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2 Introduction

Cryptography stems from the desire to secure private communications
in the face of unwanted eavesdroppers. Developments in ensuring the
secrecy of messages have been spurred by developments in cryptanalysis:
the study of finding ways to gain unintended access to private communi-
cations by third parties. The field has grown from simple Caesar ciphers
to the RSA cryptosystem and beyond. Now, cryptography is a heavily
mathematical field, with new systems of cryptography (or cryptosystems)
being designed around difficult mathematical problems. The difficulty of a
problem ensures the secrecy of the message and is measured by the power
of existing computers to algorithmically solve it.

Typically, a cryptographic scenario is framed as Bob wanting to send
a secret message to Alice, with Eve aiming to eavesdrop. Bob transforms
his message from readable plaintext into encrypted ciphertext by using some
cryptographic algorithm; this algorithm uses a key, which is some mathe-
matical information determining the output of the algorithm. Alice receives
the ciphertext and deciphers it, also using a key, to reveal the plaintext and
read the original message. Traditionally, Bob and Alice had to physically
exchange the key(s). The Diffie-Hellman key exchange revolutionized this
by having Bob and Alice exchange values gb, ga publicly and computing
the key gba privately. Another important innovation was the RSA cryp-
tosystem by Rivest, Shamir, and Adleman in 1978. This was one of the first
public-key cryptosystems, a concept which we introduce in Chapter 7. The
RSA problem can be summarized as finding the k-th roots of an arbitrary
composite number P modulo N.

With the advent of quantum computing, which is tremendously more
powerful than traditional computing, many cryptosystems relying on tra-
ditional problems such as the Discrete Log Problem are in danger of being
broken [12]. This fear has led to the development of post-quantum cryp-
tography: problems believed to be safe against attacks even by quantum
computers. These problems have to be both extremely hard to break and
also practical to implement.

A leading candidate in the umbrella of post-quantum cryptography
is lattice-based cryptography. Cryptosystems such as NTRU are based
on difficult problems related to mathematical objects called lattices. In
Chapter 3, we develop an understanding of lattices and analyze two of
the problems which render lattice-based cryptography useful: the Shortest
Vector Problem and the Closest Vector Problem. We then move our attention
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to cryptanalytic methods with which to solve these problems. In Chapter
4, we examine an algorithm used to solve the Closest Vector Problem. In
Chapter 5, we examine an algorithm used to solve the Shortest Vector
Problem in two dimensions. This progression builds to a discussion of the
LLL Algorithm in Chapter 6, an algorithm which is useful for solving these
problems in higher dimensions. In Chapter 7, we discuss an application of
the LLL Algorithm in breaking knapsack cryptosystems.
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3 Lattices

A lattice is similar to a real vector space, the only restriction being that a
lattice is closed under scalar multiplication only with integers and not with
all real numbers. We start with a few formal definitions.

3.1 Basic Definitions and Properties

We revisit a few basic definitions from linear algebra in order to establish
notation.

Definition 3.1.1. For a vector space V ⊂ Rm, a basis is a set of linearly
independent vectors b0, b1, ..., bn−1 in V that span V . A basis is referred to
as orthogonal when 〈bi, bj〉 = 0 for all i 6= j.

Many processes become simpler when dealing with an orthogonal basis.
The Gram-Schmidt Algorithm is a standard algorithm for computing the
orthogonalization of a given basis. We take for granted the result of the
algorithm. We define the projection operator by µu(v) := 〈v,u〉

〈u,u〉u.

Definition 3.1.2. Let B be a basis for a vector space V ⊂ Rm. The Gram-
Schmidt Algorithm is as follows:

Set b∗0 = b0.

Loop i = 1, ..., n− 1.
Set b∗i = bi −∑i−1

j=0 µb∗j
(bi).

End Loop.

Return B∗ = {b∗0 , b∗1 , ..., b∗n−1}.

To build our initial understanding of a lattice, we see that it is generated
by a basis. This is a linear algebraic approach, and we consider a geometric
approach later.

Definition 3.1.3. Given a basis B = b0, b1, ..., bn−1 of Rm, we define the
lattice generated by B as

L(B) :=

{
n−1

∑
i=0

xibi | xi ∈ Z

}
.

Notice how slightly the definition of a lattice differs from the definition
of a real linear span, which should be familiar from linear algebra.
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Figure 1: A basis B = {(3, 0), (2, 4)} and the generated lattice L(B).

Definition 3.1.4. Given a basis B = b0, b1, ..., bn−1 of Rm, we define the
real linear span of B as

S(B) :=

{
n−1

∑
i=0

xibi | xi ∈ R

}
.

For brevity’s sake, when we refer to a lattice we will omit mention of
a basis unless necessary. So, we will typically denote an arbitrary lattice
by L, reserving the notation L(B) for when we are interested in the basis
B. In this paper, we exclusively deal with full-rank lattices, i.e. lattices with
n = m. We generally assume that a given basis is a subset of Rn unless
stated otherwise.

An important characteristic of any lattice is the length of its shortest
nonzero vector. We refer to this characteristic as the minimum distance of
the lattice. By length, we mean the Euclidean norm, which we will denote
by ‖‖.

Definition 3.1.5. The minimum distance of a lattice L is

λ0(L) := inf{‖v‖ | v ∈ L \ {0}}.

Theorem 3.1.6. For any lattice L(B), there exists a lattice vector v ∈ L(B) such
that ‖v‖ = λ0(L).

Proof. Proof adapted from Theorem 1.1 of [15].
Fix some L(B), where we have the basis B = {b0, b1, ..., bn−1}. First,

we will establish that λ0(L) has a nonzero lower bound, and so that λ0(L)
is positive. Consider the Gram-Schmidt orthogonalization

B∗ = {b∗0 , b∗1 , ..., b∗n−1}.
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Let b∗ = min({‖b∗i ‖}). We claim that

λ0(L) ≥ ‖b∗‖ > 0.

Consider some v ∈ L. Note that we can choose x0, x1, ..., xn−1 ∈ Zn so that
v = ∑n−1

i=0 xibi. Let k be the largest index such that xk 6= 0. We see that
∑n−1

i=0 xibi = ∑k
i=0 xibi. We prove that

‖
k

∑
i=0

xibi‖ ≥ ‖b∗k‖ ≥ ‖b∗‖.

We consider the dot product of v and b∗k :

〈
k

∑
i=0

xibi, b∗k〉 =
k

∑
i=0
〈bi, b∗k〉xi = 〈bk, b∗k〉xk,

since bi and b∗k are orthogonal for all i < k.
By the Gram-Schmidt Algorithm and the linearity of the dot product:

〈bk, b∗k〉xk = 〈b∗k +
k−1

∑
i=0

µb∗i
(bk), b∗k〉xk

= 〈b∗k , b∗k〉xk +
k−1

∑
i=0

〈b∗i , bk〉
〈b∗i , b∗i 〉

〈b∗i , b∗k〉xk.

It follows that 〈bk, b∗k〉xk = ‖b∗k‖2xk. By the Cauchy-Schwarz Inequality:

‖
k

∑
i=0

xibi‖‖b∗k‖ ≥
∣∣∣‖b∗k‖2xk

∣∣∣ = ‖b∗k‖2 |xk| ≥ ‖b∗k‖2,

since xk is a nonzero integer. Thus, we have shown that ‖∑k
i=0 xibi‖ ≥

‖b∗k‖ ≥ ‖b∗‖. Therefore, ‖v‖ > 0 for any v ∈ L(B). We have thus estab-
lished a positive lower bound for λ0(L), and now all that remains is to
show that there is a nonzero lattice vector of length exactly λ0(L).

Since λ0(L) is by definition the infimum of a set of real numbers, there
must exist a sequence of lattice vectors vi ∈ L such that

lim
i→∞
‖vi‖ = λ0(L).
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Hence, for large enough indices i, ‖vi‖ ≤ 2λ0(L) and so eventually the
lattice vectors vi belong to the closed ball R = {r ∈ Rm | ‖r‖ ≤ 2λ0(L)}.
Since R is compact, there is a convergent subsequence of vectors vij with
limit w ∈ R. We will show that w ∈ L. Since lim

j→∞
vij = w, we have

that lim
j→∞
‖vij‖ = ‖w‖ and hence that lim

j→∞
‖vij −w‖ = 0. Hence, for large

enough indices j, ‖vij −w‖ < λ0(L)
2 . So, for large enough j and for all l > j,

‖vij − vil‖ ≤ ‖vij −w‖+ ‖vil −w‖ < λ0(L).

Note that since vij − vil ∈ L and ‖vij − vil‖ < λ0(L), it must be the case
that vij − vil = 0. Thus, lim

l→∞
vil = vij . In other words, w = vij , and we have

shown that w ∈ L, as desired.

3.2 Fundamental Domains

We now introduce the concept of a fundamental domain for lattices.

Definition 3.2.1. For any basis B, we define the fundamental domain (or
fundamental parallelepiped) of L(B) to be the set

F (B) :=

{
n−1

∑
i=0

xibi | 0 ≤ xi < 1

}
.

• • • • • •

• • • • •

• • • • •

• • • • • •

Figure 2: The fundamental domain for the lattice generated by {(3, 0), (2, 4)}.

Fundamental domains have many interesting properties. One essential
property to note is that the volume of a lattice’s fundamental domain is an
invariant. To see this property, we first define a unimodular matrix.
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Definition 3.2.2. A square matrix U of integer entries is unimodular if
|det(U)| = 1.

The crux of this paper, as we will see, lies in the idea that multiple
bases can generate the same lattice. Given a basis B, we refer to its matrix
representation by B, so that

B =


b0
b1
...

bn−1

 .

Now, we will formalize the condition that allows two bases to generate
the same lattice. This condition has to do with the concept of a unimodular
matrix.

Theorem 3.2.3. For two bases B0,B1 for Rn, L(B0) = L(B1) if and only if
there exists a unimodular matrix U such that B0 = B1U.

Proof. Proof adapted from Theorem 2 of [14].
Let two bases B0,B1 for Rn be given. Observe that if U is unimodular,

then so is U−1. First, suppose that B0 = B1U for some unimodular U. Since
B0 = B1U, by the definition of a lattice it follows that L(B0) ⊂ L(B1). Since
B1 = B0U−1, by the definition of a lattice it follows that L(B1) ⊂ L(B0).

Now, we prove the other direction. Suppose that L(B1) = L(B0). Then,
by the definition of a lattice, there exists square integer matrices M, N such
that B0 = B1N and B1 = B0M. It follows that B0(I−NM) = 0, where I is
the identity matrix. Since the row vectors of B0 are linearly independent, it
follows that I = NM. Hence,

det(NM) = det(N)det(M) = det(I) = 1.

Since the entries of N, M are integers, it follows that

|det(N)| = |det(M)| = 1.

We now define the determinant of a lattice.

Definition 3.2.4. For any lattice L(B), we define the determinant of that
lattice to be det(L(B)) := Vol(F (B) = ∏n−1

i=0 ‖b∗i ‖.
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Next, we prove a different representation of the determinant of a lattice.

Theorem 3.2.5. For any basis B, we can express det(L(B)) as

det(L(B)) =
√

det(BTB).

Proof. Proof adapted from Theorem 6 of [14].
Consider some basis B. Consider also the Gram-Schmidt orthogonal-

ization B∗ and the corresponding matrix B∗. Observe that, by the Gram-
Schmidt Algorithm, there is an upper triangular matrix T with all 1s on

the main diagonal and the coefficients
〈b∗j ,bi〉
〈b∗j ,b∗j 〉

at the position Tji for all j < i,

such that B = B∗T. Thus, we can write√
det(BTB) =

√
det(BT(B∗T))

=
√

det((TTB∗T)(B∗T))

=
√

det(TT)det(B∗TB∗)det(T)).

Since T, TT are triangular matrices, both det(T), det(TT) are the products
of their respective diagonal entries. So, det(TT) = det(TT) = 1. Since
both B, B∗ have orthogonal columns, the matrix B∗B is diagonal. Hence,
det(B∗B), is the product of the diagonal entries of B∗B. Thus,

det(B∗TB∗) =
n−1

∏
i=0
〈b∗i , b∗i 〉 =

n−1

∏
i=0
‖b∗i ‖2 = det(L)2,

and so √
det(BTB) =

√
det(TT)det(B∗TB∗)det(T))

=
√

det(B∗TB∗)

= det(L).

We are now ready to prove that the volume of a lattice’s fundamental
domain is an invariant, using the previous few results.

Theorem 3.2.6. For any two bases B0,B1, if L(B0)) = L(B1)), then

det(L(B0)) = det(L(B1)).
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Proof. Proof adapted from Theorem 7 of [14].
Consider two bases B0,B1 such that L(B0)) = L(B1)). By Theorem

3.2.3, there exists a unimodular matrix U such that B0 = B1U. By Theorem
3.2.5, and since det(U) = det(UT) = 1 we have that

det(L(B0)) =
√

det(BT
0 B0)

=
√

det(BT
0 (B1U))

=
√

det((UTBT
1 )(B1U))

=
√

det(UT)det(BT
1 B1)det(U)

=
√

det(BT
1 B1)

= det(L(B1)).

Thus, we have shown that every fundamental domain of a lattice has
the same volume. Another interesting property to note is the relationship
between the volume of a lattice’s fundamental domain and a measure of the
orthogonality of its basis. This relationship is represented by the Hadamard
Inequality.

Definition 3.2.7. For any lattice L(B), the Hadamard Inequality states that

det(L)) ≤
n−1

∏
i=0
‖bi‖.

Equality is achieved only when the given basis is orthogonal. We use
the term Hadamard ratio to refer to the ratio

∏n−1
i=0 ‖bi‖
det(L) .

This makes sense by noting that since the basis vectors form the sides
of the fundamental domain, the volume of the fundamental domain is
maximized precisely when the basis vectors are orthogonal to one another.

A crucial aspect of the fundamental domain is that it provides a tiling
of Rn.

12



Theorem 3.2.8. For any basis B, a given vector w ∈ Rn can be expressed
uniquely as the sum f + v for a pair f ∈ F (B), v ∈ L(B).

• • • • • •

• • • • •

• • • • •

• • • • • •

•

Figure 3: Any real vector is the sum of a unique pair of one lattice vector and one
vector in the fundamental domain.

Proof. Proof adapted from Proposition 7.18 in [7].
Fix some basis B = {b0, b1, ..., bn−1}. Let some w ∈ Rn be given. Since

the vectors b0, b1, ..., bn−1 are linearly independent, they generate Rn. So,
we can write

w = α0b0 + α1b1 + ... + αn−1bn−1

for some {αi} ⊂ R. We can further express each αi as αi = fi + vi for some
fi ∈ [0, 1), vi ∈ Z. So,

w = ( f0 + v0)b0 + ... + ( fn−1 + vn−1)bn−1

= ( f0b0 + ... + fn−1bn−1) + (v0b0 + ... + vn−1bn−1).

Note that
f = f0b0 + ... + fn−1bn−1 ∈ F (B),
v = v0b0 + ... + vn−1bn−1 ∈ L(B),

giving us the existence of the desired pair of vectors so that w = f + v.
Now, we show uniqueness. Suppose w = e + u, where

e = e0b0 + ... + en−1bn−1 ∈ F (B),

u = u0b0 + ... + un−1bn−1 ∈ L(B),
and {ei} ⊂ [0, 1), {ui} ⊂ Z. Then, since b0, ..., bn−1 are linearly indepen-
dent, we have that

fi + vi = ei + ui

13



for all 0 ≤ i ≤ n− 1. Hence, for each i, fi − ei = ui − vi ∈ Z. Since each
fi, ei ∈ [0, 1), we must have that fi − ei = 0. So, ui − vi = 0. Thus, f = e
and v = u, as desired.

3.3 Successive Minima

It can be useful to consider not only the shortest nonzero distance of a
lattice, but also the second shortest nonzero distance, the third shortest, and
so on. We refer to these as the successive minima of a lattice, and denote
them as λ0(L), λ1(L), λ2(L), λ3(L),...,λn−1(L). The successive minima of
a lattice are defined similarly to the minimum distance of a lattice, and a
similar argument as the one above shows that they are in fact achieved
by lattice vectors. We now present a few results which will build toward
providing an upper bound for the successive minima of a lattice. The first of
these theorems, Blichfeld’s Theorem, makes a statement on the determinant
of a lattice.

Theorem 3.3.1. For any lattice L(B) and measurable set S ⊂ Rn with Vol(S) >
det(L), there are two distinct z1, z2 ∈ S such that z1 − z2 ∈ L.

Proof. Proof adapted from Theorem 8 in [17].
Consider some lattice L(B) and measurable set S ⊂ Rn. By Theorem

3.1.9, the translates of F (B) partition Rn. For x ∈ L, let

Sx = S ∩ (x +F (B)), Ŝx = Sx − x.

Since S =
⋃

x∈L Sx, we have that

Vol(S) = ∑
x∈L

Vol(Sx).

Note that Ŝx ⊂ F (B) and Vol(Ŝx) = Vol(Sx). Thus,

∑
x∈L

Vol(Ŝx) = ∑
x∈L

Vol(Sx)

= Vol(S)
> Vol(F (B)).

Therefore, there must be distinct z1, z2 ∈ L such that Ŝz1 ∩ ˆSz2 6= ∅. Pick
some z ∈ Ŝz1 ∩ Sz2 . Note that

z + z1 ∈ Sz1 ⊂ S, z + z2 ∈ Sz2 ⊂ S.

Thus, (z + z1)− (z + z2) = z1 − z2 ∈ L, as desired.
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Before discussing the results of Blichfeld’s Theorem, we provide a few
definitions from geometry.

Definition 3.3.2. A set is S ⊂ Rn is centrally symmetric if for any x ∈ S,
there also exists −x ∈ S.

Definition 3.3.3. A set S ⊂ Rn is convex if for any x, y ∈ S and α ∈ [0, 1],
there also exists αx + (1− α)y ∈ S.

As a result of Blichfeld’s Theorem, we attain the following corollary due
to Minkowski, which is called the Convex Body Theorem.

Theorem 3.3.4. For any latticeL(B) and centrally symmetric convex set S ⊂ Rn,
if Vol(S) > 2ndet(L) then S contains a nonzero v ∈ L.

Proof. Proof adapted from Theorem 9 in [17].
Consider some lattice L(B) and centrally symmetric convex set S ⊂ Rn

such that Vol(S) > 2ndet(L). Let Ŝ = 1
2 S. Note that

Vol(Ŝ) = 2−nVol(S) > det(L).

Then, by Blichfeld’s Theorem, there are two distinct z1, z2 ∈ Ŝ such that
z1 − z2 ∈ L. By construction, 2x1, 2z2 ∈ S. Since S is centrally symmetric,
−2x2 ∈ S. Since S is convex, 2z1−2z2

2 = z1 − z2 ∈ S, as desired.

We are now ready to show a bound for the minimum distance and the
successive minima of a lattice. The following corollary is called Minkowski’s
First Theorem.

Theorem 3.3.5. For any lattice L(B), λ0(L) ≤
√

n(det(L))1/n.

Proof. Proof adapted from Corollary 2 in [17].
Consider some lattice L(B). We denote the open neighborhood of

radius a centered at b by Na(b). Let ε > 0. Consider the cube

X =
{

x ∈ Rn | |xi| <
2ε

n
, 0 ≤ i ≤ n− 1

}
,

where we write x = (x0, x1, ..., xn−1). Note that X ⊂ Nε(0), and that
each side of X has length 2ε√

n . Thus, Vol(Nε(0)) ≥ 2ε√
n

n
. Also note that

L ∩Nλ0(L)(0) = ∅. By the Convex Body Theorem,

(2λ0(L))n

(
√

n)n ≤ Vol(Nλ0(L)(0)) ≤ 2ndet(L).

It follows that λ0(L) ≤
√

n(det(L))1/n, as desired.
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The following result, called Minkowski’s Second Theorem, strengthens
the bound given by Minkowski’s First Theorem by giving a bound that
considers the geometric mean of all successive minima λi, 0 ≤ i ≤ n− 1.

Theorem 3.3.6. For any lattice L(B),

( n−1

∏
i=0

λi(L)
)1/n

≤
√

n(det(L))1/n.

Proof. Proof adapted from Theorem 3 of [17].
Consider some lattice L(B). Let X = {x0, x1, ..., xn−1} ⊂ L be a basis

for Rn such that each ‖xi‖ = λi(L). Let X∗ be the Gram-Schmidt orthogo-
nalization of X. Consider the open ellipsoid E with axes x0

∗, x1
∗, ..., xn−1

∗:

E =
{

y ∈ Rn |
n−1

∑
i=0

( 〈y, xi
∗〉

‖xi
∗‖λi(L)

)2
< 1

}
.

We will first show that E does not contain any nonzero lattice vector. Pick
some nonzero w ∈ L and the largest index k such that ‖w‖ ≥ λk(L). By
our choice of X, it follows that w ∈ S({x∗0 , ..., x∗k}). Observe that

n−1

∑
i=0

( 〈w, xi
∗〉

‖xi
∗‖λi(L)

)2
=

k

∑
i=0

( 〈w, xi
∗〉

‖xi
∗‖λi(L)

)2

≥
n−1

∑
i=0

( 〈w, xi
∗〉

‖xi
∗‖λk(L)

)2

= λk(L)−2
n−1

∑
i=0

( 〈w, xi
∗〉

‖xi
∗‖

)2

=
‖w‖2

λk(L)2

≥ 1.

Thus, w /∈ E. Now, by the Convex Body Theorem,

Vol(E) ≥ 2ndet(L).

We also have that

Vol(E) =
( n−1

∏
i=0

λi

)
Vol(N1(0)) ≥

( n−1

∏
i=0

λi

)( 2√
n

)n
.
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Therefore, ( n−1

∏
i=0

λi

)( 2√
n

)n
≤ 2ndet(L),

i.e. ( n−1

∏
i=0

λi

)1/n
≤
√

ndet(L)1/n.

We have thus far introduced a linear algebraic concept of lattices. This
definition is convenient for use in computer science. At the same time, it
can also be helpful to look at lattices geometrically. We will reconcile the
linear algebraic and geometric definitions of lattices.

Definition 3.3.7. A discrete additive subgroup of Rn is an additive subgroup
G of Rn such that for all v ∈ G, there exists ε ∈ R such that

{w ∈ G | ‖v−w‖ < ε} = {v}.

Theorem 3.3.8. For any subset L ⊂ Rn, the following statements are equivalent.

1. L =
{

∑n−1
i=0 xibi | xi ∈ Z

}
for some basis B = {b0, b1, ..., bn−1}.

2. L is a discrete additive subgroup of Rn.

In proving Theorem 3.1.10, we will use the concept of a closed funda-
mental domain.

Definition 3.3.9. For any basis B, we define the closed fundamental domain
of L(B) to be the set

F (B) :=

{
n−1

∑
i=0

xibi | 0 ≤ xi ≤ 1

}
.

We now proceed to the proof of Theorem 3.1.10.

Proof. Let B ⊂ Rn be a set of linearly independent vectors b0, b1, ..., bn−1
generating a subset L ⊂ Rn. Since L is the set of all integer linear combina-
tions of B, for any vectors ∑n−1

i=0 xibi and ∑n−1
i=0 yibi in L we have that

n−1

∑
i=0

(xi + yi)bi,
n−1

∑
i=0

(−xi)bi ∈ L.
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Note that ∑n−1
i=0 0bi = 0 ∈ L. Thus, L is an additive subgroup of Rn. Then,

for any distinct v, w ∈ L, we must have that v−w ∈ L. It follows that
‖v−w‖ ≥ λ0(L). Let ε = λ0(L). Then,

{z ∈ L | ‖v− z‖ < ε} = {v},

as desired. Therefore, L is a discrete additive subgroup of Rn.
We have shown that Definition 3.1.3 implies Definition 3.1.10. We will

now prove the opposite direction. The proof in this direction is adapted
from [21].

Let L be a discrete additive subgroup of Rn. Choose y ∈ L such that
there is no ŷ ∈ L where ŷ = αy and α ∈ (0, 1). Let b0 = y. We now describe
a recursive method for selecting the vectors b1, b2, ..., bn−1.

For 0 ≤ i < n− 1, suppose b0, ..., bi have already been chosen. Choose
wi ∈ L such that wi /∈ S({b0, ..., bi}). Now, consider the closed fundamen-
tal domain F ({b0, ..., bi, wi}). Notice that F ({b0, ..., bi, ..., wi}) contains
wi and so contains at least one member of L. Observe that the intersection
L
′
= L ∩ F ({b0, ..., bi, ..., wi}) is closed, and so since F ({b0, ..., bi, ..., wi})

is compact L
′

must also be compact. Further observe that L
′

is discrete.
Hence, by a result of topology, L

′
is finite. By construction, we must have a

member of L in the set difference

F i = F ({b0, ..., bi, wi}) \ S({b0, ..., bi}).

We can express the distance from any singleton {α} to a set B as

dist({α}, B) = inf{‖α− β‖ | β ∈ B}.

It is a well-known result that this distance is well-defined and is achieved by
some β ∈ B if B is closed. Thus, since L∩F i is compact, for any α ∈ L∩F i
we can find βα such that dist({α}, B) = ‖α− βα‖. Further, since L ∩ F i is
finite, we can find some wi+1 ∈ L ∩ F i such that

dist({wi+1}, L ∩ F i) = min
{

dist({α},S({b0, ..., bi}) | α ∈ L ∩ F i

}
.

Let bi+1 = wi+1.
Since by construction each bi+1 /∈ S({b0, ..., bi}), the vectors b0, ..., bn−1

are linearly independent. We claim that

L =

{
n−1

∑
i=0

xibi | xi ∈ Z

}
.
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Note that each bi ∈ L and that L has closure under additivity as it is an
additive subgroup of Rn. It follows that{

n−1

∑
i=0

xibi | xi ∈ Z

}
⊂ L.

Now, consider some z ∈ L. Since b0, ...bn−1 are linearly independent,
they generate Rn. Hence, we can write

z =
n−1

∑
i=0

xibi

for some x0, ..., xn−1 ∈ R. We will show that, in fact, x0, ...xn−1 ∈ Z.
Consider z

′
= ∑n−1

i=0 bxicbi ∈ L. By closure,

z− z
′
=

n−1

∑
i=0

(xi − bxic)bi ∈ L.

Now, consider the distance

dist({z− z
′},S({b0, ..., bn−2}).

Notice that this distance equals (xn−1−bxn−1c)‖b∗n−1‖, which is the orthog-
onal component of the vector from z− z

′
to the closest point in S({b0, ..., bn−2}).

Thus, we have that

dist({z− z
′},S({b0, ..., bn−2}) = (xn−1 − bxn−1c)‖b∗n−1‖.

Similarly,
dist({bn−1},S({b0, ..., bn−2}) = ‖b∗n−1‖.

Since 0 ≤ xn−1 − bxn−1c < 1, we have that

(xn−1 − bxn−1c)‖b∗n−1‖ < ‖b∗n−1‖.

However, recall that by construction bn−1 is the closest member of L to
S({b0, ..., bn−2). Therefore, xn−1 − bxn−1c = 0 and so xn−1 ∈ Z. We
repeat this strategy for all xn−2, ...x0 to find that all the coefficients xi are
integers. Thus, z ∈

{
∑n−1

i=0 xibi | xi ∈ Z
}

and so L ⊂
{

∑n−1
i=0 xibi | xi ∈ Z

}
,

as desired.

We will primarily use the linear algebraic definition of lattices going
forward.
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3.4 Computational Problems

Any mathematical problem that is very difficult to solve without a crucial
piece of information makes a good candidate for a cryptosystem. Lattice-
based cryptosystems are based on two optimization problems thought to
be intractable, namely the Closest Vector Problem (CVP) and the Shortest
Vector Problem (SVP). The crux of the CVP is to find the lattice vector
closest to a given vector. The crux of the SVP is to find the shortest vector
of a given lattice, i.e. the to find the lattice vector whose length is λ0(L).
We first introduce the two problems formally, and then we discuss their
connection to the lattice properties which we have introduced.

Definition 3.4.1. Given a lattice L(B) and a vector w ∈ Rn, the Closest
Vector Problem (CVP) for (L, w) is to find some v ∈ L that minimizes
‖v−w‖.

Definition 3.4.2. Given a lattice L(B), the Shortest Vector Problem (SVP) for
L is to find some nonzero v ∈ L that minimizes ‖v‖.

Note that there may be multiple shortest vectors or closest vectors,
which is why the problems ask not for the vector but for some vector. The
SVP can be considered to be a variant of the CVP, as in the SVP we are
tasked with finding the closest nonzero lattice vector to the origin. The
SVP varies from the CVP in this regard only by the inclusion of the word
”nonzero”, as solving the CVP given the origin yields the origin itself. These
two problems are considered to be extremely computationally difficult, and
their difficulty grows with the dimension of the given lattice. In fact, the
CVP has been shown to beNP-difficult [5]. The SVP has been shown to be
no harder than the CVP [6], though under certain conditions it also is NP-
difficult [1]. However, as the dimension grows, it is also harder to form an
efficient cryptosystem based on these problems as it becomes increasingly
computationally taxing to encrypt information. Hence, in practice, we are
usually more interested in approximation variants of the SVP and CVP.

A naive yet straightforward approach to finding a shortest vector in
the lattice is determining the shortest basis vector. This approach tends to
have good results when dealing with a ”nice” basis, i.e. an orthogonal or
near-orthogonal basis. However, there is no guarantee that the approach
will yield a satisfactory result when dealing with a ”bad” basis, i.e. a far
from orthogonal basis.
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(a) B0 = {(3, 0), (2, 4)}

• • • • • • • • •

• • • • • • • •

• • • • • • • • •

• • • • • • • • •
• • • • • • • •

(b) B1 = {(11, 4), (19, 8)}

Figure 4: The set of shortest vectors (marked in red) from the origin of the lattice
generated by B0 includes the shortest basis vector (3, 0). The same cannot be said
for B1.

Example 3.4.3. Consider a lattice generated by B0 = {(3, 0), (2, 4)}. The
Hadamard ratio for B0 is ‖(3,0)‖‖(2,4)‖

12 = 3×2
√

5
12 ≈ 1.12. Though this basis

is not orthogonal, it is close enough to being orthogonal that the shortest
basis vector, (3, 0), is a shortest lattice vector along with (−3, 0).

Example 3.4.4. The same lattice as in the previous example can be gener-
ated by B1 = {(11, 4), (19, 8)}, since

2(11, 4)− (19, 18) = (3, 0),
−5(11, 4) + 3(19, 8) = (2, 4),

3(3, 0) + (2, 4) = (11, 4),
5(3, 0) + 2(2, 4) = (19, 8).

However, the Hadamard ratio for B1 is ‖(11,4)‖‖(19,8)‖
40 =

√
137×

√
425

40 ≈ 6.03.
The set of shortest vectors here does not contain the shortest basis vector,
(11, 4). So, computing the shortest vector of L(B1) is a more complex
problem than simply surveying the basis for a vector of minimum length.

See Figure 4 for an illustration of the preceding examples. We have
begun to see how having a ”nice” basis would be beneficial for breaking a
cryptosystem based on the SVP.

In the following chapters, we discuss algorithms aimed at solving the
SVP and the CVP. We also develop an understanding of the desirability for
orthogonal bases.
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4 Babai’s Closest Vertex Algorithm

The most common approach to solve the CVP is to use Babai’s Closest
Vertex Algorithm. In this chapter we introduce the algorithm and consider
examples that illustrate how the success of the algorithm is contingent on
the choice of basis. This chapter draws considerably from Section 7.6 in [7].

Suppose we want to solve the CVP for a given lattice L(B) and vector
w ∈ Rn, where B is orthogonal. Since B spans Rn, we can write

w =
n−1

∑
i=0

aibi

for some a0, a1, ..., an−1 ∈ R. Then, for any lattice vector v = ∑n−1
i=0 xibi, it

follows that

‖v−w‖2 =
n−1

∑
i=0

(xi − ai)
2‖bi‖2.

We can see that to solve the CVP for (L, w), we must minimize the
sum of (xi − ai)

2 over all i. Since each xi is an integer, each individual
difference |xi − ai| is minimized if xi = baie, where we denote the nearest
integer to ai by baie. Recall that, by Theorem 3.2.8, the translates of F (B)
by lattice vectors tile Rn. So, w is contained in some unique translate
F (B) + z ⊂ Rm. The vertex of the translate F (B) + z closest to w is a
candidate for a solution to the CVP. See Figure 5 for an illustration.

The method described above tends to be successful only when the given
basis is ”nice”, i.e. orthogonal or near-orthogonal. The method does not
work when the given basis is ”bad”, i.e. far from orthogonal.

Definition 4.0.1. For any lattice L(B) and vector w ∈ Rn, Babai’s Closest
Vertex Algorithm is as follows:

Find {ai} ⊂ R such that w = ∑n−1
i=0 aibi.

Loop i = 0, ..., n− 1.
Set xi = baie.

End Loop.

Return v = ∑n−1
i=0 xibi.
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Figure 5: For the target vector (3, 8), the vertex (4, 8) of the unique translate
F (B) + (1, 8) is our candidate to solve the CVP.

We consider two examples of the algorithm demonstrating varying
levels of success. See Figure 6 for an illustration.

Example 4.0.2. Suppose we are given a basis B0 = {(3, 0), (2, 4)} and a
vector w = (3, 8). Recall from Example 2.2.3 that the Hadamard ratio for
B0 is approximately 1.12. We wish to solve the CVP for (L(B0), w). We can
express w as a linear combination (3, 8) = a1(3, 0) + a2(2, 4). We can solve
the system to find a1 = −1

3 , a2 = 2 and thus x1 = 0, x2 = 2. This yields
the lattice vector v = 0(3, 0) + 2(2, 4) = (4, 8). We find that ‖v−w‖ = 1.
Given a near orthogonal basis, we have found the closest lattice vector to
w.

Example 4.0.3. Suppose we are given a basis B1 = {(11, 4), (19, 8)} and a
vector w = (3, 8). By Example 3.4.4, B1 generates the same lattice as B0
did in Example 4.0.2. Recall from Example 2.2.4 that the Hadamard ratio
for B0 is approximately 6.03. We wish to solve the CVP for (L(B1), w). We
can express w as a linear combination (3, 8) = a1(11, 4) + a2(19, 8). We can
solve the system to find a1 = −32

3 , a2 = 19
3 and thus x1 = −11, x2 = 6. This

yields the lattice vector v = −11(11, 4) + 6(19, 8) = (−7, 4). We find that
‖v−w‖ =

√
116 ≈ 10.77. Given a basis that is far from being orthogonal,

we have found a lattice vector quite far from w.
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(a) B0 = {(3, 0), (2, 4)}
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(b) B1 = {(11, 4), (19, 8)}

Figure 6: Target vectors marked red and the output of Babai’s algorithm marked
blue. The algorithm works well for near orthogonal bases like B1 but poorly for
far from orthogonal bases like B1.

Let us discuss the intuition behind this variability in the success of
Babai’s Closest Vertex Algorithm. The algorithm works by first finding
the translate of F (B) containing the given vector w. Call this translate
F + t. Next, it finds the closest vertex of F + t to w. When B is ”nice”,
the vertices of F (B) are relatively close to each other. So, the closest lattice
vector to w must be one of the vertices of F + t. When B is ”bad”, however,
the vertices of F (B) are relatively far from each other; thus, the algorithm
overlooks several lattice vectors in its attempt to find the closest vertex of
F + t to w. In our working example, given the ”bad” basis {(11, 4), (9, 8)},
the algorithm overlooks vectors such as (4, 8), (1, 8), (2, 4), (−1, 4), et cetera,
that are close to (3, 8) and settles for the translate’s closest vertex (−7, 4).

From our discussion up to now, we have seen that a ”nice” basis is
desirable when attempting to solve the SVP or the CVP. The following
chapters will focus on algorithms that aim to replace a given basis with a
more suitable one; we know that it is possible to do so and still generate
the same lattice by Theorem 3.2.3.
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5 Lagrange’s Reduction Algorithm

There are many lattice reduction algorithms, all aiming to transform any
given basis into a ”nice” basis. Each algorithm has its own definition of
what constitutes a ”nice” basis, but a common goal is to produce basis
vectors which are short and near orthogonal. In two dimensions, the
algorithm for finding a lattice’s optimal basis is due to Lagrange. It is often
misattributed to Gauss, who described the same procedure later. In this
section, we will present Lagrange’s Reduction Algorithm along with an
example. This will be an appropriate introduction for the next chapter,
which will discuss a generalization of Lagrange’s Reduction Algorithm to
higher dimensions: the LLL algorithm.

Recall the Gram-Schmidt Algorithm which we introduced in Definition
3.1.2. One might wonder why we don’t simply utilize the Gram-Schmidt
Algorithm if we wish to have an orthogonalized basis. After all, while we
are looking for algorithms to return a near-orthogonal basis, here lies an
algorithm which returns an orthogonal basis. The issue with using the

Gram-Schmidt Algorithm is that the projection coefficients
〈b∗i−1,bi〉
〈b∗i−1,b∗i−1〉

are
not necessarily integers. Thus, the resulting vectors in B∗ do not necessarily
lie in the given lattice.

Since the Gram-Schmidt Algorithm is not enough when dealing with
lattices, we instead focus here on the Lagrange Reduction Algorithm. This
algorithm produces what we call a Lagrange-reduced basis, which is the
first type of a ”nice” basis that we consider.

Definition 5.0.1. A basisB = {b0, b1} ⊂ R2 is Lagrange-reduced if it satisfies
the following conditions:

1. ‖b0‖ ≤ ‖b1‖.

2. |〈b1,b0〉|
〈b0,b0〉

≤ 1
2 .

We can refer to these two properties as saying that the basis is ordered and
near-orthogonal, respectively. Note that the fraction in the second property
is the coefficient in µb0(b1), As the basis vectors become closer to being
orthogonal, this coefficient gets smaller. In fact, when the vectors are
orthogonal, this coefficient equals 0.

A Lagrange-reduced basis is handy not just for rendering Babai’s Closest
Vertex Algorithm useful, but also for solving the SVP in dimension 2.
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Theorem 5.0.2. If a basis B ⊂ R2 is Lagrange-reduced, then b0 is a shortest
vector of L(B).

Proof. Proof adapted from Proposition 7.66 of [7].
Let B ⊂ R2 be a Lagrange-reduced basis. Then, we have that

‖b0‖ ≤ ‖b1‖, (1)
|〈b0, b1〉|
〈b0, b0〉

≤ 1
2

. (2)

Let v ∈ L(B) such that ‖v‖ = λ0(L(B)) be given. This means that v is a
shortest vector of L(B). (Recall that a lattice may have multiple shortest
vectors.) We will show that ‖b0‖ = ‖v‖.

We can express the given shortest vector as v = x0b0 + x1b1 for some
integers x0, x1. Since B is Lagrange-reduced, it follows that

‖v‖2 = ‖x0b0 + x1b1‖2

= x2
0‖b0‖2 + x2

1‖b1‖2 + 2x0x1〈b0, b1〉
≥ x2

0‖b0‖2 + x2
1‖b1‖2 − 2|x0x1|〈b0, b1〉

≥ x2
0‖b0‖2 + x2

1‖b1‖2 − |x0x1|〈b0, b0〉 by (2)

≥ x2
0‖b0‖2 + x2

1‖b0‖2 − |x0x1|〈b0, b0〉 by (1)

= (x2
0 + x2

1 − |x0x1|)‖b0‖2.

Note that x2
0 + x2

1 − |x0x1| = 0 only when x0 = x1 = 0. Since x0, x1 are
integers, it follows that

(x2
0 + x2

1 − |x0x1|)‖b0‖2 ≥ ‖b0‖2.

Thus, ‖v‖2 ≥ ‖b0‖2. Since b0 ∈ L(B) and v is a shortest vector of the
lattice, it must be that ‖v‖ = ‖b0‖. Therefore, b0 is a shortest vector of
L(B).

Thus, finding a Lagrange-reduced basis for a given lattice in dimension
2 can solve the SVP.

The time is ripe to examine Lagrange’s Reduction Algorithm. Any
basis for a subset of R2 consists of two basis vectors. The idea behind
Lagrange’s Reduction Algorithm is to create a Lagrange-reduced basis by
subtracting multiples of one basis vector from the other basis vector until
no improvement is possible. By Theorem 3.2.3, multiple bases can generate
the same lattice. That result ensures the validity of Lagrange’s Reduction
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Algorithm, which improves a given basis and produces another basis that
generates the same lattice. There are two main steps in the algorithm: a
swap step and a reduction step, which ensure that the output of the algorithm
abides by the two properties of a Lagrange-reduced basis.

Definition 5.0.3. For any lattice L(B) ⊂ R2, Lagrange’s Reduction Algorithm
is as follows:

Set b′0 = b0, b′1 = b1.

Loop

If ‖b′0‖ > ‖b′1‖
Swap b′0, b′1.

Compute m =
⌊
〈b′0,b

′
1〉

〈b′0,b′0〉

⌉
.

If m = 0
Break Loop.

Set b′1 = b′1 −mb
′
0.

Return B′ = {b′0, b′1}.

For a proof for the termination of the algorithm, refer to Proposition 3.1
in [20] . The key point to note is that the value min{‖b0, b1‖} decreases note
is that on each iteration of the algorithm, and so the projection coefficient
(which is the length of the projection) also decreases and is eventually
rounded to the nearest integer 0.

Notice that Lagrange’s Reduction Algorithm basis is Lagrange-reduced.
Swapping ensures that ‖b′0‖ < ‖b

′
1‖, and reducing b

′
1 by mb

′
0 ensures that

|〈b′0,b
′
1〉|

〈b′0,b′0〉
≤ 1

2 . Let us now consider an example.

Example 5.0.4. Suppose we are given a basis B = {(11, 4), (19, 8)}. We
apply Lagrange’s Reduction Algorithm to B.

1. We set b
′
0 = (11, 4), b

′
1 = (19, 8).

2. Since ‖b′0‖ = ‖
√

137‖ < ‖b′1‖ =
√

425, we do not swap.

3. We compute m = b209+32
137 e = 2. So, we set

b
′
1 = (19, 8)− 2(11, 4) = (−3, 0).
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Figure 7: The lattice generated by {(11, 4), (19, 8)}. In Step 3, the shorter basis
vector (11, 4) is subtracted twice from the longer basis vector (19, 8) to yield the
vector (−3, 0). The new values are b

′
0 = (11, 4), b

′
1 = (−3, 0), marked in red.

4. Since ‖b′0‖ = ‖
√

137‖ > ‖b′1‖ =
√

9, we swap. Now,

b
′
0 = (−3, 0), b

′
1 = (11, 4).

5. We compute m = b−33+0
9 e = −4. So, we set

b
′
1 = (11, 4)− (−4(−3, 0)) = (−1, 4).

• • • • • • • • •

• • • • • • • •

• • • • • • • • •

• • • • • • • • •
• • • • • • • •

Figure 8: The lattice generated by {(−3, 0), (11, 4)}. Note that the lattice is invari-
ant throughout the algorithm despite the changing basis vectors. In Step 5, the
shorter basis vector (−3, 0) is subtracted four times from the longer basis vector
(11, 4) to yield the vector (−1, 4). The new values are b

′
0 = (−3, 0), b

′
1 = (−1, 4),

marked in red.

6. Since ‖b′0‖ = ‖
√

9‖ < ‖b′1‖ =
√

17, we do not swap.

7. We compute m = b3+0
9 e = 0. So, we return B ′ = {(−3, 0), (−1, 4)}.
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Note that (−3, 0) is a shortest vector of L(B), as we demonstrated in
Example 3.2.3. Thus, the algorithm easily solves the SVP for the given
lattice in dimension 2.

Lagrange’s Reduction Algorithm is an important introduction to the
LLL Algorithm, which can be thought of a rough generalization of the two
dimensional algorithm to higher dimensions. In practice, lattice cryptosys-
tems in dimension 2 are easy to break by applying Lagrange’s Reduction
Algorithm. This makes lattices in dimension 2 highly impractical. It is far
more common to encounter lattices in higher dimensions. So, we reserve a
deeper algorithmic analysis of time complexity, applications, etc. for the
LLL Algorithm.
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6 The LLL Algorithm

As the dimension n increases, it becomes increasingly challenging to solve
the SVP. It is unclear how to construct a perfect analogue of the Lagrange Re-
duction Algorithm in higher dimensions because of several issues. Firstly, it
is uncertain what the right combination of preceding vectors b0, b1, ..., bi−1
is with which to reduce bi; this is straightforward to do in the dimension 2
case since for any basis vector there is only one other basis vector by which
it can be reduced. Secondly, in higher dimensions it requires many more
computations to order a basis as each basis vector must be compared with
multiple vectors.

In 1982, Lenstra, Lenstra, and Lovász published a new basis reduction
algorithm [10]. Their algorithm, which we call the LLL Algorithm, was
originally aimed at factoring polynomials over Q. The algorithm has many
applications in combinatorics and number theory, such as approximating
the minimal polynomial of an algebraic number, and integer programming
with a fixed number of variables [11]. In cryptography, there are many
known LLL-based attacks on knapsack cryptosystems and RSA cryptosys-
tems [13].

In this chapter, we discuss the algorithm’s usefulness with for solving
the SVP and CVP for lattices. First, we introduce the concept of an LLL-
reduced basis. Then, we present the algorithm. Finally, we provide an
example and analyze the algorithm’s complexity.

Recall that we denote the i-th basis vector as bi and the i-th Gram-
Schmidt vector as b∗i .

Definition 6.0.1. For 1
4 ≤ δ < 1, a basis B is δ-LLL-reduced if it satisfies the

following conditions:

1. δ‖b∗i−1‖2 ≤
∥∥∥ |〈b∗i−1,bi〉|
〈b∗i−1,b∗i−1〉

b∗i−1 + b∗i
∥∥∥2

for 1 ≤ i < n.

2.
|〈b∗j ,bi〉|
〈b∗j ,b∗j 〉

≤ 1
2 for 1 ≤ j < i ≤ n.

Similar to the property of a Lagrange-reduced basis, the second property
ensures reduction of basis vectors, and we refer to this property as saying
that the basis is near-orthogonal. For convenience, we generally use δ = 3

4
and refer to a 3

4 -LLL-reduced basis as an LLL-reduced basis. The value of δ

plays a crucial role in the ordering of the basis. The first property, which
we call the Lovász condition, serves to order the basis. δ acts as a scaling
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factor, ordering the basis not based on the lengths of vectors but on the
scaled lengths of vectors. The scaling serves to relax the Lovász condition,
making it easier for a basis to qualify as LLL-reduced. So, to satisfy the
Lovász condition, a basis need not be perfectly ordered, i.e. a basis does
not need to have the property that ‖b0‖ ≤ ... ≤ ‖bn−1‖. This allows an
algorithm which transforms a basis into an LLL-reduced basis to be more
efficient as it only needs to check a more relaxed set of criteria. As the value
of δ increases, the Lovász condition becomes harder to meet. We do not
allow δ = 1 even though this would ensure perfect ordering; as we will see
later, such a value of δ is thoroughly impractical. To see more readily the
ordering present in an LLL-reduced basis, observe that from the Lovász
condition it follows that

3
4
‖b∗i−1‖2 ≤

∥∥∥ |〈b∗i−1, bi〉|
〈b∗i−1, b∗i−1〉

b∗i−1 + b∗i
∥∥∥2

=
∣∣∣ 〈b∗i−1, bi〉
〈b∗i−1, b∗i−1〉

∣∣∣2‖b∗i−1‖2 + ‖b∗i ‖2,

with the equality resulting from the orthogonality of b∗i−1 and b∗i . Hence,

‖b∗i ‖2 ≥
(3

4
−
∣∣∣ 〈b∗i−1, b∗i 〉
〈b∗i−1, b∗i−1〉

∣∣∣2)‖b∗i−1‖2

>
1
2
‖b∗i−1‖2.

This shows how, in Regev’s words, the Lovász condition provides that
each vector b∗i is not much shorter than the preceding vector b∗i−1 [18]. It is
easy to verify that the statement

‖b∗i ‖2 ≥
(3

4
−
∣∣∣ 〈b∗i−1, b∗i 〉
〈b∗i−1, b∗i−1〉

∣∣∣2)‖b∗i−1‖2

implies the Lovász condition as stated in Definition 6.0.1. The ordering
given by the Lovász condition is desirable for solving the SVP. We now
introduce a theorem which gives an understanding of an LLL-reduced
basis’s desirability.

Theorem 6.0.2 (Proposition 1.11 in [10]). Let B be an LLL-reduced basis. Then,

‖b0‖ ≤ 2(n−1)/2‖v‖

for any v ∈ L(B).
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Proof. Proof adapted from Proposition 1.11 in [10]. First, we verify a lemma.

Lemma 6.0.3. Let B be an LLL-reduced basis. Then, ‖bj‖2 ≤ 2i‖b∗i ‖2 for
all 0 ≤ j ≤ i ≤ n− 1.

Proof of Lemma. We adapt the inductive argument from [10].
Let B be an LLL-reduced basis. By induction, we will show that

‖b∗j ‖2 ≤ 2i−j‖b∗i ‖2

for all 0 ≤ j ≤ i ≤ n− 1. For the base case, let j = 0. Then, we see that

‖b∗0‖2 ≤ 2‖b∗1‖2 ≤ ... ≤ 2n−1‖b∗n−1‖2.

Now, suppose that

‖b∗k‖2 ≤ 2‖b∗k+1‖2 ≤ ... ≤ 2n−1−k‖b∗n−1‖2.

It follows immediately that

‖b∗k+1‖2 ≤ 2‖b∗k+2‖2 ≤ ... ≤ 2n−k−2‖b∗n−1‖2.

Thus, ‖b∗j ‖2 ≤ 2i−j‖b∗i ‖2 for all 0 ≤ j ≤ i ≤ n− 1.
Let 0 ≤ j ≤ i ≤ n− 1. By the Gram-Schmidt Algorithm,

‖bi‖2 ≤ ‖b∗i ‖2 +
i−1

∑
j=0

〈b∗j , bi〉2

〈b∗j , b∗j 〉2
‖b∗j ‖2.

By the size condition of an LLL-reduced basis,

‖b∗i ‖2 +
i−1

∑
j=0

〈b∗j , bi〉2

〈b∗j , b∗j 〉2
‖b∗j ‖2 ≤ ‖b∗i ‖2 +

i−1

∑
j=0

2i−j

4
‖b∗i ‖2

= (1 +
2i − 2

2
)‖b∗i ‖2

≤ 2i‖b∗i ‖2.

Hence,
‖bj‖2 ≤ 2j‖b∗j ‖2 ≤ 2i‖b∗i ‖2

for all 0 ≤ j ≤ i ≤ n− 1, as desired.
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We continue with the proof of Theorem 6.0.2. Consider any arbitrary
nonzero v ∈ L(B) and write

v =
n−1

∑
i=0

xibi

=
n−1

∑
i=0

yib∗i

for some xi ∈ Z, yi ∈ R. Let k be the largest index such that xk 6= 0. Then,
by the Gram-Schmidt Algorithm, xk = yk. So, since yk is a nonzero integer,

‖b∗k‖2 ≤ y2
k‖b∗k‖2 ≤ ‖v‖2.

Hence,
2k‖b∗k‖2 ≤ 2k‖v‖2 ≤ 2n−1‖v‖2.

Then, by the lemma,

‖b0‖2 ≤ 2k‖b∗k‖2 ≤ 2n−1‖v‖2

and so
‖b0‖ ≤ 2(n−1)/2‖v‖,

as desired.

Thus, finding an LLL-reduced basis for a lattice finds an approximate
solution to the SVP within a factor of 2(n−1)/2. The LLL Algorithm, which
reduces a given basis into an LLL-reduced basis, is thus an approximation
algorithm for the SVP.

6.1 The Algorithm

We now describe the LLL Algorithm. There are a few moving parts to keep
track of. There are three objects which we need to follow.

1. B, the given set of basis vectors which we reduce and eventually
return upon the algorithm’s termination.

2. B∗, the set of Gram-Schmidt vectors.

3. k, which we call the working index. This value loops through the
cardinality of the basis. The corresponding basis vector bk, which we
call the working vector, is the vector in B which we are currently trying
to reduce.
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The algorithm broadly consists of two parts.

1. Given a basis B, we subtract from the working vector bk appropri-
ate integer multiples of the preceding vectors b0, b1, ..., bk−1. These
reductions are done in stages, and they ensure that the size condition
is met.

2. We decide, based on the Lovász condition, whether the working vec-
tor is set as the next basis vector or whether it replaces the preceding
basis vector. If the Lovász condition is not met, we swap the working
vector with the preceding basis vector and perform reduction again.

Upon termination of the algorithm, every basis vector will have un-
dergone reduction at least once. Though the basis vectors undergo many
changes, the algorithm ensures that they always form a basis for the same
lattice. Thus, when we calculate the Hadamard ratios to compare the
orthogonality of the input basis to that of the returned basis, the value
Vol(F (B) is the same in both calculations.

Definition 6.1.1. For any lattice L(B), the LLL Algorithm is as follows:

Compute B∗.
Set k = 1.
Loop while k ≤ n− 1.

Loop j = k− 1, k− 2, ..., 0.

Set bk = bk −
⌈ 〈b∗j ,bk〉
〈b∗j ,b∗j 〉

⌋
bj.

As necessary, recompute B∗.
If ‖b∗k‖2 ≥

(
3
4 −

〈b∗k−1,bk〉2
〈b∗k−1,b∗k−1〉2

)
‖b∗k−1‖2

Set k = k + 1.
Else

Swap bk, bk−1.

As necessary, recompute B∗.
Set k = max{k− 1, 1}.

Return B.

Observe that, if the LLL Algorithm terminates, the returned basis is
LLL-reduced. The j-loop ensures that each bk is reduced with regard to
every preceding vector bj, where 0 ≤ j < k, so that the size condition is met.
Also, if the algorithm terminates, we have k = n which means that every
basis vector will have passed the Lovász condition. An implementation of
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the LLL Algorithm can be accessed on GitHub at this link [8]. It is written
in Python 2.7 and uses NumPy.

We provide an example of the LLL Algorithm in Appendix 8.0.1. The
example features a 3-dimensional basis in order to emphasize the LLL
Algorithm’s application to higher dimensions.

The astute eye sees that several computations in the example could have
been avoided. For example, when k = 1, it is unnecessary to compute b∗2 as
b∗2 is not used in that pass of the algorithm. Such computations are included
in the example for the untrained eye to fully understand the algorithm
step-by-step, but this proves to be a naive implementation of the algorithm.
An astute implementation is able to update the appropriate Gram-Schmidt
vectors and projection operators as needed without recomputing B∗ upon
every change to B. When dealing with very high dimensions, it is necessary
to make smart configurations to the algorithm in order for the algorithm
to terminate in a reasonable amount of time. In the following section, we
discuss some concerns related to the running time and complexity of the
LLL Algorithm.

6.2 Complexity Analysis

It is not immediately clear that the LLL Algorithm terminates in finitely
many steps. Note that while incrementing k takes the algorithm closer to
termination, k can be decremented when we set k = max{k− 1, 1}. This
leads us to question whether the algorithm will ever exit the main k-loop
and terminate. This question is resolved in the discussion on Theorem 7.71
of [7]. In fact, Lenstra, Lenstra, and Lovász show that the LLL Algorithm
can terminate in polynomial time.

Theorem 6.2.1 (Proposition 1.26 in [10]). For a basisB, let ω > max({‖bi‖2}).
The number of arithmetic operations needed by the LLL Algorithm on B is in the
order of n4log(ω).

Proof. See Proposition 1.26 in [10] for the full proof. The overall idea is
as follows. Initialization of the algorithm takes a number of arithmetic
operations in the order of n3. Verifying the size condition requires a number
of operations in the order of n. Verifying the Lovász condition takes a
number of operations in the order of n2. Since the number of times that
the Lovász condition is checked is in the order of n2 log(ω), the number of
operations taken by the algorithm is in the order of n3 + n + n2(n2 log(ω))
which is equivalent to the order of n4 log(ω).
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Let us make a few remarks on the choice of δ in the algorithm. Note
that the value of δ, which we conventionally hold to be 3

4 , appears in the
algorithm when we check the Lovász condition. Using δ < 1 allows the
algorithm to run in polynomial time but can squander several opportunities
for reduction, since we do not swap whenever ‖b∗k‖2 < ‖b∗k−1‖2. The closer
δ is to 1, the more difficult the condition to increment the working index
becomes, thus leading to a better reduced and more orthogonal output.

When we use δ = 1, we refer to the LLL Algorithm as the optimal LLL
Algorithm, since it provides the best output. Earlier, we alluded to the fact
that the optimal LLL Algorithm is impractical though it ensures perfect
ordering. This is so because ensuring that the basis is perfectly ordered is a
very hard problem. If δ = 1, then the Lovász condition is very difficult to
meet; this results in the algorithm being stuck in the k-loop for a very long
time. In fact, given current implementations and computing power, the
optimal LLL Algorithm does not run in polynomial time. However, there
is still much research yet to be done in this area. In 2003, Akhavi, for the
first time, gave a proof for a linear bound for the number of iterations of
the optimal LLL Algorithm.

Theorem 6.2.2 (Theorem 15 in [2]). For a basis B, let θ > max({‖bi‖}). For
all constants C >

( 2√
3

)1/6, the number of iterations of the optimal LLL Algorithm

on B is in the order of Cn3
log(θ).

Proof. See Theorem 15 in [2] for the full proof. We omit the proof here.

To show that the optimal LLL Algorithm could run in polynomial time,
all that remains to be done is to show that each iteration takes polynomial
time. Since the number of iterations is linearly bounded, if each iteration
were to take polynomial time then the entire algorithm would clearly run in
polynomial time. However, it is still an open problem to find a polynomial
bound for the running of each iteration for the optimal LLL Algorithm.

6.3 Applying LLL to Cryptanalysis

The LLL Algorithm has a host of applications to cryptanalysis of cryp-
tosystems, such as GGH and NTRU, that are based on lattices. In the
following section, we demonstrate the algorithm’s application to knapsack
cryptosystems. The algorithm easily breaks knapsack cryptosystems in
low dimensions, and producing secure versions of knapsack cryptosystems
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requires dimensions so high that encryption becomes impractical. Thus,
knapsack cryptosystems have fallen out of use.
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7 Knapsack Cryptosystems

7.1 Basics on Public Key Cryptography

We quickly review a few basic ideas from public key cryptography in order
to develop a basic intuition without floundering in the intricate details.

Public key cryptography is a broad system of cryptography using two
sets of keys: a public key which is shared with the world and a private key
which is kept secret to a person. Bob wishes to send a secret to Alice which
only shee can read. Bob first comes up with his plaintext message and
encrypts it using Alice’s public key. He sends the ciphertext to Alice who
uses her private key to decrypt it and recover the original message. If Eve
intercepts the ciphertext on its way from Bob to Alice, she cannot decrypt
the message because she does not have access to Alice’s private key. In
some cases, Eve is able to figure out Alice’s private key if it has not been
generated with due diligence.

In theory, all public key cryptosystems are susceptible to brute force
attacks in which an eavesdropper attempts to decrypt the message by re-
peatedly guessing the private key. Such attacks are usually extremely
inefficient. There is always research being done to construct newer, faster,
and more powerful attack algorithms.

7.2 The Subset-Sum Problem

In the 1970s, Merkle and Hellman designed one of the earliest public key
cryptosystems. Their cryptosystem, which we call the Merkle-Hellman
cryptosystem, is based on a version of the classical knapsack problem. We
first introduce the classical knapsack problem, also called the subset-sum
problem.

Definition 7.2.1. Given a set of weights W = {w0, w1, ..., wn−1} ⊂ Z+ and
a value s ∈ Z, the subset-sum problem is to find a subset {wi0 , wi1 , ..., wik}, if
one exists, such that

k

∑
j=0

wij = s,

i.e. to find a subset of W whose elements sum to s.

An intuitive way to think of the subset-sum problem is the following: if
a person is handed a knapsack of capacity s and various items each with
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size wj, can they fill the knapsack perfectly with a sampling of the items?
We can formulate a cryptosystem based on this problem as follows:

Suppose the set W is Alice’s public key. Bob encrypts a message by
first choosing a secret vector x = (x0, x1, ..., xn−1) where each xi ∈ {0, 1},
and then sending the sum s = ∑n−1

i=0 xiwi to Alice. Thus, Bob has used the
set W as a type of alphabet, picking which letters he wishes to send by
assigning each index i to a value in the set {0, 1}. Alice, wishing to decrypt
Bob’s message, must find either x or another binary vector that yields s. By
finding a binary vector yielding s, Alice can find a subset of W, choosing
the integers wj where xj = 1 and discarding the integers wj where xj = 0.

Alice can employ brute force and compute every possible vector to find
x. This approach requires a number of computations in the order of 2n

and is thus regarded as incredibly inefficient, though a simple observation
provides a better approach that divides the exponent by 2. Consider the
following, more efficient, approach, which is described by Odlyzko in [16]:

Upon receiving the sum s from Bob, Alice splits the dimension n into
half, restricting her attention to the subsets of integer indices

I =
{

0 ≤ i ≤
⌈n− 1

2

⌋}
, J =

{⌈n− 1
2

⌋
< j ≤ n− 1

}
⊂ Z.

Alice generates the sets of sums

I =
{

∑
i∈I

xiwi | xi ∈ {0, 1}
}

,J =
{

s−∑
j∈J

xjwj | xj ∈ {0, 1}
}

.

She then looks for an element in I ∩ J . Observe that an element arises
in the intersection precisely when a solution to the subset-sum problem is
found, since if

∑
i∈I

xiwi = s−∑
j∈J

xjwj

for some selection of xi, xj ∈ {0, 1}, then

s = ∑
i∈I

xiwi + ∑
j∈J

xjwj

=
n−1

∑
i=0

xiwi.

This approach requires a number of computations in the order of n2n/2,
which is a significant reduction but still not close to practical. For a verifi-
cation of this approach refer to Proposition 7.3 in [7]. Of course, this level
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of difficulty in finding the vector x is good for protecting a message from
an eavesdropping Eve. However, it is equally difficult for the intended
recipient Alice unless we assume she has staggeringly more computational
power than any eavesdropper. Since this is not a practical assumption, the
general subset-sum problem does not generate a tenable cryptosystem.

7.3 The Merkle-Hellman Cryptosystem

In the above discussion, what Alice needs to make decryption feasible is
some secret information about W which allows her to more easily find x.
This leads us to discuss the Merkle-Hellman Cryptosystem, which is built
on an easier version of the general subset-sum problem.

Definition 7.3.1. A set of positive integers a0, a1, ..., ak is superincreasing if
ai > ∑i−1

j=0 aj for all 1 ≤ i ≤ k.

A simple example of a superincreasing set is {1, 2, 22, 23, ...}. Observe
that if W is superincreasing, then there is a simple recursive approach
for solving the subset-sum problem. Suppose Alice receives the sum s =
∑n−1

i=0 xiwi knowing that W is superincreasing. She solves for xn−1, xn−2, ..., x0

in that order. First, she notices that xn−1 = 1 if and only if s > ∑n−2
i=0 wi. So

Alice is able to find xi ∈ {0, 1} based on the sum of the preceding weights.
Next, she notices that xn−2 = 1 if and only if s− (xn−1wn−1) > ∑n−3

i=0 wi
and accordingly finds xn−2 ∈ {0, 1}. She employs this recursive approach
to find the entire vector x.

The Merkle-Hellman Cryptosystem is based on the superincreasing
subset-sum problem, making it easy for a recipient to decrypt a message.
However, it is just as easy for an eavesdropper to decrypt a message if
both the recipient and the eavesdropper have access to the same informa-
tion. The Merkle-Hellman Cryptosystem avoids this issue through the
use of secret modular linear transformations to disguise the superincreas-
ing W. Eavesdroppers will see the disguised public key P and assume
that it is a general knapsack, while Alice keeps the superincreasing W
private. Eavesdroppers are kept busy trying to solve the very difficult
subset-sum problem, while Alice applies the inverse of the secret modular
linear transformations to yield a superincreasing subset-sum problem. We
now describe the cryptosystem in detail. There are three major portions of
the cryptosystem: key generation, encryption, and decryption.

1. Key generation: Alice begins by generating a system to allow others
to send her messages.
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1.1. Alice chooses a superincreasing W = {w0, w1, ..., wn−1} such
that w0 > 2n. She also chooses positive coprime integers A, B
such that B > ∑n−1

i=0 wi.

1.2. Alice computes the vector p = (p0, p1, ..., pn−1) where

pi = Awi mod B.

Alice shares the public key p and keeps the private key (W, A, B)
secret.

2. Encryption: Bob converts a plaintext message into ciphertext, which
he then sends to Alice.

2.1. A plaintext message can be easily converted to binary using
ASCII encoding. Bob wishes to send a binary plaintext vector
x = (x0, x1, ..., xn−1), where each xi ∈ {0, 1}. He computes the
dot product

s = 〈x, p〉 =
n−1

∑
i=0

xi pi.

The sum s is the ciphertext which he sends Alice.

3. Decryption: Alice receives a ciphertext from Bob, which she converts
back into the original plaintext message.

3.1. Alice receives s. Knowing A, B, she computes

s′ = A−1s mod B

= A−1
n−1

∑
i=0

xi pi mod B

= A−1
n−1

∑
i=0

xi Awi mod B

=
n−1

∑
i=0

xiwi mod B.

Here, A−1 refers to the multiplicative inverse of A modulo B.
Now, Alice solves the subset-sum problem for s′ using the super-
increasing W and the recursive method outlined above. Since
∑n−1

i=0 xiwi < ∑n−1
i=0 wi < B, which is the modulus, Alice knows

that she has found an exact solution to the subset-sum problem
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and not a congruence. Alice recovers the vector x and reads the
message sent by Bob.

Let us have a brief discussion on the complexity of this cryptosystem.
Merkle and Hellman recommended applying several more modular op-
erations to add additional layers of security; these recommendations are
discussed at length by Odlyzko [16]. For a reasonable standard of security,
we must insist that w0 > 2n. If w0 > 2n, it follows from the superincreas-
ing nature of W that the sum s is in the order of 22n. This results in the
public key p being quite large compared to the public keys in the RSA
cryptosystem. Though the large key size is a slight inconvenience in terms
of information capacity, Merkle-Hellman turns out to be significantly faster
than RSA because it requires very few modular operations. Encryption re-
quires no modular operations, and decryption requires only a few modular
multiplications. Thus, Merkle-Hellman was attractive for its high speed.

However attractive the Merkle-Hellman cryptosystem was due to its
speed, several doubts were raised regarding its security. Fundamental
flaws in knapsack cryptosystems were uncovered in the 1980s by Shamir
[19] and others, but these were mainly of theoretical interest. The LLL
Algorithm provided a practical attack, which we now present.

7.4 The LLL Attack on Knapsack Cryptosystems

The following attack is described elegantly in [9]. Suppose Bob sends an
encrypted message s to Alice, who has made p public but has kept (W, A, B)
private. Unfortunately, an eavesdropping Eve intercepts the ciphertext. She
can connect the subset-sum problem to lattice as follows. Eve forms an
(n + 1)× (n + 1) matrix 

1 0 · · · 0 p0
0 1 · · · 0 p1
...

... . . . ...
...

0 0 · · · 1 pn−1
0 0 · · · 0 −s

 ,

and constructs a lattice basis B with the rows of the matrix, assigning
b0 = (1, 0, . . . , 0, p0), b1 = (0, 1, . . . , 0, p1), and so on. Thus Eve generates
L(B) ⊂ Rn+1. Eve wants to recover the vector x. She considers the lattice
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vector

X =
n−1

∑
i=0

xibi − bn

= (x0, x1, . . . , xn, 0).

Note that this vector is quite short, since each xi ∈ {0, 1}. So, there is a good
chance that X solves the SVP for L(B). Thus, we can transform the subset-
sum problem into a problem with which we are now very familiar. We can
utilize the LLL Algorithm to find the shortest vector of the lattice L(B), and
this vector has a high chance of being X. Lagarias and Odlyzko have found
that for almost all problems where n

log2 max{pi}
< 0.645, the vector X does

indeed solve the SVP [9]. Further, they found that for almost all problems
where n

log2 max{pi}
< 1

n , the first basis vector of the LLL-Reduced basis is in
fact X. Such problems where the value n

log2 max{pi}
is quite low are called

problems of low density. Even if the LLL Algorithm does not return X, Eve
can apply the algorithm nonetheless and find X in the LLL-reduced basis B.
Having found X, Eve can easily recover x. Let us provide a short example
in which the algorithm does not return X but includes X in the returned
basis.

Example 7.4.1. Example adapted from [3].
Alice chooses the superincreasing set W = {2, 5, 9, 21, 45, 103, 215, 450, 946}

and the coprime A = 1289, B = 2003. These make up her private key. No-
tice that 2003 > 1796 = ∑8

i=0 wi. She computes the vector

p = 1289(2, 5, 9, 21, 45, 103, 215, 450, 946) mod 2003
= (575, 436, 1586, 1030, 1921, 569, 721, 1183, 1570),

which she shares as her public key. Suppose Bob wishes to send Alice
the binary message x = (1, 0, 1, 1, 0, 0, 1, 1, 1). He encrypts the message by
computing the sum s = 〈x, p〉 = 6665, which he sends to Alice. Suppose
this message is intercepted by the eavesdropping Eve, who wishes to
recover x from s. All Eve knows is the public key p and the ciphertext s.
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Eve forms the matrix

1 0 0 0 0 0 0 0 0 575
0 1 0 0 0 0 0 0 9 436
0 0 1 0 0 0 0 0 0 1586
0 0 0 1 0 0 0 0 0 1030
0 0 0 0 1 0 0 0 0 1921
0 0 0 0 0 1 0 0 0 569
0 0 0 0 0 0 1 0 0 721
0 0 0 0 0 0 0 1 0 1183
0 0 0 0 0 0 0 0 1 1570
0 0 0 0 0 0 0 0 0 −6665


and forms B by letting b0 be the first row of the matrix, and so on. Applying
the LLL Algorithm to B yields the LLL-reduced basis with vectors

b0 =(−2,−1, 1, 0, 0, 0, 0, 0, 0, 0),
b1 =(0, 0, 0,−1, 0, 1,−1, 1, 0, 1),
b2 =(1,−1, 0,−2, 1, 0, 0, 0, 0, 0),
b3 =(0, 1,−1,−1, 1, 0, 2,−1, 0, 0),
b4 =(1,−1,−1, 1, 0, 2,−1, 0, 0, 0),
b5 =(0, 0,−1, 0, 1, 0,−1,−1, 1, 1),
b6 =(1, 0, 1, 1, 0, 0, 1, 1, 1, 0),
b7 =(−1,−1, 0, 1,−1, 0, 1, 1, 0, 2),
b8 =(−2, 0,−1, 0,−1, 0, 1, 2, 1, 0),
b9 =(1, 1, 0,−1,−2, 0, 1, 0, 2, 0).

It is trivial for Eve to scan the LLL-reduced basis and find that b6 solves the
superincreasing subset-sum problem. Thus, Eve finds X = (1, 0, 1, 1, 0, 0, 1, 1, 1, 0)
and easily recovers the plaintext x = (1, 0, 1, 1, 0, 0, 1, 1, 1).

We have built an understanding of lattices and basis reduction, and
have seen how a classical cryptosystem can be connected to lattices and
thus attacked by basis reduction algorithms.
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8 Appendix

Appendix 8.0.1. Example adapted from [4].
We apply the LLL Algorithm to the basis

B = {(1, 1, 1), (−1, 0, 2), (3, 5, 6)}.

1. We compute B∗. We set

b∗0 = b0 = (1, 1, 1),

b∗1 = b1 − µb∗0 (b1) =
(−4

3
,
−1
3

,
5
3

)
,

b∗2 = b2 − µb∗0 (b2)− µb∗1
(b2) = b1 −

⌈ 〈b∗0 , b1〉
〈b∗0 , b∗0〉

⌋
b0 =

(−6
14

,
9

14
,
−3
14

)
.

We set k = 1 and enter the k-loop.

2. We enter the j-loop and set j = k− 1 = 0. We set

b1 = b1 −
⌈ 〈b∗0 , b1〉
〈b∗0 , b∗0〉

⌋
b0 = (−1, 0, 2)− 0(1, 1, 1) = (−1, 0, 2).

No reduction occurs for b1. We exit the j-loop.

3. We check the Lovász condition.

‖b∗1‖2 =
14
3

>
(3

4
− 〈b

∗
0 , b1〉2

〈b∗0 , b∗0〉2
)
‖b∗0‖2 =

23
12

.

Since the Lovász condition is met, we set k = 2.

4. Since k = 2 = n− 1, we stay in the k-loop. We enter the j-loop and
set j = k− 1 = 1. We set

b2 = b2 −
⌈ 〈b∗1 , b2〉
〈b∗1 , b∗1〉

⌋
b1 = (3, 5, 6)− 1(−1, 0, 2) = (4, 5, 4).

Now we set j = k− 2 = 0. We set

b2 = b2 −
⌈ 〈b∗0 , b2〉
〈b∗0 , b∗0〉

⌋
b0 = (4, 5, 4)− 4(1, 1, 1) = (0, 1, 0).

We must recompute B∗, since we now have

B = {(1, 1, 1), (−1, 0, 2), (0, 1, 0)}.
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Note that only b∗2 requires an update. We set

b∗2 = b2 − µb∗0 (b2)− µb∗1
(b2) =

(−6
14

,
9

14
,
−3
14

)
and we exit the j-loop.

5. We check the Lovász condition.

‖b∗2‖2 =
9

14
<
(3

4
−
〈b∗1 , b2〉2
〈b∗1 , b∗1〉2

)
‖b∗1‖2 =

73
21

.

Since the Lovász condition is not met, we swap b2, b1. We now have
B = {(1, 1, 1), (0, 1, 0), (−1, 0, 2)}, so we must recompute B∗. Note
that only b∗1 , b∗2 require an update. We set

b∗1 = b1 − µb∗0 (b1) =
(−1

3
,

2
3

,
−1
3

)
,

b∗2 = b2 − µb∗0 (b2)− µb∗1
(b2) =

(−3
2

, 0,
3
2

)
.

and we set k = max{k− 1, 1} = 1.

6. Since k = 1 < n− 1, we stay in the k-loop. We enter the j-loop and
set j = k− 1 = 0. We set

b1 = b1 −
⌈ 〈b∗0 , b1〉
〈b∗0 , b∗0〉

⌋
b0 = (0, 1, 0)− 0(1, 1, 1) = (0, 1, 0).

No reduction occurs for b1. We exit the j-loop.

7. We check the Lovász condition.

‖b∗1‖2 =
2
3
<
(3

4
− 〈b

∗
0 , b1〉2

〈b∗0 , b∗0〉2
)
‖b∗0‖2 =

23
12

.

Since the Lovász condition is not met, we swap b1, b0. We now have
B = {(0, 1, 0), (1, 1, 1), (−1, 0, 2)}, so we must recompute B∗. We set

b∗0 = b0 = (0, 1, 0),
b∗1 = b1 − µb∗0 (b1) = (1, 0, 1),

b∗2 = b2 − µb∗0 (b2)− µb∗1
(b2) =

(−3
2

, 0,
3
2

)
and we set k = max{k− 1, 1} = 1.
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8. Since k = 1 < n− 1, we stay in the k-loop. We enter the j-loop and
set j = k− 1 = 0. We set

b1 = b1 −
⌈ 〈b∗0 , b1〉
〈b∗0 , b∗0〉

⌋
b0 = (1, 1, 1)− 1(0, 1, 0) = (1, 0, 1).

We now have B = {B = {(0, 1, 0), (1, 0, 1), (−1, 0, 2)}, so we must
recompute B∗. Note that only b∗1 , b∗2 require an update. We set

b∗1 = b1 − µb∗0 (b1) = (1, 0, 1),

b∗2 = b2 − µb∗0 (b2)− µb∗1
(b2) =

(−3
2

, 0,
3
2

)
.

Note that there have been no changes to B∗. We exit the j-loop.

9. We check the Lovász condition.

‖b∗1‖2 = 2 >
(3

4
− 〈b

∗
0 , b1〉2

〈b∗0 , b∗0〉2
)
‖b∗0‖2 =

3
4

.

Since the Lovász condition is met, we set k = 2.

10. The algorithm makes one more pass through the k-loop in which no
reductions or swaps occur. Hence, we omit the steps of this pass. At
the end of the pass, we set k = 3 > n− 1. So, we exit the k-loop and
return the LLL-reduced basis

B = {(0, 1, 0), (1, 0, 1), (−1, 0, 2)}.

In this case, the algorithm does solve the SVP as ‖(0, 1, 0)‖ = λ0(L(B)).
This is feasible because we are working in very low dimensions. Let us
compare the orthogonality of the input basis to the returned basis. The
Hadamard ratio of the input is

‖(1, 1, 1)‖‖(−1, 0, 2)‖‖(3, 5, 6)‖
| − 3| ≈ 10.80,

while the Hadamard ratio of the returned basis is

‖(0, 1, 0)‖‖(1, 0, 1)‖‖(−1, 0, 2)‖
| − 3| ≈ 1.05.

The returned basis is clearly much nicer than the input.
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