600

±15 (m8 + 120m7 + 6020m6 + 163800m5 + 2616558m4 + 24693480m3 +
130802580m2 + 345011400m+ 376133625)/696729600

±20 (m8 + 120m7 + 6020m6 + 163800m5 + 2626008m4 + 25260480m3 +
141860480m2 + 424320000m+ 544768000)/696729600

30 (m8 + 120m7 + 6020m6 + 163800m5 + 2626008m4 + 25260480m3 +
142577280m2 + 440380800m+ 615081600)/696729600

4.2 The Computation of N(G,m, s)
We follow essentially the same four-step approach as in Section 3.2 to tackle this refined
enumeration problem. The main difference here is that, due to the variation in the form of
t(x) among the compact exceptional groups, such objects as the equivalence relation ≡S and
the induced s-function may assume a slightly different form than before.

In view of Theorem 2.2.6 and the discussion preceding Theorem 2.2.4, we need to deter-
mine the number of fixed points of the set{

t(x) : x ∈
(1
m
Z/Z

)r
, t(x) has s distinct eigenvalues

}

31

under the action of each conjugacy class representative wc ∈ c ∈ Cl(W). Before we get
started, we note that the (possibly redundant) set of eigenvalues of t(x) is{

1, e±2πiP1 , . . . , e±2πiPt

}
, if G = G2, F4, E8;{

e2πiP1 , . . . , e2πiPt

}
, if G = E6; or{

e±2πiP1 , . . . , e±2πiPt

}
, if G = E7.

(4.1)

4.2.1 Determining the number of distinct eigenvalues of t(x)
First, we develop a systematic method for determining the number of distinct eigenvalues of
t(x) for all x ∈

(
1
m
Z/Z

)r
. We begin by making a similar observation as in Proposition 3.2.1

regarding when repeats can occur in (4.1).

Proposition 4.2.1. An r-tuple x ∈
(

1
m
Z/Z

)r
leads to one or more repeats in (4.1) if and

only if

1. Pi = ±Pj for some i 6= j,

2. Pi = 0 for some i, or

3. 2Pi = 0 but Pi 6= 0 for some i,

for G = G2, F4, E7, E8; or

1. Pi = Pj for some i 6= j,

for G = E6.

To allow this to be translated into the language of matrices and kernels, we form a matrix
P by stacking together the distinct vectors (up to a sign) in the list

{v1 ± v2,v1 ± v3, . . . ,vt−1 ± vt,v1, . . . ,vt, 2v1, . . . , 2vt} .

The conditions in Proposition 4.2.1 can then be rephrased concisely as follows.1

Proposition 4.2.2. An r-tuple x ∈
(

1
m
Z/Z

)r
leads to one or more repeats in (4.1) if and

only if, for G = G2, F4, E7, E8, x is in the left kernel of some r × k submatrix of P , where
k ≥ 1, or, for G = E6, x is in the left kernel of some r × k submatrix of P , where k ≥ 1,
that contains a column vector of the form vi − vj, for some i 6= j.

We adopt a completely analogous strategy as before to determine the number of distinct
eigenvalues of t(x) using P . Once again, for convenience, we treat

(
1
m
Z/Z

)r
as the left kernel

of the unique r × 0 submatrix of P .
1While the repeats of eigenvalues for t(x) ∈ E6 can be accounted for with only the vectors in the set

{v1 − v2, v1 − v3, . . . , vt−1 − vt}, doing so will not afford sufficient information for us to determine whether
t(x) is fixed by some w ∈W .

32

Definition 4.2.3. Let S be the set of all (possibly empty) submatrices of P with r rows.
Define on S a partial order � by S1 � S2 if and only if S2 is a submatrix of S1. Given S ∈ S,
define on

H =
{

0, 1
2 , 1, . . . , t

}
an equivalence relation ≡S by the rules:

1. i ≡S j if vi ± vj is (up to a sign) a column vector of S,

2. i ≡S 0 if vi is (up to a sign) a column vector of S, and

3. i ≡S 1
2 if 2vi is (up to a sign) a column vector of S but vi is not,

for G = G2, F4, E7, E8; and define on

H = {1, . . . , t}

an equivalence relation ≡S by the rule:

1. i ≡S j if vi − vj is (up to a sign) a column vector of S,

for G = E6. Finally, define a function s : S → N by

s(S) =

2 |H/ ≡S| − 3 if
∣∣∣[1

2

]∣∣∣ = 1

2 |H/ ≡S| − 2 else
,

for G = G2, F4, E8;
s(S) = |H/ ≡S| ,

for G = E6; and

s(S) =


2 |H/ ≡S| − 4 if |[0]| = 1 and

∣∣∣[1
2

]∣∣∣ = 1

2 |H/ ≡S| − 2 if |[0]| > 1 and
∣∣∣[1

2

]∣∣∣ > 1

2 |H/ ≡S| − 3 else

,

for G = E7.

With the above definitions, we can characterize when x ∈
(

1
m
Z/Z

)r
is such that t(x) has

s distinct eigenvalues in the same manner as in Propositions 3.2.4 and 3.2.7.

Proposition 4.2.4. Let S ∈ S. If x ∈
(

1
m
Z/Z

)r
is in the left kernel of S but not that of

any T ∈ S with T ≺ S, then t(x) has s(S) distinct eigenvalues.

Proposition 4.2.5. For all x ∈
(

1
m
Z/Z

)r
, there exists a unique minimal element S ∈ S

having x in its left kernel. In particular, t(x) has s(S) distinct eigenvalues.

33

4.2.2 Determining when t(x) is fixed by some w ∈ W
Now that we have a method of computing the number of distinct eigenvalues of any t(x),
we proceed to derive a necessary and sufficient condition for any t(x) to be fixed by some
w ∈ W , which will be completely analogous to Proposition 3.2.10.

Definition 4.2.6. Given w ∈ W , let σ be the signed permutation on [t] = {1, . . . , t}
associated to w by Proposition 4.1.2. We associate to w the (possibly empty) matrix Sw ∈ S,
obtained by stacking together the distinct vectors (up to a sign) found via the following
procedure, for i = i1, . . . , ir:

1. if σ(i) = i, do nothing;

2. if σ(i) = −i, stack 2vi;

3. if σ(i) = ±j, where j ∈ [t] and j 6= i, stack vi ∓ vj.

Through Proposition 4.1.2, we obtain the desired necessary and sufficient condition.

Proposition 4.2.7. Let w ∈ W . Then, t(x) is fixed by w if and only if x is in the left kernel
of Sw.

4.2.3 Counting elements in E(T,m, s) fixed by some w ∈ W
The penultimate step is to compute the number of fixed points in E(T,m, s) under the action
of each w ∈ W .

Similar to before, for each S ∈ S, let

Gm(S) =
{

x ∈
(1
m
Z/Z

)r
: xS = 0t

}
, and

Fm(S) =
{

x ∈
(1
m
Z/Z

)r
: xS = 0t, xT 6= 0t for all T ≺ S

}
,

and define, accordingly,

gm(S) = |Gm(S)| , and fm(S) = |Fm(S)| .

It follows from Proposition 4.2.5 that we have the partition

E(T,m, s) =
⋃

s(S)=s
{t(x) : x ∈ Fm(S)} . (4.2)

We are particularly interested in computing the quantity fm(S) for the same reason as
before. The following analogue of Proposition 3.2.12 tells us that we only need to do this for
each S in a particular subset of S.

Proposition 4.2.8. Let S ∈ S. If there exists a column vector v of P that is in Λ(S) but
is not a column vector of S, then fm(S) = 0.

We are now ready to define this subset of S.

34

Definition 4.2.9. LetM ⊆ S consist of the matrices S such that every column vector of
P that is in Λ(S) is a column vector of S. We impose onM the partially ordered structure
that it inherits from S.

To compute fm(S) for some S ∈ M, observe that, by restricting to matrices in M, we
have the identity

gm(S) =
∑
T�S

fm(T).

By Theorem 2.2.8, we get
fm(S) =

∑
T�S

µM(T, S)gm(T), (4.3)

where, once again, each gm(T) can be computed straightforwardly using Corollary 2.3.9. To
see how the determination of fm(S) for each S ∈ M serves our objective, we note that the
following analogue of Proposition 3.2.13 still applies in the general setting.

Proposition 4.2.10. If Fm(S) 6= ∅, then each w ∈ W fixes either all or none of the t(x)
for x ∈ Fm(S). In particular, w fixes all such elements if and only if S � Sw.

The following formula is a consequence of Equation (4.2) and Proposition 4.2.10:

|Fix(w)| =
∑
S∈M
s(S)=s
S�Sw

fm(S), (4.4)

where the set of fixed points is with respect to{
t(x) : x ∈

(1
m
Z/Z

)r
, t(x) has s distinct eigenvalues

}
.

4.2.4 Computing N(G,m, s)
Combining Theorem 2.2.6 and Equation (4.4), we obtain our final expression for N(G,m, s):

N(G,m, s) = 1
|W |

∑
c∈Cl(W)

|c|
∑
S∈M
s(S)=s
S�Swc

fm(S). (4.5)

The main hurdle with applying Equation (4.5) originates from the fact that it is not
entirely clear whether or not there exists an efficient method to generate the elements ofM.
Nonetheless, by the same reasoning that leads to Proposition 3.2.15, we have the following
characterization of the elements ofM.

Proposition 4.2.11. M consists of the matrices in S having the set of column vectors
Λ(S) ∩ col(P), where S ∈ S.

An analogue of Fact 3.2.14 applies in the case that G = F4, which can also be computa-
tionally verified; see Chapter 5 for more details.

35

Fact 4.2.12. If G = F4, then for all S ∈ S, there exists a 4×k submatrix S ′, where 0 ≤ k ≤ 4,
such that Λ(S) = Λ(S ′).

Hence, we may use Proposition 4.2.11 to generate the matrices inM for F4 by restricting
to such matrices S ∈ S that have no more than four columns. Thus, we find a total of 22075
matrices inM. The full table for N(F4,m, s) can then be determined using Equation (4.5)
with the assistance of a computer, which turns out to have dimension 12252240 × 25. We
record its first 24 rows and 8 columns in Table 4.1; a copy of the Sage program that we have
used to generate these formulas can be found in the appendix.

36

11
52
·N

(F
4,
m
,s

)
s

m
m

od
12

25
22

40
1

2
3

4
5

6
7

8
0

11
52

23
04

57
6m

+
11

52
46

08
11

52
m
−

34
56

86
4m

+
23

04
96
m

2
+

28
8m
−

69
12

86
4m

+
11

52
1

11
52

0
57

6m
−

57
6

0
11

52
m
−

11
52

0
96
m

2
+

57
6m
−

67
2

0
2

11
52

23
04

57
6m
−

11
52

0
11

52
m
−

23
04

86
4m
−

17
28

96
m

2
+

28
8m
−

96
0

86
4m
−

17
28

3
11

52
0

57
6m

+
17

28
0

11
52
m
−

34
56

0
96
m

2
+

57
6m
−

25
92

0
4

11
52

23
04

57
6m
−

11
52

46
08

11
52
m
−

46
08

86
4m
−

34
56

96
m

2
+

28
8m
−

26
88

86
4m
−

34
56

5
11

52
0

57
6m
−

57
6

0
11

52
m

+
23

04
0

96
m

2
+

57
6m
−

52
80

0
6

11
52

23
04

57
6m

+
11

52
0

11
52
m
−

46
08

86
4m

+
40

32
96
m

2
+

28
8m
−

51
84

86
4m
−

51
84

7
11

52
0

57
6m
−

57
6

0
11

52
m
−

11
52

0
96
m

2
+

57
6m

+
39

36
0

8
11

52
23

04
57

6m
−

11
52

46
08

11
52
m
−

46
08

86
4m
−

34
56

96
m

2
+

28
8m
−

26
88

86
4m

+
46

08
9

11
52

0
57

6m
+

17
28

0
11

52
m
−

34
56

0
96
m

2
+

57
6m
−

25
92

0
10

11
52

23
04

57
6m
−

11
52

0
11

52
m

+
11

52
86

4m
−

17
28

96
m

2
+

28
8m
−

55
68

86
4m
−

17
28

11
11

52
0

57
6m
−

57
6

0
11

52
m
−

11
52

0
96
m

2
+

57
6m
−

67
2

0
12

11
52

23
04

57
6m

+
11

52
46

08
11

52
m
−

69
12

86
4m

+
23

04
96
m

2
+

28
8m
−

69
12

86
4m
−

69
12

13
11

52
0

57
6m
−

57
6

0
11

52
m
−

11
52

0
96
m

2
+

57
6m
−

67
2

0
14

11
52

23
04

57
6m
−

11
52

0
11

52
m
−

23
04

86
4m
−

17
28

96
m

2
+

28
8m

+
36

48
86

4m
−

17
28

15
11

52
0

57
6m

+
17

28
0

11
52
m

0
96
m

2
+

57
6m
−

72
00

0
16

11
52

23
04

57
6m
−

11
52

46
08

11
52
m
−

46
08

86
4m
−

34
56

96
m

2
+

28
8m
−

26
88

86
4m

+
46

08
17

11
52

0
57

6m
−

57
6

0
11

52
m
−

11
52

0
96
m

2
+

57
6m
−

67
2

0
18

11
52

23
04

57
6m

+
11

52
0

11
52
m
−

46
08

86
4m

+
40

32
96
m

2
+

28
8m
−

51
84

86
4m
−

51
84

19
11

52
0

57
6m
−

57
6

0
11

52
m
−

11
52

0
96
m

2
+

57
6m
−

67
2

0
20

11
52

23
04

57
6m
−

11
52

46
08

11
52
m
−

11
52

86
4m
−

34
56

96
m

2
+

28
8m
−

72
96

86
4m
−

34
56

21
11

52
0

57
6m

+
17

28
0

11
52
m
−

34
56

0
96
m

2
+

57
6m

+
20

16
0

22
11

52
23

04
57

6m
−

11
52

0
11

52
m
−

23
04

86
4m
−

17
28

96
m

2
+

28
8m
−

96
0

86
4m
−

17
28

23
11

52
0

57
6m
−

57
6

0
11

52
m
−

11
52

0
96
m

2
+

57
6m
−

67
2

0

Ta
bl
e
4.
1:

T
he

fir
st

24
ro
w
s
an

d
8
co
lu
m
ns

of
th
e
fu
ll
ta
bl
e
of
N

(F
4,
m
,s

).

37

Chapter 5

Future Work

We have successfully computed N(G,m) for all compact exceptional groups via a unified,
combinatorial approach. Moreover, we have designed a general algorithm for computing
N(G,m, s), which we have applied to G2 and F4. As noted at the end of Subsection 4.2.4,
the main difficulty vis-à-vis the application of the algorithm is due to the lack of a unified,
efficient method to determine M. In this chapter, we discuss two potential approaches to
dealing with or circumventing this problem.

5.1 A Brute-Force Approach via HNFs
For our purposes, it might not be necessary to develop a clever method for generating the
matrices inM. Instead, inspired by the simplifications in Facts 3.2.14 and 4.2.12, we might
seek for the smallest positive integer p such that every lattice Λ(S), where S ∈ S, can be
generated by some matrix in S with no more than p columns. The method that we suggest
relies on the following easy proposition.

Proposition 5.1.1. Let P ∈ Mr×l(Z). If every lattice generated by a submatrix of P with r
rows and no more than p + 1 columns can be generated by a submatrix with r rows and no
more than p columns, then every lattice generated by a submatrix of P with r rows can be
generated by a submatrix with r rows and no more than p columns.

Recall from Proposition 2.3.5 that the Hermite normal form allows us to check whether
two matrices generate the same integer lattice. Hence, we can use the brute-force method
described in Algorithm 2 to find the minimum p to be used for generating all the matrices
inM.

38

Algorithm 2 A brute-force algorithm for determining the minimum integer p such that
every lattice generated by a submatrix of P with r rows can be generated by a submatrix of
P with r rows and no more than p columns.
Require: the matrix P
1: for p ≥ 1 do
2: compute the set Hp of distinct HNFs of the submatrices of P with r rows and no more

than p columns
3: compute the set Hp+1 of distinct HNFs of the submatrices of P with r rows and no

more than p+ 1 columns
4: if Hp = Hp+1 up to adding or removing columns of zeros then
5: return p
6: else
7: p = p+ 1
8: end if
9: end for

This brute-force approach has an obvious drawback. Namely, with larger compact ex-
ceptional groups, the size of the corresponding matrix P grows rapidly, which renders any
endeavor involving the inspection of all r×p submatrices of P computationally costly, if not
downright unrealistic.

5.2 A Subtle Approach via Root Vectors
Since the matrices in M are made up of the column vectors of P , which are generated by
the vectors vi, it makes sense for us to investigate the origin of these vectors.

Through a careful study of how [8] constructs the matrix representations of the compact
exceptional groups used herein, we obtain after some algebra the concrete description of the
vectors vi shown in Table 5.1. There, for each compact exceptional group in Column 1, the

E8 e8 A [α]∆
E7 e8

[
I7 0

]
A [α]∆

E6 e7
[
I6 0

]
A [α]∆

F4 e7


1 0 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0

A [α]∆

G2 d5

[
1 1 0 1 0
0 0 1 0 0

]
A [α]∆

Table 5.1: A concrete description of the vectors vi.

39

vectors vi may be found using the formula in Column 3, where A is the Cartan matrix of
the Lie algebra in Column 2, and the α ∈ X are given in [8] for G 6= E8 and are precisely
the root vectors of e8 for G = E8.

It is a curious fact that the set of vectors vi for G2 (resp. F4), of which there are 12
(resp. 24), may be transformed onto the set of vectors in the A2 (resp. D4) root system.
This trend breaks for E6, for which there is no root system with the same number of vectors,
and E7, for which A7 is the only root system with the correct number of vectors but there
does not exist a linear transformation mapping the vi onto the root vectors in A7. However,
in view of Table 5.1 and considering that the Cartan matrix for e8 is invertible over R, we
know that the set of vectors vi for E8 can indeed be transformed onto the vectors in the
E8 root system. This correspondence, or the lack thereof, between the vectors vi for the
compact exceptional groups and the vectors in certain root systems might suggest that the
simplifications in Facts 3.2.14 and 4.2.12 generalize to E8 but not to E6 or E7.

40

Appendix

We record below our Sage-based code for computing N(F4,m, s). At the time when we wrote
this program, we were referring to the matrices inM as the “maximal subsystems” and the
vectors vi as the “seed vectors.” The seed vectors used in the code can be transformed
into the vectors vi described in the thesis via a 4 × 4 unimodular matrix, so the results
produced by the code are indeed the table of N(F4,m, s) that we are seeking. Further, here,
the vectors vi are treated as row vectors as opposed to column vectors. The program takes
approximately 30 minutes to run on a personal laptop.

from sage.all import *
import itertools

class F4ms:
SEED_VECTOR = [vector(ZZ, [1, 0, 0, 0]), vector(ZZ, [0, 1, 0, 0]),

vector(ZZ, [0, 0, 1, 0]),
vector(ZZ, [0, 0, 0, 1]), vector(ZZ, [1, 0, 0, -1]),
vector(ZZ, [0, 1, 0, -1]),
vector(ZZ, [0, 0, 1, 1]), vector(ZZ, [0, -1, 1, 1]),
vector(ZZ, [1, 1, 0, -1]),
vector(ZZ, [-1, 0, 1, 1]), vector(ZZ, [1, 1, -1, -2]),
vector(ZZ, [-1, -1, 1, 1])]

RANK = 4

MAXIMAL_SUBSYSTEM = list()

S_REFERENCE = list()

S = list()

ELEMENTARY_REFLECTION = (
matrix(ZZ, [[0, -1, 0, 0], [-1, 0, 0, 0], [0, 0, 1, 0], [-1, -1, 0, 1]]),
matrix(ZZ, [[1, 0, 0, 0], [0, 0, -1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]),
matrix(ZZ, [[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 0], [0, 0, -1, -1]]),
matrix(ZZ, [[0, 0, 0, -1], [-1, -1, 0, 1], [1, 0, -1, -1], [-1, 0, 0, 0]]))

41

WEYL_GROUP = set()

WEYL_GROUP_CONJUGACY_CLASS = list()

P = matrix(ZZ, 0, RANK)

INCIDENCE_MATRIX = Matrix()

MOBIUS = Matrix()

ROUGH_N = list()

@staticmethod
def normalize(vec):

for i in range(len(vec)):
if vec[i] > 0:

return vec
elif vec[i] < 0:

return -vec
return vec

@classmethod
def generate_maximal_system(cls):

hermite_form = set() # Initialized as a set to take advantage of O(1)
time complexity of ’in’ operator
pl = list()
pl.extend(cls.SEED_VECTOR)
Build P, the matrix corresponding to the largest maximal subsystem
for i in range(len(cls.SEED_VECTOR)):

cls.P = cls.P.stack(cls.SEED_VECTOR[i])
for i in range(len(cls.SEED_VECTOR)):

if pl[i] * 2 not in pl and pl[i] * (-2) not in pl:
cls.P = cls.P.stack(pl[i] * 2)
pl.append(pl[i] * 2)

for j in range(i + 1, len(cls.SEED_VECTOR)):
if pl[i] + pl[j] not in pl and (pl[i] + pl[j]) * (-1) not in pl:

cls.P = cls.P.stack(pl[i] + pl[j])
pl.append(pl[i] + pl[j])

if pl[i] - pl[j] not in pl and (pl[i] - pl[j]) * (-1) not in pl:
cls.P = cls.P.stack(pl[i] - pl[j])
pl.append(pl[i] - pl[j])

Find all maximal subsystems
empty_sys = matrix(ZZ, cls.RANK, cls.RANK)
empty_sys.set_immutable()

42

cls.MAXIMAL_SUBSYSTEM.append(cls.extract_maximal_subsystem(empty_sys))
for n in range(1, cls.RANK + 1):

for ind in itertools.combinations(range(cls.P.nrows()), n):
h = cls.P[list(ind)].hermite_form().stack(

matrix(ZZ, cls.RANK + 1 - n, cls.RANK))
h.set_immutable()
if h not in hermite_form:

hermite_form.add(h)
cls.MAXIMAL_SUBSYSTEM.append(

cls.extract_maximal_subsystem(cls.P[list(ind)]))
hermite_form.clear()

@classmethod
def extract_maximal_subsystem(cls, mtx):

if mtx == matrix(ZZ, cls.RANK, cls.RANK):
ms = set()
ms.add(-1)
return cls.MaximalSubsystem(ms)

else:
hr = mtx.stack(matrix(ZZ, 1, cls.RANK)).hermite_form()
ms = set()
for i in range(cls.P.nrows()):

if mtx.stack(cls.P[[i]]).hermite_form() == hr:
ms.add(i)

return cls.MaximalSubsystem(ms)

@classmethod
def generate_s_reference(cls):

rl = cls.P.rows()
for i in range(cls.P.nrows()):

cls.S_REFERENCE.append(set())
-2 corresponds to 1/2, -1 corresponds to 0
for i in range(len(cls.SEED_VECTOR)):

v1 = cls.SEED_VECTOR[i]
cls.S_REFERENCE[rl.index(v1)].add((-1, i))
cls.S_REFERENCE[rl.index(2 * v1)].add((-2, i))
for j in range(i + 1, len(cls.SEED_VECTOR)):

v2 = cls.SEED_VECTOR[j]
if v1 + v2 in rl:

cls.S_REFERENCE[rl.index(v1 + v2)].add((i, j))
else:

cls.S_REFERENCE[rl.index(-v1 - v2)].add((i, j))
if v1 - v2 in rl:

cls.S_REFERENCE[rl.index(v1 - v2)].add((i, j))
else:

43

cls.S_REFERENCE[rl.index(v2 - v1)].add((i, j))

@staticmethod
def index_of(lst, obj):

for i in range(len(lst)):
if obj in lst[i]:

return i
return -1

@classmethod
def generate_weyl_group(cls):

cls.generate_weyl_group_by_recursion(
MatrixSpace(ZZ, cls.RANK).identity_matrix())

@classmethod
def generate_weyl_group_conjugacy_class(cls):

weyl_group = list(cls.WEYL_GROUP)
accounted_for = [False] * len(cls.WEYL_GROUP)
for i in range(len(weyl_group)):

if not accounted_for[i]:
size = 0
for weyl_element in weyl_group:

j = weyl_group.index(
weyl_element * weyl_group[i] * weyl_element.inverse())

if not accounted_for[j]:
size += 1
accounted_for[j] = True

cls.WEYL_GROUP_CONJUGACY_CLASS.append((weyl_group[i], size))

@classmethod
def generate_weyl_group_by_recursion(cls, elem):

m = copy(elem)
m.set_immutable()
if m not in cls.WEYL_GROUP:

cls.WEYL_GROUP.add(m)
for er in cls.ELEMENTARY_REFLECTION:

cls.generate_weyl_group_by_recursion(er * elem)

@classmethod
def generate_s(cls):

for ms in cls.MAXIMAL_SUBSYSTEM:
cls.S.append(ms.s())

@classmethod
def generate_incidence_matrix(cls):

44

print(’Incidence␣matrix␣is␣being␣generated.’)
cls.INCIDENCE_MATRIX = MatrixSpace(ZZ, len(cls.MAXIMAL_SUBSYSTEM),

sparse=True)()
for i in range(len(cls.MAXIMAL_SUBSYSTEM)):

sys1 = cls.MAXIMAL_SUBSYSTEM[i]
for j in range(i + 1, len(cls.MAXIMAL_SUBSYSTEM)):

sys2 = cls.MAXIMAL_SUBSYSTEM[j]
c = sys1.compare_to(sys2)
if c <= 0:

cls.INCIDENCE_MATRIX[i, j] = 1
elif c == 1:

cls.INCIDENCE_MATRIX[j, i] = 1
if i % 1000 == 1:

print(str(i) + ’␣out␣of␣’ + str(
len(cls.MAXIMAL_SUBSYSTEM)) + ’␣generated...’)

@classmethod
def generate_mobius_coefficient(cls):

cls.MOBIUS = MatrixSpace(ZZ, len(cls.MAXIMAL_SUBSYSTEM), sparse=True)()
nonzero_position = cls.INCIDENCE_MATRIX.nonzero_positions()
for coord in nonzero_position:

cls.MOBIUS[coord[0], coord[1]] = sys.maxsize
for i in range(len(cls.MAXIMAL_SUBSYSTEM)):

cls.MOBIUS[i, i] = 1
progress = 0
for coord in nonzero_position:

s = coord[0]
u = coord[1]
if cls.MOBIUS[s, u] == sys.maxsize:

cls.MOBIUS[s, u] = cls.generate_mobius_coefficient_by_recursion(
s, u)

progress += 1
if progress % 10000 == 1:

print(str(progress) + ’␣out␣of␣’ + str(
len(nonzero_position)) + ’␣generated...’)

@classmethod
def save_data(cls):

cls.generate_weyl_group()
cls.generate_weyl_group_conjugacy_class()
del cls.WEYL_GROUP
save(cls.WEYL_GROUP_CONJUGACY_CLASS, ’F4WGCC’)
del cls.WEYL_GROUP_CONJUGACY_CLASS
cls.generate_maximal_system()
save(cls.P, ’F4P’)

45

save(cls.MAXIMAL_SUBSYSTEM, ’F4MSS’)
cls.generate_s_reference()
cls.generate_s()
del cls.S_REFERENCE
save(cls.S, ’F4SVAL’)
del cls.S
cls.generate_rough_n()
save(cls.ROUGH_N, ’F4RN’)
cls.generate_incidence_matrix()
cls.generate_mobius_coefficient()
del cls.INCIDENCE_MATRIX
save(cls.MOBIUS, ’F4MC’)
del cls.MOBIUS
del cls.MAXIMAL_SUBSYSTEM

@classmethod
def load_data(cls):

cls.WEYL_GROUP_CONJUGACY_CLASS = load(’F4WGCC’)
cls.S = load(’F4SVAL’)
cls.P = load(’F4P’)
cls.MAXIMAL_SUBSYSTEM = load(’F4MSS’)
cls.ROUGH_N = load(’F4RN’)
cls.MOBIUS = load(’F4MC’)

@classmethod
def generate_mobius_coefficient_by_recursion(cls, s, u):

if cls.MOBIUS[s, u] != sys.maxsize:
return cls.MOBIUS[s, u]

elif s == u:
cls.MOBIUS[s, u] = 1
return 1

elif cls.INCIDENCE_MATRIX[s, u] == 0:
cls.MOBIUS[s, u] = 0
return 0

else:
mu = -cls.generate_mobius_coefficient_by_recursion(s, s)
nonzero_position_in_row = cls.INCIDENCE_MATRIX.nonzero_positions_in_row(

s)
for t in nonzero_position_in_row:

if cls.INCIDENCE_MATRIX[t, u] == 1:
mu -= cls.generate_mobius_coefficient_by_recursion(s, t)

cls.MOBIUS[s, u] = mu
return mu

@classmethod

46

def generate_rough_n(cls):
for ms in cls.MAXIMAL_SUBSYSTEM:

sc = cls.SolutionCount()
sc.build_from_subsystem(ms)
cls.ROUGH_N.append(sc)

@classmethod
def consolidate(cls):

weyl_system = list()
for info_pair in cls.WEYL_GROUP_CONJUGACY_CLASS:

weyl_system.append((cls.extract_maximal_subsystem(
info_pair[0] - MatrixSpace(ZZ, cls.RANK).identity_matrix()),

info_pair[1]))
for s_val in range(1, max(cls.S) + 1):

progress = 0
s_val_column = list()
for t in range(len(cls.MAXIMAL_SUBSYSTEM)):

if cls.S[t] == s_val:
s_val_column.append(t)

multiplier_of_t = dict()
constituent_entry = list()
for t in s_val_column:

t_sys = cls.MAXIMAL_SUBSYSTEM[t]
multiplier = 0
for weyl_pair in weyl_system:

if t_sys.compare_to(weyl_pair[0]) <= 0:
multiplier += weyl_pair[1]

multiplier_of_t[t] = multiplier
nonzero_position = cls.MOBIUS.nonzero_positions_in_column(t)
for s in nonzero_position:

constituent_entry.append((s, t))
constituent_entry.sort(key=lambda x: cls.ROUGH_N[x[0]].marker)
constituent_count = list()
current_marker = -1
for e in constituent_entry:

if cls.ROUGH_N[e[0]].marker == current_marker:
if lcm(len(constituent_count[-1].solution_count),

len(cls.ROUGH_N[e[0]].solution_count)) == len(
constituent_count[-1].solution_count):

constituent_count[-1] = constituent_count[
-1].add_times_self(cls.ROUGH_N[e[0]],

cls.MOBIUS[e[0], e[1]] *
multiplier_of_t[e[1]])

else:
constituent_count[-1] = constituent_count[-1].add_times(

47

cls.ROUGH_N[e[0]],
cls.MOBIUS[e[0], e[1]] *
multiplier_of_t[e[1]])

else:
current_marker = cls.ROUGH_N[e[0]].marker
constituent_count.append(cls.SolutionCount())
constituent_count[-1] = constituent_count[-1].add_times(

cls.ROUGH_N[e[0]],
cls.MOBIUS[e[0], e[1]] * multiplier_of_t[

e[1]])
progress += 1
if progress % 2000 == 1:

print(str(progress) + ’␣out␣of␣’ + str(
len(constituent_entry)) + ’␣generated...’)

row_length = 1
for cc in constituent_count:

row_length = lcm(row_length, len(cc.solution_count))
f = open(’F4Table␣Row␣’ + str(s_val) + ’_Unexpanded.txt’, ’w’)
_ = f.write(’[’)
for i in range(row_length):

entry = cls.Polynomial()
for cc in constituent_count:

entry.add_self(
cc.solution_count[i % len(cc.solution_count)])

_ = f.write(str(entry))
if i == row_length - 1:

_ = f.write(’]\n’)
else:

_ = f.write(’,␣’)
f.close()
print(’Row␣with␣s-value␣’ + str(s_val) + ’␣has␣been␣computed.’)

class MaximalSubsystem:

def __init__(self, index_set):
self.subsystem = index_set

def to_matrix(self):
if len(self.subsystem) == 1 and -1 in self.subsystem:

return matrix(ZZ, F4ms.RANK, F4ms.RANK)
else:

mtx = matrix(ZZ, 0, F4ms.RANK)
for i in self.subsystem:

mtx = mtx.stack(F4ms.P[[i]])
return mtx

48

def s(self):
if len(self.subsystem) == 1 and -1 in self.subsystem:

return 1 + 2 * len(F4ms.SEED_VECTOR)
equiv_class = list() # List of equivalence classes to be counted
for determining s
rl = F4ms.P.rows() # List of row vectors of P
subsystem = self.to_matrix()
Begin by identifying all instances of zeros
zero_par = list()
equiv_class.append(zero_par)
for row in subsystem:

for pair in F4ms.S_REFERENCE[rl.index(row)]:
if pair[0] == -1:

equiv_class[0].append(pair[1])
for row in subsystem:

for pair in F4ms.S_REFERENCE[rl.index(row)]:
if pair[0] >= 0:

i = F4ms.index_of(equiv_class, pair[0])
j = F4ms.index_of(equiv_class, pair[1])
if i < 0 and j < 0:

new_par = list()
new_par.append(pair[0])
new_par.append(pair[1])
equiv_class.append(new_par)

elif i < 0:
equiv_class[j].append(pair[0])

elif j < 0:
equiv_class[i].append(pair[1])

elif i != j: # pair[0] and pair[1] have been
placed into different equivalence classes
if i == 0:

equiv_class[0].extend(equiv_class[j])
del equiv_class[j]

elif j == 0:
equiv_class[0].extend(equiv_class[i])
del equiv_class[i]

else:
equiv_class[i].extend(equiv_class[j])
del equiv_class[j]

del equiv_class[1:]
Now that we have identified all instances of zeros,
we identify all instances of 1/2
half_par = list()
equiv_class.append(half_par)

49

for row in subsystem:
for pair in F4ms.S_REFERENCE[rl.index(row)]:

if pair[0] == -2 and pair[1] not in equiv_class[0]:
equiv_class[1].append(pair[1])

for row in subsystem:
for pair in F4ms.S_REFERENCE[rl.index(row)]:

if pair[0] >= 0 and pair[0] not in equiv_class[0] and pair[
1] not in equiv_class[0]:
i = F4ms.index_of(equiv_class, pair[0])
j = F4ms.index_of(equiv_class, pair[1])
if i < 0 and j < 0:

new_par = list()
new_par.append(pair[0])
new_par.append(pair[1])
equiv_class.append(new_par)

elif i < 0:
equiv_class[j].append(pair[0])

elif j < 0:
equiv_class[i].append(pair[1])

elif i != j: # pair[0] and pair[1] have been placed
into different equivalence classes
if i == 1:

equiv_class[1].extend(equiv_class[j])
del equiv_class[j]

elif j == 1:
equiv_class[1].extend(equiv_class[i])
del equiv_class[i]

else:
equiv_class[i].extend(equiv_class[j])
del equiv_class[j]

del equiv_class[2:]
Build the other equivalence classes, if any
for row in subsystem:

for pair in F4ms.S_REFERENCE[rl.index(row)]:
if pair[0] >= 0:

i = F4ms.index_of(equiv_class, pair[0])
j = F4ms.index_of(equiv_class, pair[1])
if i != 0 and i != 1 and j != 0 and j != 1:
Neither pair[0] or pair[1] leads to 0 or 1/2

if i < 0 and j < 0:
new_par = list()
new_par.append(pair[0])
new_par.append(pair[1])
equiv_class.append(new_par)

elif i < 0:

50

equiv_class[j].append(pair[0])
elif j < 0:

equiv_class[i].append(pair[1])
elif i != j: # pair[0] and pair[1] have been

placed into different equivalence classes
equiv_class[i].extend(equiv_class[j])
del equiv_class[j]

Account for singletons that do not appear in any
hitherto constructed equivalence classes
for i in range(len(F4ms.SEED_VECTOR)):

if F4ms.index_of(equiv_class, i) == -1:
sig = list()
sig.append(i)
equiv_class.append(sig)

Compute s
s = 1
if len(equiv_class[1]) > 0:

s += 1
s += 2 * (len(equiv_class) - 2)
return s

Returns -1 if lower, 0 if equal, 1 if higher, and 10 if incomparable
def compare_to(self, other):

if self.subsystem == other.subsystem:
return 0

elif self.subsystem > other.subsystem:
return -1

elif self.subsystem < other.subsystem:
return 1

else:
if -1 in other.subsystem:

if len(other.subsystem) > 1:
raise Exception(

"Nonempty␣subsystem␣containing␣a␣row␣of␣zero:" + str(
other))

else:
return -1

elif -1 in self.subsystem:
if len(self.subsystem) > 1:

raise Exception(
"Nonempty␣subsystem␣containing␣a␣row␣of␣zero:" + str(

self))
else:

return 1
else:

51

return 10

def __str__(self):
return self.to_matrix().str()

def __repr__(self):
return str(self)

class SolutionCount:

def __init__(self):
self.solution_count = list()
self.solution_count.append(F4ms.Polynomial.zero_polynomial())
self.marker = 1 # largest prime divisor of len(self.solution_count)

def build_from_subsystem(self, subsys):
sysmtx = subsys.to_matrix()
sysmtx = sysmtx.stack(

matrix(ZZ, max(F4ms.RANK - sysmtx.nrows(), 0), F4ms.RANK))
edlst = sysmtx.elementary_divisors()[:F4ms.RANK]
if sysmtx == matrix(ZZ, F4ms.RANK, F4ms.RANK):

self.solution_count = [F4ms.Polynomial.m_power(edlst.count(0))]
return

max_ed = max(edlst)
self.solution_count = list()
for i in range(max_ed):

self.solution_count.append(
F4ms.Polynomial.m_power(edlst.count(0)))

if len(self.solution_count) > 1:
self.marker = list(factor(len(self.solution_count)))[-1][0]

for m_mod_max_ed in range(max_ed):
effective_m_mod_max_ed = m_mod_max_ed
if m_mod_max_ed == 0:

effective_m_mod_max_ed = max_ed
multiplier = 1;
for ed in edlst:

if ed != 0:
sub_multiplier = 0
for k in range(effective_m_mod_max_ed):

if ed * k % effective_m_mod_max_ed == 0:
sub_multiplier += 1

multiplier *= sub_multiplier
self.solution_count[m_mod_max_ed].times_self(multiplier)

def add_times(self, sc, c):

52

r = F4ms.SolutionCount()
lst = [0] * lcm(len(self.solution_count), len(sc.solution_count))
for mmod in range(len(lst)):

lst[mmod] = self.solution_count[
mmod % len(self.solution_count)].add_times(
sc.solution_count[

mmod % len(
sc.solution_count)],

c)
r.solution_count = lst
r.marker = max(self.marker, sc.marker)
return r

def add_times_self(self, sc, c):
for mmod in range(len(self.solution_count)):

self.solution_count[mmod].add_times_self(
sc.solution_count[mmod % len(sc.solution_count)], c)

return self

def expand(self, mod):
r = F4ms.SolutionCount()
lst = self.solution_count * (mod // len(self.solution_count))
r.solution_count = lst
return r

def __str__(self):
return str(self.solution_count)

def __repr__(self):
return str(self)

def __lt__(self, other):
return self.marker < other.marker or (

self.marker == other.marker and len(
self.solution_count) < len(other.solution_count))

def __le__(self, other):
return self.marker < other.marker or (

self.marker == other.marker and len(
self.solution_count) <= len(other.solution_count))

def __eq__(self, other):
return self.marker == other.marker and len(

self.solution_count) == len(
other.solution_count) and self.solution_count == other.solution_count

53

def __ne__(self, other):
return not self.__eq__(other)

def __ge__(self, other):
return self.marker > other.marker or (

self.marker == other.marker and len(
self.solution_count) >= len(other.solution_count))

def __gt__(self, other):
return self.marker > other.marker or (

self.marker == other.marker and len(
self.solution_count) > len(other.solution_count))

class Polynomial:

def __init__(self):
self.polynomial = [0] * (F4ms.RANK + 1)

@classmethod
def m_power(cls, power):

p = F4ms.Polynomial()
p.polynomial[power] = 1
return p

@classmethod
def zero_polynomial(cls):

return F4ms.Polynomial()

def add(self, other):
r = F4ms.Polynomial()
for i in range(len(self.polynomial)):

r.polynomial[i] = self.polynomial[i] + other.polynomial[i]
return r

def add_self(self, other):
for i in range(len(self.polynomial)):

self.polynomial[i] += other.polynomial[i]

def times(self, c):
r = F4ms.Polynomial()
for i in range(len(self.polynomial)):

r.polynomial[i] = c * self.polynomial[i]
return r

54

def times_self(self, c):
for i in range(len(self.polynomial)):

self.polynomial[i] = c * self.polynomial[i]

def add_times(self, other, c):
r = F4ms.Polynomial()
for i in range(len(self.polynomial)):

r.polynomial[i] = self.polynomial[i] + c * other.polynomial[i]
return r

def add_times_self(self, other, c):
for i in range(len(self.polynomial)):

self.polynomial[i] += c * other.polynomial[i]

def __str__(self):
s = ""
for i in reversed(range(len(self.polynomial))):

if self.polynomial[i] != 0:
if i == 0:

if self.polynomial[i] > 0:
s = s + ’+’ + str(self.polynomial[i])

else:
s = s + str(self.polynomial[i])

elif i == 1:
if self.polynomial[i] == 1:

s = s + ’+m’
elif self.polynomial[i] == -1:

s = s + ’-m’
elif self.polynomial[i] > 0:

s = s + ’+’ + str(self.polynomial[i]) + ’*m’
else:

s = s + str(self.polynomial[i]) + ’*m’
else:

if self.polynomial[i] == 1:
s = s + ’+m^’ + str(i)

elif self.polynomial[i] == -1:
s = s + ’-m^’ + str(i)

elif self.polynomial[i] > 0:
s = s + ’+’ + str(self.polynomial[i]) + ’*m^’ + str(

i)
else:

s = s + str(self.polynomial[i]) + ’*m^’ + str(i)
if len(s) == 0:

return ’0’
elif s[0] == ’+’:

55

return s[1:]
else:

return s

def __repr__(self):
return str(self)

def main():
F4ms.save_data()
F4ms.load_data()
F4ms.consolidate()

main()

56

Bibliography

[1] R. W. Carter. Conjugacy classes in the weyl group. Compositio Mathematica, 25(1):1–59,
1972.

[2] R.W. Carter. Simple Groups of Lie Type. Wiley Classics Library. Wiley, 1989.

[3] Dragomir Ž. Djoković. On Conjugacy Classes of Elements of Finite Order in Compact
or Complex Semisimple Lie Groups. Proceedings of the American Mathematical Society,
80(1):181–184, 1980.

[4] Dragomir Ž. Djoković. On conjugacy classes of elements of finite order in complex
semisimple lie groups. Journal of Pure and Applied Algebra, 35:1 – 13, 1985.

[5] Tamar Friedmann and Richard Stanley. Counting Conjugacy Classes of Elements of
Finite Order in Lie Groups. European Journal of Combinatorics, 36, 11 2013.

[6] Tamar Friedmann and Richard P. Stanley. The string landscape: On formulas for count-
ing vacua. Nuclear Physics B, 869(1):74–88, Apr 2013.

[7] Brian C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduc-
tion. Graduate Texts in Mathematics. Springer New York, 2004.

[8] R.B Howlett, L.J Rylands, and D.E Taylor. Matrix Generators for Exceptional Groups
of Lie Type. Journal of Symbolic Computation, 31(4):429 – 445, 2001.

[9] Ichiro Yokota. Exceptional Lie groups. arXiv: Differential Geometry, 2009.

57

	Counting Conjugacy Classes of Elements of Finite Order in Compact Exceptional Groups
	Recommended Citation

	tmp.1622697750.pdf.SZrbn

