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ABSTRACT 

 

Wildlife-vehicle collisions are a major form of human-wildlife conflict. Predictive 

animal-vehicle collision models have been developed to identify collision hotspots in Maine 

and guide mitigation strategies. However, most current models are static and unable to 

produce dynamic forecasts that incorporate changing climate and weather. The goal of my 

study was to develop a predictive and dynamic model of animal-vehicle collisions in Maine, 

USA. More than 6,700 moose-vehicle collisions (MVC) occurred from 2003 to 2017 in 

Maine, raising road safety, socio-economic, and wildlife conservation concerns. I sought to 

identify factors that contribute to a higher probability of MVCs by comparing two 

methodological approaches. I obtained 14 years of moose-vehicle collision data from Maine 

Department of Transportation. I developed a spatial MVC model using static spatial data. I 

then collaborated with the Bigelow Laboratory for Ocean Sciences to import temporal data in 

a Maximum Entropy (MaxEnt) model and create dynamic hourly MVC forecasts. My models 

show that MVCs in Maine are more likely to happen on roads with intermediate to high 

speed limits and volumes, in or near forest cover, and close to wetlands. Sunlight, snow 

depth, humidity, and soil moisture were also significantly associated with MVC probabilities. 

The result of this study suggests that predictive and dynamic MVC models can be developed 

to inform drivers of crash hotspots in Maine. Effectively applying these models allows for a 

more proactive, timely, and diagnostic response to MVCs and provides a novel approach to 

more comprehensively understand and predict human-wildlife conflicts. 
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CHAPTER I. LITERATURE REVIEW 

 

Introduction 

Human population growth and economic development has led to increasing 

infrastructure expansions and resource extraction, escalating conflicts between humans and 

wildlife (Distefano 2005). Wildlife-vehicle collisions (WVC) is a unique form of human-

wildlife conflicts (HWC). Construction of road networks significantly decreases ecosystem 

connectivity and causes more wildlife and vehicles to encounter each other (Tanner and 

Leroux 2015). In the United States, around one to two million vehicles collide with wildlife 

every year (Niemi et al. 2017). In Sweden, these accidents constitute more than 60% of total 

accidents happened on the road (Seiler 2005). 

WVCs with large-size animals, such as moose (Alces alces), are a particularly serious 

road safety problem because of the high fatality risks (Niemi et al. 2017). Moose are an 

ungulate species that inhabit northern Europe and North America (Renecker and Schwartz 

2007). Moose-vehicle collisions (MVC) are common across this range (Tanner and Leroux 

2015).  

To prepare for my research, I reviewed 24 journal articles published between 1998–

2018 to investigate the impacts, study methods, patterns, and mitigations of MVCs around 

the world. The main goal of this literature review was to learn about biological, physical, and 

cultural factors that may influence the probability of MVCs across the world.  

  

MVC impacts 

Attributed to successful conservation efforts and increasing urban developments, 

MVCs are considered a major road-safety concern in Finland, Norway, Sweden, Russia, the 

United States, and Canada (Niemi et al. 2013). Moose are characterized by their large body 

mass, long legs, and high center of gravity, which can contribute to the severity of accidents 

(Zeller et al. 2018, CDC 2006). When a collision happens, the vehicle typically hits the 

moose’s legs from under the abdomen. Stress responses and momentum of the moose cause 

it to knock back and sweep up the vehicle’s hood and windshield into passenger 

compartments (Garrett and Conway 1999).  



2 

 

Public safety threats, socio-economic loss, and animal welfare and conservation 

concerns are the three main impacts that MVCs cause (Tanner and Leroux 2015, Seiler 

2005). Around 15% of MVCs resulted in human injuries or deaths, rating 34 times higher 

than other animal-traffic accidents (Garret and Conway 1999). In Sweden, over 80% of road 

accidents that involved fatal and non-fatal injuries were MVCs (Seiler 2005). The annual 

death rate from MVCs fluctuates between 0.5% and 0.8% in the United States (Zeller et al. 

2018, Garrent and Conway 1999), while the same measurement is 0.4% in Canada (Tanner et 

al. 2017). Fortunately, with various mitigation strategies, this number has decreased in 

multiple countries in recent years (Niemi et al. 2017). 

Direct costs associated with MVCs include patient hospitalization and accident clean-

ups (Rea et al. 2014). Material damage was estimated to exceed $3,000 dollars per crash in 

Canada between 1995 and 2000 (Christie and Nason 2003) and around $18,000 in the United 

States (Niemi et al. 2017). MVCs also lead to an indirect loss in work time and incomes from 

meat and hunting licenses (Garrett and Conway 1999). On average, the annual total 

economic loss due to MVCs in Canada surpasses 25 million dollars (Rea et al. 2014). 

MVCs also raise wildlife conservation concerns. Road-killed large-sized animals are 

difficult to track in time and require specialized persons for clean-up and removal (Snow et 

al. 2015). Moose killed from traffic crashes were estimated to be between 300 and 1200 per 

year in British Columbia, Canada (Rea et al. 2014), over 150 in Sweden (Seiler 2005), and 

3% of total moose populations in Massachusetts, USA (Zeller et al. 2018). 

             

Study methods of MVCs 

McClure and Ament (2014) suggested that WVC interventions should consider areas 

with both high biological relevance and high vehicle collision risks. Biological data, such as 

moose population ranges, are often obtained using radio collars. To locate risk regions and 

understand the cause from a driver’s perspective, conservation biologists also study what 

transpires preceding and during a crash. Traditionally, this information can only be obtained 

by interviewing crash participants, which is usually hard due to high physical and mental 

trauma rates (Rea et al. 2018, Langley and Mathison 2008). Modern technologies, such as 

dash cameras and traffic monitoring systems, record road conditions and driver behaviors. 
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These videotapes reflect motorists’ physical and psychological reactions towards what is 

being encountered and can be used to analyze crash patterns (Rea et al. 2018).  

Another commonly used methodology to investigate crash mechanisms and evaluate 

mitigation strategies is to develop predictive MVC models (Tanner et al. 2017). These 

models draw on ecological data to summarize MVC patterns and then apply these findings on 

broader temporal and spatial scales. Early MVC studies typically focused on using moose 

movement to characterize crash locations (Neumann et al. 2012, Gundersen and Andreassen 

1998); more recent models incorporate additional baseline information to investigate what 

landscape, traffic, and wildlife factors are associated with the occurrence of MVCs (Tanner 

et al. 2017, Rea et al. 2014, Snow et al. 2014). Common statistical analyses applied to 

identify crash hotspots include building multivariate logistic regression models and 

generalized linear mixed models (Eldegard et al. 2011, Seiler 2014, Litvaitis and Tash 2008). 

Overall, these models explain why some road sections have significantly higher collision 

frequencies and help to pinpoint potential problematic roads that future management plans 

should focus on (Rea et al. 2014, Danks and Porter 2010, Dussault et al. 2007).  

MVC models are generally built upon accident report data from police departments 

and carcass removal data (Snow et al. 2015, Niemi et al. 2013). Underreporting is a 

consistent issue in WVC studies across species and geographical locations (Snow et al. 

2015). Insufficient reporting from motorists, insurance companies, and government agencies 

and time delays between the crash and carcass removal can lead to MVC miscounts (Hujiser 

et al. 2007). In Newfoundland, Canada, only crashes with over $1000 damages or involving 

in injuries will be filed in police documents (Tanner et al. 2017), which leads to an 

underreporting rate of over 50% (Gunson et al. 2009, Dussault et al. 2007). These data 

collection errors can limit model accuracy and precision (Snow et al. 2014). 

  

MVC patterns 

MVC distributions frequently display non-random patterns that vary across space and 

time (Neumann et al. 2012, CDC 2006, Dussault et al. 2007). Differences in spatial patterns 

may be attributed to variations with geographic locations of study (Rea et al. 2014). MVCs in 

Massachusetts and western Maine, USA, typically occur on larger, faster, and more heavily 

trafficked roads near coniferous forests and wetlands, with lower slopes (Zeller et al. 2018, 
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Danks and Porter 2010). In contrast, in British Columbia, Canada, landscape features, such as 

non-browse vegetation, swamps, and sphagnum bogs, play a more determinative role in 

predicting MVCs compared to road features (Rea et al. 2014). Temporal MVC patterns are 

often related to roadside habitat usage and migration patterns of moose (Rea et al. 2018, 

Niemi et al. 2017). In Massachusetts, USA, MVCs peak from May to July when vegetation 

quantity and quality are the highest and revive again in November during the migration and 

reproductive seasons (Zeller et al. 2018, Snow et al. 2014). In European countries, including 

Finland and north Sweden, crashes are more likely to occur in autumn and winter when the 

light and road conditions are poorer (Niemi et al. 2017, Neumann et al. 2012).  

Moose behaviors, driver behaviors, and environmental features have been linked to 

forecasting the probability of MVCs (Rea et al. 2018). Based on the 24 journal articles that I 

reviewed, I identified 17 common factors used in previous studies to build MVC models 

(Appendix 1). Land cover, moose density, traffic volume, and speed limit were found to be 

significant MVC predictors in more than 10 articles. The only temporal variable that has 

been evaluated in more than 3 papers is sunlight. MVCs happen most frequently before and 

after dusk and dawn because moose are more mobile (Hikonen and Summla 2001, Joyce and 

Mahoney 2001, Gundersen Andreassen) and visibility of drivers is lower during these 

periods (Niemi et al. 2013, Hikonen and Summala 2001). This emphasis on spatial variables 

leads to most existing MVC models being static, which means they produce a general 

prediction of MVC probabilitty and are unable to adapt to weather changes. Later in Chapter 

II, I used all 17 variables to develop both static and dynamic MVC models in Maine. 

  

Landscape features 

Landscape characteristics, including land cover and distances to the nearest forests, 

waterbody, and wetlands, are the most mentioned variables. Land cover type, specifically, 

were mentioned in 13 out of 24 studies. These environmental characteristics influence MVC 

distributions by indicating moose migration and foraging behaviors (Rea et al. 2014). 

Roadside forest types influence to which degree the moose use the habitats and thus affect 

their decision making in balancing between foraging benefits and collision risks (Snow et al. 

2014, Eldegard et al. 2012, Neumann et al. 2012). In winter, moose prefer coniferous forests 

that can provide more favorable thermal and predator covers compared to deciduous forests 
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(Rea et al. 2014). Frequently cleaned roadside vegetations and harvested timberland are also 

more desirable for their newly grown nutritious sprouts (Danks and Porter 2010, Seiler 

2004). Wetlands, swamps, ponds, and blackish pools provide aquatic macrophytes that are 

favored by moose especially in summer (Niemi et al. 2013). Lakes and rivers also grow 

riparian vegetation, such as the willow family (Salicaceae) and the alder genus (Alnus), along 

the shoreline, but their larger waterbody sizes also potentially create movement barriers for 

moose (Rea et al. 2014).  

  

Moose population and behavioral features 

Moose density is another variable that is closely related to moose behaviors. Moose 

population size has been found to be positively related to the occurrence of MVCs (Niemi et 

al. 2017, Seiler 2015, Joyce and Mahoney 2001). This explains why more collisions are 

likely to happen within the home range of a moose population (Neumann et al. 2012, Danks 

and Porter 2013). However, while a higher density increases the probability of encountering 

a moose on the road, more than one moose on or near traffic reduces the likelihood of 

collision (Rea et al. 2018). This is because drivers can more accurately identify a large group 

of objects wandering on the road rather than a single individual crossing alone (Rea et al. 

2018). Population structure is also important because males and females with and without 

calves display different road-crossing behaviors (Beyer et al. 2013). Male moose tend to 

search closer to roads than females when looking for food (Eldegard et al. 2012) and are 

more often killed during the rutting season (Niemi et al. 2013). Female moose roadkill peaks 

from May to June and from November to January during the reproductive and breeding 

periods (Neumann et al. 2012, Joyce and Mahoney 2001).  

  

Human behavior and road features 

Road conditions are closely related to driver behaviors and reactions. Traffic volume, 

although mentioned in 12 out of the 24 articles, has a varied contribution in different 

predictive MVC models (Rea et al. 2018, Niemi et al. 2017, Niemi et al. 2013). Some studies 

find that a higher traffic volume leads to more vehicle collisions (Zeller et al. 2018), while 

others find that moose crosses smaller roads more often because lower traffic volume 

weakens movement barriers (Tanner et al. 2017, Eldegard et al. 2012). Impacts of speed 
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limits remain constant across models. A lower speed allows for more reaction time so that the 

drivers are three times more likely to avoid a crash (Rea et al. 2018, Beyer et al. 2013, CDC 

2006). Overall, vehicles traveling above the speed limit of a road have significantly higher 

injury and fatality rate, and this risk is even higher when traveling with passengers (Niemi et 

al. 2013, Joyce and Mahoney 2001). Similarly, driving along straight roads poses a higher 

chance of MVCs because drivers may reduce speed when riding around curves (Tanner et al. 

2017), although swerving raises the probability of colliding with secondary objects (Rea et 

al. 2018).  

  

MVC mitigation 

MVCs are challenging to mitigate. Humans cannot remove moose from environments 

near roads, as ungulates are popular game species that contribute to local economies (Tanner 

et al. 2017). Following McClure and Ament’s WVC management framework (2004), modern 

MVC mitigation strategies often fall into three categories: redirecting animal movements, 

influencing driver behaviors, and modifying road environments (Rea et al. 2018). However, 

these strategies described below can sometimes be hard to implement due to the economic, 

social, and political impacts on stakeholders (Danks and Porter et al. 2010). Recent 

intervention efforts have been advised that they should aim to reduce collisions to a socially 

acceptable level determined by local governments (Dussault et al. 2007, Seiler 2004). In 

some regions, the percentage of WVCs in total road accidents has successfully decreased in 

recent years as described below (Niemi et al. 2017). However, more follow-up studies are 

necessary to determine the long-term effects of mitigation plans (Christie and Nason, 2003). 

  

Moose movement redirection 

Fencing combined with wildlife corridors are widely considered the most effective 

WVC mitigation strategy. In both central and western Massachusetts, USA and Sweden, 

these two strategies have reduced over 80% of MVCs in study areas (Zeller et al. 2018, Seiler 

2005). Wildlife corridors refer to bridges and tunnels that provide wildlife with alternative 

passways near and around roads. This strategy is typically expensive due to construction 

costs and requires customization based on sites.  
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Newly constructed fences that are in good conditions can effectively prevent MVCs. 

In Sweden, more than 5,000 kilometers of major roads were fenced to preclude moose from 

accessing the road (Tanner and Leroux 2015, Seiler 2005). However, some fences were 

installed 20 to 30 years ago and were not well maintained, allowing wildlife to enter freely 

(Zeller et al. 2018). Biological impacts of wildlife fences are trapping animals, reducing land 

connectivity, and preventing gene flows across the landscape (Tanner and Leroux 2015, 

Seiler 205). In addition, studies have found that accidents have increased significantly where 

the fences terminated (Seiler 2005). These constraints must be considered and resolved 

before fencing can be widely applied on the state and national levels (Seiler 2004) 

  

Driver behavior guidance 

Public education programs aim to inform drivers of potential MVC risks and raise 

awareness about creating a safer driving environment (Rea et al. 2018). Two most adopted 

and least expensive types of program are reducing night-time speed limits and establishing 

warning signs. Speed limits are found to be positively correlated with MVC frequencies 

(CDC 2006). In northern British Columbia, Canada, experiments showed that a 45 mph 

nighttime driving speed on highways allowed for enough reaction and braking time to avoid 

MVCs (Rea et al. 2014). However, only about 20% drivers strictly obeyed the new speed 

limit when it was implemented (Zeller et al. 2018). Therefore, more strict road laws, such as 

serious punishments for exceeding the speed limit, are suggested to supplement this strategy 

(Tanner et al. 2017). Warning signs are implemented to advise drivers to decelerate on 

certain road segments (Rea et al. 2018), although their effectiveness at preventing MVCs 

remains untested (Zeller et al. 2018, Rea et al. 2014). MVC patterns and hotspots change 

over time (Rea et al. 2014). Dynamic and seasonal signs have thus been proposed to improve 

mitigation efficiency (Niemi et al. 2013, Danks and Porter 2010). Other innovative public 

awareness programs suggest using driver simulators to replicate real-life scenario and 

training drivers in practical skills such as hazard perception and quick decision making, so 

that drivers can be more prepared when encountering collisions in real life (Rea et al. 2018). 
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Road environment modification 

Roadside vegetation attracts moose to forage and obscures the view of drivers (Rea et 

al. 2018). Properly removing brush along the road helps motorists to see wildlife in advance 

and allows for more reaction time (Tanner and Leroux 2015). In Norway in the late 1990s, 

this method was found to reduce MVCs by 40 to 50% (Gundersen and Andreassen 1998). 

Studies also found that new vegetations after cleanup contained more nutrition and were 

more desirable for moose populations (Rea 2003). Continuing to cut the new vegetation 

growth may further prevent moose foraging at the road edge (Franzmann 1978). Some places 

incorporate MVC patterns in road planning. In Northern British Columbia, potential routes 

were advised in regions with more lake and rivers, fewer swamps, and fewer sphagnum bogs. 

The timber industry was also advised in some geographical ranges to alter landscape features 

(Rea et al. 2014). Roadway salting attracts ungulate species to the mineral-rich water and 

increases their exposures to vehicles (Niemi et al. 2017). In Quebec, Canada, salt pools 

increase the MVC probability by nearly 80% (Leblond et al. 2007). Therefore, the Quebec 

government drained and filled problematic pools with rocks to prevent moose access. 

Follow-up studies showed that this approach reduced the frequency and duration of moose 

visits at night. Long-time monitoring should be continued to better understand how this 

moose behavioral change influences collision risks (Leblond et al. 2007). 

  

Conclusion 

MVCs are a common form of HWCs in North America and Europe, posing serious 

road safety, socio-economic, and wildlife conservation threats. Previous studies suggested a 

range of spatial variables that can help to identify areas of high MVC risk and to predict 

potential crash hotspots. Current mitigation strategies developed upon these static models 

aim to reduce collision frequencies by redirecting animal movements, influencing driver 

behaviors, and modifying road environments. However, most interventions are expensive and 

not entirely effective. Future studies are advised to consider more dynamic temporal 

variables, such as weather conditions, to further refine predictive MVC models and advise 

MVC mitigations.   
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CHAPTER II. DEVELOPING A PREDICTIVE AND DYNAMIC MOOSE-VEHICLE 

COLLISIONS MODEL IN MAINE 

 

Introduction 

With the rapid growth of human populations, increasingly natural habitats have been 

exploited and transformed into human settlements. This global trend of resource extraction 

and land development brings more people into direct contact with wildlife, escalating human-

wildlife conflicts worldwide (Distefano 2005). Road network expansion indicates 

urbanization. Constructions of infrastructures decrease land connectivity and cause more 

wildlife and vehicles to encounter each other (Tanner and Leroux 2015). Wildlife-vehicle 

collisions have thus become a common form of human-wildlife conflicts around the world.  

Globally, most wildlife-vehicle collisions occur between vehicles and small to 

medium-sized ungulates, but accidents with large-size ungulates, such as moose (Alces 

alces), can have more serious road safety and conservation impacts (Niemi et al. 2017). 

When a vehicle collides with a moose, the large body mass, long legs, and high center of 

gravity cause the animal to knock the vehicle from above and sweep up the hood of the car 

into passenger compartments (Zeller et al. 2018, CDC 2006, Garrett and Conway 1999). The 

injury and mortality rates of moose-vehicle collisions (MVC) are estimated to be 34 times 

higher than any other urban wildlife-vehicle collision types (Joyce and Mahoney 2001). 

Moose are the dominant herbivore species in Maine, USA. They forage in shallow 

water and woodland regions (Innes 2010), and so can potentially inhabit much of the state. 

Moose-vehicle collisions (MVC) is one of the most impactful types of human-wildlife 

conflicts in Maine. Since the late 1990s, attributed to successful ungulate management and 

road network expansions, MVCs have constituted 15% of total road accidents in the state 

(CDC 2006). In the past 3 years, more than 1,200 MVC occurred in Maine (MEDOT 2018), 

raising great road safety, socio-economic, and wildlife conservation concerns (Dussault et al. 

2007). 

Various mitigation strategies have been adopted by the state of Maine to reduce MVC 

frequencies: animal movements redirection, driver behavior guidance, and road environments 

modification (Rea et al. 2018). Common approaches include implementing wildlife fencing, 



10 

 

establishing warning signs, and removing roadside vegetations (Rea et al. 2009), yet none of 

these methods have been entirely effective in Maine.  

One way to reduce MVC risks is to increase driver awareness of possible collision 

hotspots. Predictive MVC models are developed to investigate what landscape, traffic, and 

wildlife factors characterize the occurrence of MVCs and pinpoint potential problematic road 

segments (Tanner et al. 2017, Rea et al. 2014, Snow et al. 2014). These models collect 

existing ecological data to generalize MVC patterns and then apply these findings on broader 

temporal and spatial scales (Kendall 2015, Evans 2012, Jospe 2006). However, a major 

disadvantage of current MVC models is that most are static and produce a general hotspot 

map for all conditions. A dynamic MVC model enables updating its forecast as weather 

changes and is thus more flexible and robust.  

The goal of this study was to develop both static and dynamic models to forecast 

MVC locations in Maine using geographic information system (GIS) and maximum entropy 

(MaxEnt) methods. With the models that I constructed, I hope to answer the following 

questions: (1) Can MVC forecasts be developed to be adaptive to changing weather 

conditions? (2) What factors help characterize MVC hotspots in Maine? (3) Which of the 

GIS static and MaxEnt spatial models can more effectively and robustly forecast future 

collisions and provide a more comprehensive understanding of MVCs in Maine?   

 

Methods 

Study Area 

The study was conducted in the state of Maine, USA, which covers a total area of 

approximately 84,000 km2. Maine has a humid continental climate, which is characterized by 

warm and wet summers and cold and humid winters (Peel et al. 2007). Forest takes up about 

89% of Maine land area, making Maine the most forested state in the US (Butler, 2017). 

These geographic features also make Maine a suitable habitat for moose. Since the early 

1900s, the moose population in Maine has increased from 2,000 to the current estimated 

population of 76,000 (MDIFW, n.d.). I based all my analyses on the 37,805 kilometers of 

road networks in Maine, because the Maine Department of Transportation (MEDOT) only 

documented MVCs happened on the roads. 
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Figure 1. Locations of 6,765 MVCs in Maine, USA between 2003 and 2013. 
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Data Collection 

 I obtained MVC data from 2003 to 2016 from MEDOT. Each record included the 

crash ID, crash location by latitude and longitude, road offset, accident date and time, light 

condition, crash road type, crash road speed limit, and crash road traffic volume. I discarded 

83 entries that had unknown date, time, or GPS location information, leaving 6,765 complete 

records for statistical analysis (Figure 1).  

I reviewed 24 journal articles on MVC patterns published between 1998–2018 to 

identify variables hypothesized to influence the probability of MVCs (Appendix 1). I based 

my selection on variable frequencies in the literature and data availability. I defined spatial 

variables as any predictors that remained constant over time and temporal variables as any 

predictors that changed values over time. I acquired 2011 National Land Cover Database 

(NLCD) from USDA (National Agricultural Library, 2011), 1-meter Digital Elevation 

Models (DEM; 2017), and National Hydrology Dataset (NHD; 2018) from USGS. I collected 

Maine road data from MEDOT (2018), which included road location, functional type, speed 

limit, and annual average daily traffic volume. I obtained data on annual moose harvest by 

township from 2005 to 2017 from Maine Department of Inland Fisheries and Wildlife 

(WDIFW). 

 For temporal data, I obtained daily air temperature, precipitation, relative humidity, 

snow cover, snow depth, soil moisture, vegetation cover, solar elevation, and solar angle data 

beginning January 1, 2005 from the National Oceanic and Atmospheric Administration 

(NOAA; 2019). The first seven layers were accessed through the North American Mesoscale 

Forecast System (NAM; National Centers for Environmental Information, 2019), which self-

updates online every three hours and is synchronized daily to a server at Bigelow Laboratory 

for Ocean Sciences. I decomposed the solar angle layer into U (East-West) and V (South-

North) directions in radian units.  

 

GIS Analysis 

 I used ArcGIS 10.6 (ESRI 2018) to display and analyze spatial data. All layers were 

projected in NAD 1983 UTM Zone 19N. I converted the road data into a 30 m2 raster layer 

and resized and snapped all layers to the same resolution. I chose this resolution because 30 

m2 was the least common multiple resolution of all data layers.  
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For the GIS model, I split the 6,765 MVC accident records into 80% modeling data 

and 20% validation data. I generated the same number of non-crash control points along road 

pixels for both modeling and validation. The GIS model was constructed using only spatial 

variables. I identified 16 quantitative and 2 categorical variables related to four different 

aspects: land features, topography, animal features, and road features (Table 1). I extracted 

and matched specific variable values to accident and control points after processing all raster 

data layers. 

 

Table 1. Names, definitions, and units of 16 quantitative and 2 categorical predictors 

evaluated to build the GIS model. 

 

I reclassified the 2011 NLCD layers into eight classes: water and wetland, deciduous 

forest, evergreen forest, mixed forest, shrub, grassland, developed area, and other (Appendix 

2). I created a 500-meter ring buffer around each road pixel and calculated the percentage 

area of each land cover type within the buffer (Figure 2; Zuberogoitia et al. 2014, Danks and 

Porter 2010, Gonser et al. 2009). I extracted all three types of forest raster pixels and  

Variable Definition Units 

Quantitative variables 

    Water and wetland % water and wetland cover within 500 m radius % 

    Deciduous forest % deciduous forest cover within 500 m radius % 

    Evergreen forest % evergreen forest cover within 500 m radius % 

    Mixed forest % mixed forest cover within 500 m radius % 

    Shrub % shrub cover within 500 m radius % 

    Grassland % grassland cover within 500 m radius % 

    Developed % developed area cover within 500 m radius % 

    Other % other land cover within 500 m radius % 

    Distance to forest Distance to the nearest forest m 

    Distance to waterbody Distance to the nearest waterbody m 

    Distance to wetland Distance to the nearest wetland m  

    Elevation Surface elevation above the Earth’s sea level m 

    Slope Degree elevation rise from neighboring locations Degree 

    Moose harvest density Moose harvest density by township #/km
2
 

    Road density Road density Roads/km
2
 

    Traffic volume Annual average daily traffic #/day 

Categorical variables 

    Road functional type Federal functional classification - 

    Speed limit Speed limit classification - 
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Figure 2. Sample MVC points with a 500-meter ring buffer overlaid on the reclassified 2011 

NLCD layer. The percentage of each land cover type within the buffer was calculated for 

each road pixel. 
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Table 2. Names, definitions, units, and treatments of 11 temporal and 13 spatial variables 

evaluated to build the MaxEnt model. 

Variable Definition Units 

Spatial variables 

    Land type Dominant land type within 500 m radius - 

    Dist. to forest Distance to the nearest forest m 

    Dist. to waterbody Distance to the nearest waterbody m 

    Dist. to wetland Distance to the nearest wetland m 

    Elevation Elevation above Earth’s sea level m 

    Slope Elevation rise from neighbor locations Degree 

    Aspect u direct. U direction of elevation rise in radian - 

    Aspect v direct. V direction of elevation rise in radian - 

    Moose harvest den. Moose harvest density by township #/km
2
 

    Road density Road density Roads/km
2
 

    Traffic volume Annual average daily traffic # 

    Road function Federal functional classification - 

    Speed limit Speed limit mph 

Temporal variables 

    Air temperature Mean daily surface air temperature K 

    Precipitation Total daily precipitation mm 

    Relative humidity Daily relative humidity above the ground % 

    Snow cover Mean surface snow cover  % 

    Snow depth Mean surface snow depth  m 

    Soil moisture Mean surface soil moisture transpiration kg/m
3
 

    Vegetation cover Daily surface vegetation cover % 

    Solar elevation Solar elevation angle above horizon degree 

    Azimuth u direct. U direction of azimuth angle  radian unit 

    Azimuth v direct. V direction of azimuth angle  radian unit 

 

converted them into a forest polygon shapefile. I split the NHD data into waterbodies 

and wetlands layers based on the types attribute. I then calculated the distances to the nearest 

forests, waterbodies, and wetlands from each road pixel. 

I processed the 1-meter DEM data to obtain a slope layer. I summed the total moose 

harvested from 2005 to 2017 in each township and divided it by a town’s area to calculate the 

moose harvest density. I then used kernel density to calculate the number of roads per square 

kilometer. All roads were categorized into one of the seven federal road function 
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classifications (Appendix 3; MEDOT 2018). I reclassified the speed limit data into three 

speed classes: low (10–40 mph), medium (45–55 mph), and high (60–75 mph).  

The MaxEnt model included 13 spatial variables (Table 2). I combined the eight land 

cover layers into a land type layer, which used an index number to demonstrate the dominant 

land cover type within 500-meter buffer (Appendix 2). I recoded the road functional type 

using an index number from 1 to 2 (Appendix 3). I used the original quantitative data for 

speed limit. Finally, I calculated an aspect layer from the 1-meter DEM data and decomposed 

it into U and V directions in radian units. These changes were made to avoid overfitting the 

models.  

 

Statistical Analysis 

 All statistical analyses were conducted in RStudio (R 3.5.1 2018). I first ran 

descriptive analyses to plot MVC trends by year, month, hour, and road speed limit. I tested 

the normality of spatial data and took the log values with base 10 to normalize skewed 

variables. I incremented all variable values by 1 before normalization to avoid taking log on 

zeros, which are not defined. I ran Welch’s two-sample t-tests on each quantitative variable 

and Pearson’s Chi-squared tests on each categorical variable to identify those that differed 

significantly between control and accident sites (p < 0.05; Seiler 2005, Malo et al. 2004, 

Mladenoff et al. 1995). I applied a correlation matrix on quantitative variables (r > 0.5) and 

Pearson’s chi-squared tests and Fisher’s exact tests on categorical variables (p < 0.05) to 

determine and remove any significantly correlated variables based on the Welch’s two-

sample t-test results. All categorical variables were then converted into dummy variables 

which take the value 0 or 1 to indicate the absence or presence of some categorical effect I 

also ran a prune tree to apply cost-complexity pruning on all data and to identify interaction 

terms to be included in the final model. 

 I ran a binary logistic regression test on all independent variables that distinguished 

between control and accidents sites and interaction terms identified from the prune tree (Rea 

et al. 2018, Beyer et al. 2012, Dussault et al. 2007). I used a stepwise model selection to 

optimize my model and a likelihood ratio test to check if either model fit the MVC data 

significantly better (p < 0.05). I repeated this optimization process until the variable set 

became stable. 
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 My final logistic regression model was plugged into ArcGIS to generate MVC 

probability predictions on each road pixel. I extracted predicted values of validation accident 

and control sites and converted values to a scale of 0 to 1. I then ran a one-tailed Welch’s 

two-sample t-test to validate if accident sites displayed significantly higher predicted MVC 

probabilities than control sites (p < 0.05). 

 

MaxEnt Analysis 

 All MaxEnt analyses were completed in an online version of RStudio that is installed 

on a server at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine. I used dismo 

(Hijmans et al. 2017) and dismotools (Record and Tupper 2018) R packages to run MaxEnt 

modeling and forecasting, but I also compiled all my algorithms to a new moosecrash 

package loaded on the Bigelow server. Maxent has a built-in measurement called area under 

the Receiver Operating Characteristic curve (AUC), which quantifies how accurately a model 

can identify a presence point from background ones (Yackulic et al. 2012). On a scale of 0 to 

1, an AUC value of 0.5 means a random model while an AUC value of 1 presents perfect 

predictions. The AUC index can be measured in two ways: the training AUC, which reflects 

the training gain of a model, and the testing AUC, which shows the forecasting accuracy 

(Yost et al. 2008). For this study, I sought the most parsimonious model that maximized the 

testing AUC with the fewest variables. 

  The MaxEnt model evaluated both static spatial and dynamic temporal variables. I 

used MVC records from 2005 to 2017 to build the MaxEnt model because the temporal data I 

obtained began in 2005. I divided the 5,495 MVC entries into 80% training data and 20% 

testing data. All these locations were treated as presence sites in MaxEnt modeling. I then 

generated 10 different sets of random non-crash points as unknown background sites 

following the 1:1 presence-unknown ratio for both training and testing data. I assigned each 

background site with a random date and time between 2005 and 2017 to assign them with 

temporal data. 

 Using the date, time, and cell number information, I was able to extract and match 

variable values to each presence and unknown sites. I ran the MaxEnt model 10 times using 

each variable individually and ranked on their mean testing AUC values. I calculated a 

correlation matrix on all variables for 1,000 times to construct 95% confidence intervals on 
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correlations. I identified any significantly correlated variable pairs (r > 0.5) and removed 

elements with a lower mean testing AUC. 

 I then grouped all independent variables into either a static set or a dyanmic set. For 

each variable set, I ran the MaxEnt model 10 times with different randomly selected 

background points, calculated the mean contribution of each variable, removed the least 

contributing one, and re-ran the model 10 times (Yost et al. 2008). I applied a one-tailed 

Wilcoxon signed rank test on their testing AUCs to determine if deleting a variable 

significantly dropped the model accuracy (p < 0.05; Yost et al. 2008). I repeated this process 

to find significant spatial and temporal variable sets with fewest variables and the highest 

testing AUC level. I combined the two significant variable sets and repeated the process 

above to finalize my MaxEnt base model. 

 With the MaxEnt base model that I developed, I was able to produce daily MVC 

forecasts. For any desired date after April 30, 2019, my algorithm used MVCs that happened 

within five days before and after the same date of every year between 2005 to 2017. The 10-

day window was selected to obtain enough data for modeling as well as to better detect 

climate patterns for a given time of the year. The model then randomly sampled 1,000 

unknown background points and assigned them with date and time within the same period. 

Using all variables in my model, MaxEnt adjusted itself to best fit these data and produced 

hourly MVC forecasts, which can be displayed on an interactive map 

(https://eco.bigelow.org/moosecrash_v0.001).  

 

Results 

 Both of my models suggest that MVCs in Maine are more likely to happen on roads 

with intermediate to high speed limits and traffic volumes, in or near forest cover, and close 

to wetlands. The MaxEnt model also incorporates sunlight, snow depth, humidity, and soil 

moisture in forecasting MVCs in Maine. My final MaxEnt model yielded a forecast AUC 

over 0.9, indicating a high forecast accuracy. Hourly MVC prediction can be accessed at 

https://eco.bigelow.org/moosecrash_v0.001. 

 

  

https://eco.bigelow.org/moosecrash_v0.001
https://eco.bigelow.org/moosecrash_v0.001
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Descriptive analysis 

 The annual number of MVCs in Maine has decreased from a high of 671 in 2004 to a 

low of 293 in 2016 (Figure 3). MVCs happen most frequently in the summer and fall (Figure 

4), between dusk and midnight (Figure 5), and on medium speed roads (Figure 6). June was 

the peak month for MVCs. Outside of medium-speed roads, interstate highways with a speed 

limit of 75 mph account for the most collisions.  

 

Static spatial model 

 My spatial analyses identified 14 out of 16 quantitative variables that differed 

significantly between accident and control sites (p < 0.05), 12 of which even significant at 

the p < 0.01 level (Table 3). Four groups of variables were significantly correlated (Appendix 

4): percentage developed area cover and distance to forest (r = 0.559), elevation and road 

density (r = –0.513), road density and moose harvest density (r = –0.570), and elevation and 

moose harvest density (r = 0.622). Percentage developed area cover, elevation, and road 

density were then removed to avoid multicollinearity. Although both road functional type (χ2 

= 4309.4, df = 7, p < 0.01) and speed limit (χ2 = 1532, df = 3, p < 0.01) had significant 

associations with MVCs, these two categorical variables were also significantly correlated to 

each other (χ2 = 11315, df = 21, p < 0.01). Therefore, only speed limit was used in the 

logistic regression model. The prune tree identified two interaction terms to be considered: 

traffic volume and speed high, and speed high and moose harvest density.  

 

 
Figure 3. Frequency of MVCs in Maine from 2003 to 2016 by year. 
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Figure 4. Frequency of MVCs in Maine from 2003 to 2016 by month. 

 

 
Figure 5. Frequency of MVCs in Maine from 2003 to 2016 by hour. 

 

 
Figure 6. Frequency of MVCs in Maine from 2013 to 2016 by road speed limit. 
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Table 3. Results of Welch’s two-sampled t-tests comparing means of quantitative variables 

at accident and control sites. Significance: * < 0.05, ** < 0.01, *** < 0.001. 

Variable 

Accident  

mean 

Control  

mean t-value p-value Significance 

% Water and wetland 0.958 0.948 –1.102 0.270  

% Deciduous forest 0.787 0.843 5.676 <0.001 *** 

% Evergreen forest 1.292 1.269 –2.895 0.004 ** 

% Mixed forest 0.988 0.918 –7.487 <0.001  *** 

% Shrub 0.613 0.483 –17.583 <0.001 *** 

% Grassland 0.173 0.175 0.393 0.694  

% Developed 1.203 1.184 –3.270 0.001 ** 

% Other 0.609 0.697 7.361 <0.001 *** 

Distance to forest 1.581 1.357 –17.844 <0.001 *** 

Distance to waterbody 2.251 2.197 –5.867 <0.001 *** 

Distance to wetland 2.095 2.162 6.309 <0.001 *** 

Elevation 2.186 1.871 –44.591 <0.001 *** 

Slope 0.723 0.755 4.638 <0.001 *** 

Moose harvest density 3.240 2.663 –48.106 <0.001 *** 

Road density 1.621 1.914 44.774 <0.001 *** 

Traffic volume 1.294 0.482 –60.401 <0.001 *** 

 

Table 4. Regression coefficients and p-values of spatial variables included in the final 

logistic regression model (AIC = 8441). Significance: * < 0.05, ** < 0.01, *** < 0.001. 

Variable Coefficients z-value p-value Significance 

(Intercept) –8.895 –26.935 <0.001 *** 

Deciduous forest cover 0.127 1.953 0.051  

Evergreen forest cover 0.513 7.077 <0.001 *** 

Mixed forest cover 0.307 3.658 <0.001 *** 

Shrub cover 0.343 4.642 <0.001 *** 

Other land cover –0.517 –10.462 <0.001 *** 

Distance to forest 0.214 3.781 <0.001 *** 

Distance to wetland –0.163 –3.212 0.001 ** 

Moose harvest density 1.060 22.613 <0.001 *** 

Traffic volume 1.795 5.301 <0.001 *** 

Speed high 3.438 3.773 <0.001 *** 

Speed medium 1.176 14.340 <0.001 *** 

Traffic volume: moose harvest den. 0.065 4.429 <0.001 *** 

Traffic volume: speed high –0.476 –2.011 0.044 * 
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Figure 7. Sample likelihoods to encounter MVCs at given road segments calculated based on 

the GIS logistic regression model. 
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My final static spatial model consisted of nine quantitative variables, two categorical 

variables, and two interaction terms (AIC = 8441; Table 4). The MVC probability of a given 

road pixel can be calculated by the following formulas (Figure 7):  

 

P(MVC) = 1 / (1 + e –(–8.895 + 0.127[deciduous] + 0.513[evergreen] + 0.307[mixed] + 0.343[shrub] – 0.517[other] 

+ 0.214[forest dist] – 0.163[water dist] + 1.795[traffic volume] + 1.060[moose den.] + 3.428[speed high] 

+ 1.176[speed medium] + 0.290[traffic volume * moose den.] – 0.476[traffic volume * speed high]) ) 

 

Predictions based on this logistic regression model reported a significantly higher mean 

MVC probability for validation accident sites compared to control sites (t = –53.424, df = 

2699, p < 0.001; Figure 8). This means that the model can effectively distinguish MVC 

hotspots in Maine. 

 

 
Figure 8. Comparison of predicted likelihoods to encounter MVCs at validation accident 

sites and control sites. 

 

Dynamic model 

 MaxEnt models constructed using single variables alone had mean testing AUC 

values ranging from 0.502 to 0.676. I removed traffic volume and road density from the 

spatial variable list, and azimuth v direction, air temperature, and snow cover from the 

temporal variable list to avoid multicollinearity (Appendix 5; Appendix 6). I identified seven 

significant spatial variables and six significant temporal variables that maximized the mean 

testing AUC of the corresponding variable group (Table 5). The final MaxEnt based dynamic 

model, constructed by combining these two sets, achieved a mean testing AUC of 0.721   
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Table 5. Summary for MaxEnt models and Wilcoxon signed ranked tests to determine 

significant spatial, temporal, and combined MaxEnt variable sets. Variables with * represent 

sets with the highest testing AUC level and fewest variables.  

# of variables Removed variable Mean testing AUC p-value 

Spatial variables    

    11 - 0.7068 1.000 

    10 Aspect u direction 0.7068 0.423 

    9 Distance to water 0.7067 0.116 

    8 Aspect v direction 0.7068 0.053 

    7 *Slope 0.7067 0.097 

    6 Distance to wetland 0.7065 <0.001 

Temporal variables 

    7 - 0.6575 1.000 

    6 *Precipitation 0.6575 0.116 

    5 Relative humidity 0.6571 0.025 

Spatial + temporal variables 

    18 - 0.7207 1.000 

    13 *(Significant sets only) 0.7207 0.188 

    12 Distance to wetland 0.7206 0.019 

 

Table 6. Variables selected in the MaxEnt model and their mean contributions after 10 

simulations. 

Variable Mean contribution (%) 

Spatial variables 

    Road functional type 61.963 

    Moose harvest density 17.933 

    Speed limit 3.699 

    Elevation 0.879 

    Distance to forest 0.738 

    Land type 0.127 

    Distance to wetland 0.036 

Temporal variables 

    Solar elevation 6.836 

    Vegetation cover 4.253 

    Azimuth u direction 2.236 

    Snow depth 0.816 

    Soil moisture 0.337 

    Relative humidity 0.146 
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(Table 6), which is above the generally acceptable model AUC standard of 0.7 (Yost et al. 

2008). All daily MVC forecasts simulated using these variables yielded a forecasting AUC 

over 0.9, indicating a high accuracy for these forecasts. The contributions of each variable 

vary among daily models, but remained the same ratio scales. Detailed hourly results are 

displayed on https://eco.bigelow.org/moosecrash_v0.001 (Figure 9). 

 

 
Figure 9. Sample MVC forecast at 7 pm, May 1, 2019, using variables identified in the 

MaxEnt model. The simulation is displayed on https://eco.bigelow.org/moosecrash_v0.001. 

 

Discussion 

 The results of this study suggest that predictive and dynamic MVC models can be 

developed to inform drivers of crash hotspots in Maine. I showed that both static spatial and 

dynamic models can identify key spatial and temporal factors that influence the probability 

of MVCs. Effectively applying these models allows for a more proactive, timely, and 

diagnostic response to MVCs in Maine and proposes a novel method to more 

comprehensively and generally understand and predict human-wildlife conflicts. 

 

MVC predictors 

 My spatial model suggests that MVCs in Maine are more likely to happen on roads 

with intermediate to high speed limits and volumes, in or near forest cover, and close to 

https://eco.bigelow.org/moosecrash_v0.001
https://eco.bigelow.org/moosecrash_v0.001
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wetlands. The dynamic MaxEnt model confirm the significance of forests, wetlands, and 

road features in predicting MVCs and identifies sunlight, snow depth, humidity, and soil 

moisture as significant temporal indicators in generating daily and hourly forecasts. This 

spatial MVC pattern identified by my model is very similar to MVC patterns identified in 

central and western Massachusetts and western Maine, USA (Zeller et al. 2018, Snow et al. 

2015, Snow et al. 2014). Six out of the 17 potential MVC predictors appeared in both the 

static GIS model and the dynamic MaxEnt model (Table 7). Variables that were only 

included in one model were removed due to multicollinearity in the other model. These 

common factors further support that MVCs are influenced by moose behaviors, driver 

behaviors, road features, and landscape features (Rea et al. 2018).  

My model shows that high speed limits significantly increases the likelihood of 

MVCs in Maine. Road functional type had the highest contribution in the MaxEnt model but 

was removed due to multicollinearity in the spatial model. Vehicle speed is directly related to 

the reaction and decision-making time of a driver (Rea et al. 2018). In Maine, only 2.6% of 

the roads have a speed limit greater than 60 mph, yet 15.3% of crashes occurred on these 

roads. The majority (78.1%) of MVCs occurred along medium speed roads, which account 

for 65.9% of all roads in Maine.  

 Roadside vegetation influences moose foraging pattern and the ability of drivers to 

see animals (Rea et al. 2019). Moose are generalist browsers that consume 90% of their diet 

from browsing and less than 10% from grazing (Renecker and Schwartz 2007). Signature 

deciduous hardwood species in Maine, such as the willow family (Salicaceae), the 

cottonwood genus (Populus), and the birch genus (Betula) as well as softwood species such 

as the conifers division (Pinophyta) are found on nearly 90% of Maine’s land, providing 

important leaf, stem, and bud resources for foraging (Peek 1974). This supports the 

significances of all three forest land cover types and the distance to forest variable in both 

models. The closer a road is to forest clear-cuts and the larger its surrounding woodland, the 

more likely moose will appear (Tanner and Leroux 2015, Danks and Porter 2010, Seiler 

2004). To avoid foraging limitations, moose also seek low elevations and low snow depths in 

winter and return to more elevated and forested regions in summer (Kennedy-Slaney et al. 

2018). This pattern explains the role of elevation and snow depth in predicting MVCs using 

the MaxEnt model. 
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Table 7. Comparison between variables used in the GIS logistic regression model and the 

MaxEnt model. 

Variable GIS model MaxEnt model 

Spatial variables 

    Land cover / type ✓ ✓ 

    Distance to forest ✓ ✓ 

    Distance to wetland ✓ ✓ 

    Elevation  ✓ 

    Moose harvest density ✓ ✓ 

    Traffic volume ✓  

    Road functional type  ✓ 

    Speed limit ✓ ✓ 

Temporal variables 

    Solar elevation  ✓ 

    Vegetation cover  ✓ 

    Azimuth u direction  ✓ 

    Snow depth  ✓ 

    Soil moisture  ✓ 

    Relative humidity  ✓ 

 

 Water plays a minimal role in both of my models, contrasting previous research that 

the presence of visible waterbodies significantly predicts MVCs (Rea et al. 2004). The only 

water-oriented variable that appears in both models is the distance to wetlands, which is 

widely supported by other studies (Snow et al. 2014, Danks and Porter 2010, Dussault et al. 

2007). Moose use wetlands and bogs for seasonal foraging and cooling (Innes 2010). Moose 

also favor moist woodland during dry seasons (Kennedy-Slaney et al. 2018), supporting my 

finding that soil moisture and relative humidity are significant predictors in the dynamic 

model. Moose typically prefer to forage at shallow edges of waterbodies (Innes 2010) 

because large rivers and lakes create movement barriers (Rea et al. 2014). Therefore, 

watercourse density may provide a more accurate representation of water compared to what I 

used to build my model. 

 Solar elevation and azimuth u direction are two of the most influential temporal 

variables identified in my dynamic model. Solar position and sun intensity determine the 

light condition when a crash happens. Their significance is supported by finding that MVCs 

occur most frequently before and after dusk and dawn because moose are more mobile 
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(Hikonen and Summla 2001, Joyce and Mahoney 2001, Gundersen Andreassen) and 

visibility of drivers is lower during those time periods (Niemi et al. 2013, Hikonen and 

Summala 2001). 

 

Model comparison 

 I used different statistical methods to build the static GIS and dynamic MaxEnt 

models, which create boundaries in quantitatively comparing the effectiveness of two 

models. However, qualitatively speaking, the spatial model explicitly describes the effect of 

each variable by showing whether it leads to a higher or lower probability of crashes, while 

the dynamic model ranks predictors by their importance and contributions. During model 

construction, MaxEnt assigned numeric indices to categorical variables for calculation. As a 

result, the final model only indicates if variables such as land cover and road function are 

significant indicators of MVC, but the model is not able to compare the impacts of specific 

land cover and road functional types. 

 The objective of this study was to develop a predictive and dynamic model of MVCs 

in Maine. The underlying mechanism of both models is collecting presence and unknown 

data to summarize ecological patterns and make predictions on a broader scale. The static 

model considers spatial factors only and meets the goal of being predictive by providing a 

generalized representation of potential crash hotspots. This is the most common type of 

predictive ecological model (Jackson et al. 2000) and resembles existing products in 

forecasting wildlife-vehicle collisions (Zeller et al. 2018, Snow et al. 2015, Gundersen and 

Andreassen 1998). The dynamic model, on the other hand, incorporates both spatial and 

temporal factors and subdivides the MVC patterns into numerous conditions based on the 

climate data. The MaxEnt tool applies a machine learning technique to look through all 

probabilities and find the model with the highest information entropy (Yost et al. 2008). This 

technique allows the model to react to as many sub-conditions as the user requests and 

generate new forecasts accordingly. Therefore, the dynamic model not only considers 

environmental features more comprehensively but can also adapt to changes in weather 

flexibly and provide a more accurate and realistic representation of MVC hotspots. This 

model can then be adopted to develop innovative mitigation approaches that are potentially 

effective over a longer period of time.  
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Future research 

 This study evaluated 32 potential MVC indicators identified from previous literature 

to build static and dynamic models of MVCs in Maine. These variables were selected based 

on their frequencies in the literature and data availability. Difficulties in collecting and 

obtaining adequate data and quantifying descriptive factors prevent more variables to be 

considered. Land connectivity, complexity, and similarity determine the extent to which a 

landscape can support density and biodiversity and facilitate species movements and 

interactions (Rudnick et al. 2012). Adding in measurements on forest connectivity, edge 

effects, and road curvature may enhance understandings of how moose use the landscape 

(Rea et al. 2014, Christie and Nason 2004). 

The only directly moose-related variable used in my study was moose harvest density 

at the township scale. I used this is an indirect estimate of moose abundance because Maine 

does not have detailed moose distribution data. MVCs are not evenly distributed in space and 

time, which means that patterns observed at broader and finer scales may not necessarily 

correspond (Seiler 2004). Using a state-wide inventory of moose presence, distribution, and 

abundance would provide a more useful and accurate representation of where moose 

populations are high. 

Moose behavioral characteristics such as breeding, herding, and migration also affect 

moose distribution (Innes 2010), but are harder to measure quantitatively. Climate change is 

leading to increased tick (order Ixodida) abundance, which leads to increased moose 

mortality and may cause moose populations to shift their range (Rempel 2010). This may 

partially explain the decrease in MVC frequency over time and impact the ability of the 

model to predict future collisions without better moose distribution and behavior data. My 

descriptive analyses also demonstrate that seasonal patterns exist in MVCs. Generating and 

comparing seasonal MVC models may provide a more comprehensive understanding of the 

relative impacts of variables by season, and thus contribute to a more accurate prediction of 

MVCs. 

The MaxEnt model developed in my study is essentially “static-dynamic.” Usage of 

the same variable combination throughout the entire process hinders its ability to be fully 

auto-learning. A “dynamic-dynamic” MVC model will ideally enable updating and filtering 

which variables to use every time it needs to make a new prediction. This also demonstrates 
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the potential and importance of incorporating citizen science data in present HWC studies. 

For example, it could be improved to receive real-time crash and moose sighting reports 

(Record et al. 2017). Constantly enlarging the learning library from data input can 

significantly improve the robustness of my model and enhance current understandings of 

MVC patterns. Modelers also need to be aware of the risk of multi-collinearity and avoid 

overfitting as more variables are included, which leads to an inaccurate representation of 

predictors’ impacts on MVCs.   

Overall, my static spatial model and dynamic model provide a proactive and 

diagnostic strategy to identify areas with high MVC risks. This information could be used to 

further advise existing MVC mitigation methods and developing new interventions in Maine. 

This study also constructs a framework that can be replicated in other geographical locations 

and with other species to identify and manage areas with high risks of animal-vehicle 

conflicts. My model suggests that it is possible to combine spatial static data and dynamic 

weather data to develop innovative approaches to model human-wildlife interactions and 

contribute to a more comprehensive understanding of complex coupled human-nature 

system. 
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Appendix 1.  

Variables hypothesized to influence probability of MVCs identified by reviewing 25 journal 

articles on MVC patterns, sorted from the most to least mentioned. 
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Appendix 2.  

Land cover categories before and after reclassifying the 2011 NLCD data and their 

correponding index used in the MaxEnt model (National Agricultural Library, 2011). 

Reclassification  NLCD index NLCD classification MaxEnt index 

Water and wetland 

11 Open water 

1 
12 Perennial ice/snow 

90 Woody wetlands 

95 Emergent herbaceous wetlands 

Deciduous forest 41 Deciduous forest 2 

Evergreen forest 42 Evergreen forest 3 

Mixed Forest 43 Mixed forest 4 

Shrub 
51 Dwarf scrub 

5 
52 Shrub/scrub 

Grassland 

71 Grassland/herbaceous 

6 
72 Sedge/herbaceous 

73 Lichens 

74 Moss  

Developed area 

21 Developed, open space 

7 
22 Developed, low intensity 

23 Developed, medium intensity 

24 Developed, high intensity 

Other 

31 Barren land (rock/sand/clay) 

8 81 Planted/hay 

82 Cultivated crops 
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Appendix 3.  

Road function classifications according to Federal Highway Administration (FHWA) with 

detailed definitions and index numbers used in the MaxEnt model (MEDOT, 2018). 

Class Definition Index 

Interstate 
Roads with the highest speeds over the longest 

uninterrupted distance 
1 

Other freeway or expressway Freeways and multilane highways 2 

Other principal arterial 
Other important roadways that supplement the 

Interstate System 
3 

Minor arterial 
Other minor roadways that supplement the 

Interstate System 
4 

Major/urban collector Major roads that connect local roads and streets  5 

Minor collector Minor roads that connect local roads and streets  6 

Local Primary road to local areas 7 
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Appendix 4.  

Correlation matrix of all variables evaluated to build the GIS model. 
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Appendix 5.  

95% confidence intervals of the correlation matrix of spatial variables evaluated to build the 

MaxEnt model. 
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Appendix 6.  

95% confidence intervals of the correlation matrix of spatial variables evaluated to build the 

MaxEnt model. 

Lower A B C D E F G H I J 

A 1.000          

B 0.067 1.000         

C -0.738 -0.049 1.000        

D 0.241 0.012 0.310 1.000       

E 0.010 0.025 -0.026 0.009 1.000      

F 0.016 0.000 -0.024 0.119 0.376 1.000     

G -0.196 -0.015 -0.234 -0.751 0.029 -0.048 1.000    

H -0.144 -0.016 -0.127 -0.541 0.030 -0.003 0.614 1.000   

I -0.022 -0.033 0.033 0.002 0.009 -0.004 0.125 0.080 1.000  

J 0.243 0.007 0.326 0.850 -0.016 0.072 -0.708 -0.477 0.268 1.000 

 

Upper A B C D E F G H I J 

A 1.000          

B 0.069 1.000         

C -0.738 -0.047 1.000        

D 0.244 0.015 0.313 1.000       

E 0.013 0.028 -0.024 0.012 1.000      

F 0.018 0.003 -0.022 0.122 0.378 1.000     

G -0.193 -0.012 -0.231 -0.750 0.032 -0.046 1.000    

H -0.141 -0.013 -0.125 -0.539 0.032 -0.001 0.617 1.000   

I -0.020 -0.030 0.035 0.004 0.011 0.000 0.126 0.082 1.000  

J 0.246 0.010 0.329 0.851 -0.013 0.075 -0.707 -0.475 0.271 1.000 

(A–J: Solar elevation, azimuth u direction, azimuth v direction, air temperature, precipitation, 

relative humidity, snow cover, snow depth, soil moisture, vegetation cover) 
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