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1 Introduction

This paper is the honor thesis for my senior year at Colby College. It is widely
inspired by the book Generic Polynomials:Constructive Aspects of the Inverse
Galois Problem in reference [1].

Galois theory, named after French mathematician Evariste Galois in 19th-century,
is an important part of abstract algebra. It brings together many different branches
of mathematics by providing connections among fields, polynomials, and groups.
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Specifically, Galois theory allows us to attach a finite field extension with a finite
group. We call such a group the Galois group of the finite field extension. A
typical way to attain a finite field extension to compute the splitting field of some
polynomial. So we can always start with a polynomial and find the finite group
associate to the field extension on its splitting field. This focus is well-understood,
but the converse remains puzzling to people. The Inverse Galois Problem asks
the mysterious question of whether for any finite group, there exists a finite field
extension that is associate to it. Furthurmore, is there a polynomial whose splitting
field that can make such a field extension? This mystry is part of the motivation
for my thesis. The other motivation is the desire to repace this existence problem
with constructive problem. We will write out some families of polynomials whose
splitting fields over the rational field have certain small groups as their Galois
group.

The presentation of this thesis assumes familiarity with basic Galois theory, and
number theory. In the prelimilary section, we will recall some of the concepts
involved and introduce the definition of parametric polynomials. Then in the
next two sections, we will discuss the parametric polynomials for subgroups of
S3,S4.

Many people have helped me in writing this thesis. In particular, I am grateful to
my adviser Professor Fernando Gouvêa, for his guidience and advice not only in
mathematics but in writing during the year.

2 Prelimilaries

A field extension E/F is a pair of fields such that F is a subfield of E. Its Galois
group Gal(E/F) is defined to be the group of automorphisms of E that fix F
pointwise. If we have a polynomial p(x) over the field F , then we can also have
its splitting field L, which is the smallest field that contains F and all the roots
of p(x). L/F is a finite field extension, and the Galois group Gal(L/F) can be
identified with a permutation group of the roots of p(x). Moreover, if p(x) is
irreducible, then Gal(L/F) acts transitively on all the roots.

Now we see that with any polynomial p(x) of degree n over a field F , we get a
field extension L/F where L is the splitting field of p(x) over F , and then we get
a finite group Gal(L/F) which is isomorphic to a subgroup of Sn. If Gal(L/F) is
isomorphic to a group G < Sn, we call L/F a G-extension. When n is large, it
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is very hard to determine the exact subgroup that Gal(E/F) is isomorphic to, but
at least we know that we can always go from a polynomial to a finite group. So it
is natural to raise the Inverse Galois Problem and question whether we can do the
reverse and go from a finite group to a polynomial. In other words, Given a finite
field F , is every finite group isomorphic to a Galois group of some field extension
L/F , where L is the splitting field of a polynomial over F?

The famous mathematician David Hilbert was the first one to study this question
in depth. It still remains open today. Hilbert’s Irreducibility theorem brings some
constructive aspects of solving this problem for the rational field Q, and it can be
formulated as the following:

Theorem 2.1. (Hilbert’s Irreducibility Theorem)

Let~t =(t1, · · · , tr) and~x=(x1, · · · ,xs) be indeterminates. Also suppose f1(~t,~x), · · · ,
fn(~t,~x) are irreducible in the polynomial ring Q(~t)[~x], whose splitting fields are de-
noted by

〈
fn(~t,~x)

〉
,
〈

fn(~t,~x)
〉
, · · · ,

〈
fn(~t,~x)

〉
respectively. For any~b=(b1, · · · ,br)∈

Qr, the specialized polynomial fi(~b,~x) is a polynomial in Q[~x] with splitting field〈
fi(~b,~x)

〉
. The following is true:

(1) For all~b ∈Qr, if the specialized polynomials fi(~b,~x) all have
nonzero discriminanst, then every Gal

(〈
fi(~b,~x)

〉
/Q
)

is isomorphic to a subgroup

of Gal
(〈

fi(~t,~x)
〉
/Q(t)

)
.

(2) There are infinitely many~b ∈ Qr such that the specialized polynomials
f1(~b,~x),· · · ,fn(~b,~x) are irreducible in Q[~x], and for each i, Gal

(〈
fi(~b,~x)

〉
)/Q

)
∼=

Gal
(〈

fi(~t,~x)
〉
/Q(t)

)
.

People define a field satisfying the properties described in Hilbert’s Irreducibility
Theorem as a hilbertian field. So this irreducibility Theorem tells us that Q is
hilbertian.

Notice that the first part in the Irreducibility Theorem claims that for an irreducible
polynomial f (~t,~x) in Q(~t)[x], there may be degenerate cases, where for some ~b
the Galois group of the specialized polynomial f (~b,~x) in Q[x] is not isomorphic
to Gal

(〈
f (~t,~x)

〉
/Q(t)

)
but to a proper subgroup of it. For example x2− t is

irreducible over Q(t) and thus has Galois group C2, but x2−4 splits over Q. Note
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that set of those b∈Q such that x2−b has trivial Galois group is the set of squares
in Q. Hence, if we randomly pick a b ∈Q, x2−b is more likely to be irreducible
and have Galois group isomorphic to C2 than to be reducible. In fact, this is true
for any irreducible polynomial f (~t,x) in Q(~t)[x]. To be precise, the~b′s such that
the specialized polynomial f (~b,x) does not have the same Galois group over Q as
the Galois group of f (~t,x) over Q(t) form a ”thin set”, and thin subsets of Q has
density zero. This paper will not dig deeper in this notion.

Although the original Inverse Galois Problem is really an existence problem, now
with Theorem 2.1, we can ask a more explicit question: For any finite group G,
can we have a polynomial p(t,x) in Q(~t)[x] that describes all polynomials in Q[x]
whose splitting field over Q has Galois group isomorphic to G?

Such a polynomial p(t,x) is called the parametric polynomial for G-extensions
over Q. Now let us see a formal definition.

Definition 2.2. (Parametric Polynomial)

Let G be a finite group, and~t = (t1, · · · , tr),x be indeterminates. A monic polyno-
mial p(~t,x) in the polynomial ring Q(~t)[x] is a parametric polynomial for G over
Q if it satisfies the following:

A1. The splitting field of p(~t,x) over the field Q(~t) is a G-extension.

A2. For any G-extension L over Q, there exits some~b ∈Qr such that L is the
splitting field of p(~b,x) over Q.

By Definition 2.2, if p(~t,x) is a parametric polynomial for G-extensions, then ev-
ery G-extension L/Q can be identified with the splitting field of p(~b,x) in Q[x],
but according to Hilbet’s Irreduciblility Theorem, not every specialized polyno-
mial p(~b,x) has splitting field over Q as a G-extension.

Having such a parametric polynomial p(~t,x) for G-extensions of Q, there are two
known defects: one is that there are degenerate cases when the splitting field of
some p(~b,x) over Q is not a G-extension, and the other is that there can be distinct
elements that parametrize the same G-extension L/Q. However, a parametric
polynomial of G-extension is still significant because it not only helps us find one
field over Q that is a G-extension, but also describes all fields over Q that are
G-extensions.

This paper will only discuss the parametric polynomials for transitive subgroups
of S3 and S4, whose parametric polynomials are cubic or quartic. Those results
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are largely taken from reference [1].

3 Cubic Polynomials

Recall that the Galois group of an irreducible polynomial f of degree n is isomor-
phic to a subgroup of Sn and acts transitively on the roots of f .

For an irreducible cubic polynomial over Q, its Galois group is isomorphic to
either C3 or S3; on the other hand, if L/Q is a C3-extension or a S3-extension, then
L can only be the splitting field of an irreducible cubic polynomial. In this section,
we will find some parametric polynomials for C3-extensions and S3-extensions
over Q.

A parametric polynomial for S3 is easy. In fact, a parametric polynomial for any
Sn is easy, because clearly the polynomial with n+1 parameters tnxn+ tn−1xn−1+
· · ·+ t1x + t0 in Q(t0, t1, · · · , tn)[x] is always parametric for any Sn-extensions.
So in the case of Sn, the interesting question is to find parametric polynomi-
als with fewer parameters. For example, the monic polynomial xn + tn−1xn−1 +
· · ·+ t1x+ t0 is a parametric for Sn-extensions with one fewer parameters than the
previous polynomial, since every polynomial of degree n over Q has the form

anxn +an−1xn−1 + · · ·+a1x+a0, and we can scale all coeeficients by
1
an

and get

a monic polynomials without changing the roots.

In this section, we will show that there are parametric polynomials for C3- and
S3-extensions with only one parameter.

Lemma 3.1.

For any irreducible cubic polynomial f (x) over Q, there exits some b ∈ Q such
that x3 +bx+b is irreducible over Q[x] and has the same splitting field as f .

Proof.

As an irreducible cubic polynomial in Q[x], f (x) has the form f (x) = a3x3 +
a2x2 + a1x+ a0, where a0,a1,a2,a3 are in Q. Since we can scale all coefficients

by
1
a3

without changing roots, we can assume a3 = 1, i.e. f is monic, without loss

of generality.

Assume the three roots of f (x) are γ1,γ2,γ3.
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Notice a2 =−(γ1 + γ2 + γ3), which is equivalent to saying

−(γ1 + γ2 + γ3)−a2 =−
(
(γ1 +

1
3

a2)+(γ2 +
1
3

a2)+(γ3 +
1
3

a2)
)
= 0.

Substitute x = y− 1
3

a2 into f (x) = (x− γ1)(x− γ2)(x− γ3). Without changing

the splitting field, we get f (y) =
(

y− (γ1 +
1
3

a2)
)(

y− (γ2 +
1
3

a2)
)(

y− (γ3 +

1
3

a2)
)
= y3+ py+q ∈Q[x] with roots λ1,λ2,λ3, where λi = γi+

1
3

a2. Since f (x)

is irredcible, then λi 6= 0 for each i.

We claim that we can assume p 6= 0. Indeed, if p = 0, then f (y) = y3 + q, and
λ 3

i = −q for each i. If q = 0, then f (y) splits over Q, which is a contradiction.

So q 6= 0. For each i,
(
λi +

1
λi

)3
= λ

3
i +

1
λ 3

i
+3λi +

3
λi

= −q− 1
q
+3 ·

(
λi +

1
λi

)
,

which implies
(
λi +

1
λi

)3−3
(
λi +

1
λi

)
+
(
q+

1
q

)
= 0. In other words, λi +

1
λi

for

i= 1,2,3 are the three roots of the polynomial g(x)= x3−3x+
(
q+

1
q

)
. For each i,

Q⊂Q(λi+
1
λi
)⊂Q(λi). Because there are no proper intermediate fields between

the two, Q(λi +
1
λi
) is either Q or Q(λi). If we can show Q(λi) = Q(λi +

1
λi
),

then we can conclude that f and g have the same splitting field. Suppose, for a

contradiction, that λi +
1
λi

= r ∈Q for some i. Then λ 2
i +1 = rλi implies that λi

is a root of the quadratic polynomial x2− rx+ 1, which contradicts the fact that
λi has degree 3. Hence, f (x) and g(x) over Q have the same splitting field. From
now on, we can work with g, which is in the form g(x) = x3 + px+q with p 6= 0.

So far, we have shown that for any irreducible cubic polynomial over Q, there
exists a polynomial in the form y3 + py+q in Q[x] such that p 6= 0, and with the
same splitting field as the original one. Then we can substitute y =

q
p

z into f (y).

Again, without changing the splitting field, we get

f (z) =
q3

p3 z3 + p · q
p

z+q =
q3

p3 · (z
3 +

p3

q2 z+
p3

q2 ).

Set b =
p3

q2 . Notice that b ∈ Q and z3 + bz+ b in Q[x] has the same roots as
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f (z) =
q3

p3 (z
3 + bz+ b), and hence it has the same splitting field as f (z). Since

we never change the splitting field to get f (z), then z3 + tz+ t also has the same
splitting field as the original cubic irreducible polynomial f (x).

Let us see an example of using this process described in Lemma 3.1 to find some
b ∈Q such that the polynomial x3 +bx+b has the same splitting field as x3−2.

Since x3−2 is in the form x3 + px+q with p = 0, we know it has the same

splitting field as g(x) = x3− 3x− (2+
1
2
) = x3− 3x− 5

2
. Substitute x =

5
6

y. We

get g(y) =
125
216

y3− 5
2

y− 5
2

, which has the same splitting field as x3− 108
25

x− 108
25

.

In particular, they both have the splitting field Q(
3
√

2, i
√

3).

Clearly Lemma 3.1 shows that p(t,x) = x3 + tx+ t in Q(t)[x] satisfies condition
A2 for C3 and S3. It cannot be a parametric polynomial for C3-extensions, because
if it is, then a specialized polynomial p(b,x) in Q cannot have Galois group iso-

morphic to S3. However, our example p
(108

25

)
= x3− 108

25
x− 108

25
has the same

splitting field as x3−2 and thus has the same Galois group, which is isomorphic
to S3.

Theorem 3.2.

p1(t,x) = x3 + tx+ t is a parametric polynomial for S3-extensions of Q.

We can also prove the theorem by directly showing that the Galois group of
p1(t,x) over the field Q(t) is isomorphic to S3. We can use the help of an im-
portant theorem from basic Galois theory stated as follows:

Theorem 3.3.

Let F be any field of characteristic 0. An irreducible polynomial of degree n over
the field F has Galois group isomorphic a subgroup of the the alternating group
An if and only if its discriminant is a square in F .

Now we finish the proof that p1(t,x) = x3 + tx+ t is a parametric polynomial for
S3 over Q.
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Proof of Theorem 3.2.

Let G be the Galois group of p1(t,x) over Q(t).

The discriminant dp1(t) of p1(t,x) in Q(t)[x] is dp1(t) =−4t3−27t2 = t2(−4t−
27). Since−4t−27 is not a square in Q(t), dp1(t) is not a square in Q(t). Theorem
3.3 tells us that G∼= S3.

Therefore, p1(t,x) satisfies A1 for S3, and is a parametric polynomial for S3.

As we see, if we randomly pick a b ∈ Q, p1(b,x) = x3 + bx+ b is very likely to
be irreducible and −4b−27 is very likely not to be a square in Q. Nevertheless,
for some specific b ∈Q, p1(b,x) might not have Galois group isomorphic to S3 or
might not be irreducible. In the introduction, we refer to such b’s as “degenerate
cases”. The following table displays some examples of p1(b,x), which may or
may not display degenerate cases.

Table 1: Examples of specialized p1(t,x) = x3 + tx+ t

b p1(b,x) Irreducibility Galois Group isomorphic to
−7 x3−7x−7 irreducible C3
0 x3 reducible {Id}
1 x3 + x+1 irreducible S3
3 x3 +3x+3 irreducible S3

We call an irreducible polynomial whose splitting field is L over Q is C3-extension
a “cyclic cubic”. Then “a polynomial p(t,x) in Q(t)[x] is a parametric cyclic cu-
bic” means that p(t,x) is a parametric polynomial for C3-extensions of Q. In
Lemma 3.1 we have showed that for every cyclic cubic f (x) over Q, there ex-
ists b ∈Q such that p1(b,x) = x3+bx+b has the same splitting field as the given
cyclic cubic f (x). According to Theorem 3.3, for those b∈Q such that the special-
ized polynomial p1(b,x) is a cyclic cubic, the discriminant dp1(b) = b2(−4b−27)
of p1(b,x) is a square in Q. This happens only if −4b− 27 is a square in Q.

For any a ∈ Q, we can solve for b in −4b− 27 = a2 and get b = −a2 +27
4

.

Hence, the polynomial p2(t,x) = x3− t2 +27
4

x− t2 +27
4

in Q(t)[x] has discrimi-
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nant dp2(t) =
(t2 +27

4

)2
t2, which is a square in Q(t). Since p2(t,x) is irreducible

over Q(t), the Galois group of p2(t,x) over Q is isomorphic to C3. So we have
shown:

Corollary 3.4.

p2(t,x) = x3− t2 +27
4

x− t2 +27
4

is a parametric cyclic cubic over Q.

Here are some examples.

Table 2: Examples of specialized p2(t,x) = x3− t2 +27
4

x− t2 +27
4

b p2(b,x) Irreducibility Galois Group isomorphic to

0 x3− 27
4

x− 27
4

1
4
(x−3)(2x+3)2 {Id}

1 x3−7x−7 irreducible C3

2 x3− 31
4

x− 31
4

irreducible C3

3 x3−9x−9 irreducible C3

Note that we have derived a parametric polynomial for C3 from a parametric poly-
nomial for S3 by looking at the discriminant. A more interesting parametric cyclic
cubic p3(t,x) = x3− tx2 +(t− 3)x+ 1 can be derived by considering the action
of C3 on the roots. One advantage of this new parametric cyclic cubic is that the
parameter will appear with degree one.

Consider the field Q(z), where (for now) z is an indeterminate. The map σ : z 7−→
1

1− z
generates a cyclic group of order three in Gal(Q(z)/Q):

σ
2 : z 7−→ 1

1− 1
1−z

=
z−1

z
, and σ

3 : z 7−→ 1
1− z−1

z

= z.
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Consider the polynomial f (z,x) in Q(z)[x]:

f (z,x) = (x− z)
(

x−σ(z)
)(

x−σ
2(z)
)

= (x− z)
(

x− 1
1− z

)(
x− z−1

z

)
Clearly, if β is a complex number such that the specialized polynomial f (β ,x)
is in Q[x], then the Galois group of f (β ,x) over Q is isomorphic to C3 and is

generated by the map β 7−→ 1
1−β

.

Now we write out f (z,x) as:

f (z,x) =(x− z)(x− 1
1− z

)(x− z−1
z

)

=x3−
(

z+
1

1− z
+

z−1
z

)
x2 +

(
z · 1

1− z
+

1
1− z

· z−1
z

+ z · z−1
z

)
x−

z · 1
1− z

· z−1
z

=x3−
(

z+
1

1− z
+

z−1
z

)
x2 +

( z
1− z

− 1
z
+ z−1

)
x+1.

Parameterize t = z+
1

1− z
+

z−1
z

. Then we get a polynomial in Q(t)[x]:

f (t,x) = x3− tx2 +
( z

1− z
− 1

z
+ t− 1

1− z
− z−1

z
−1
)

x+1

= x3− tx2 +(t−3)x+1.

Theorem 3.5.

p3(t,x) = x3− tx2 +(t−3)x+1 is a parametric cyclic cubic of Q.

Proof.

Again, we need to show that p3(t,x) is a cyclic cubic over Q(t) and every C3-
extension over Q is the splitting field of the specialized polynomial p(b,x) for
some b ∈Q.
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It is clear that p3(t,x) = x3− tx2 +(t− 3)x+ 1 is irreducible in Q(t)[x]. Hence,
by Theorem 3.3, to show it is a cyclic cubic over Q(t), we only need to show the
discriminant dp3(t) is a square in Q(t). Indeed,

d(t) = t2(t−3)2−4(t−3)3−4t3−27−18t(t−3)

= t2(t2−6t +9)−4(t3−27+27t−9t2)−4t3−27− (18t2−54t)

= t4−6t3 +27t2−54t +81

= (t2−3t +9)2 is a square in Q(t).

Hence, we have showed A1. We still need to show p3(t.x) has property A2.

Now let L/Q be an arbitrary C3-extension, with Galois group G= 〈σ〉 ∼=C3. We’ll
show there exists b ∈Q such that the specialized polynomial p3(b,x) has splitting

field L by showing L contains an element β such that σ : β 7−→ 1
1−β

.

By Normal Basis Theorem, there exists α in L such that {α,σ(α),σ2(α)} is a
basis of L over Q.

Let x,y ∈ L such that x = α −σ(α),y = σ2(α)−σ(α). We claim that x,y are
linearly independent over Q, and σ(x) =−y, σ(y) = x− y.

We can directly check that σ(x) = σ

(
α−σ(α)

)
= σ(α)−σ

2(α) =−y,

and σ(y) = σ

(
σ

2(α)−σ(α))
)

= α−σ
2(α)

= α−σ(α)−σ
2(α)+σ(α)

=
(

α−σ(α)
)
−
(

σ
2(α)−σ(α)

)
= x− y.

Observe that for any a,b ∈Q : ax+by = a
(
α−σ(α)

)
+b
(
σ

2(α)−σ(α)
)

= aα− (a+b)σ(α)+bσ
2(α).

So ax+by = 0 only if a,b = 0. i.e. x,y ∈ L are linearly independent over Q.

In the Appendix, we will show how we found this pair of x,y ∈ L using represen-
tation theory.
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Since x,y 6= 0, we can let β =
x
y

, and β 6= 0. Also β is not in Q, because x,y

are linearly independent over Q. Then σ(β ) =
σ(x)
σ(y)

=
−y

x− y
=

−y
y

x
y −

y
y
=
−1

β −1
=

1
1−β

.

Again, we let b = β +
1

1−β
+

β −1
β

. Notice b must be in Q, because the Galois

group G = 〈σ〉 fixes b. Thus, the specialized polynomial p3(b,x) = x3− bx2 +

(b− 3)x+ 1 = (x− β )(x− 1
1−β

)(x− β −1
β

) is a polynomial in Q[x], and has

Galois group isomorphic to C3. Suppose it has splitting field M. We’ll show
M = L.

Since β =
x
y
∈ L, we know M =Q(β )≤ L. By the Tower Law, [L : M][M :Q] = [L :

Q] = 3. Since 3 is a prime number, either [L : M] = 1 or [M : Q] = 1. [M : Q] 6= 1
because β /∈Q. Thus, [L : M] has to equal 1 and L = M.

In other words, for this particular b ∈ Q, the specialized polynomial p3(b,x) =
x3−bx2 +(b−3)x+1 in Q[x] has the splitting field L, and we have finished our
proof of showing p3(t,x) = x3− tx2 +(t−3)x+1 is a parametric polynomial for
C3-extensions of Q.

Table 3: Examples of specialized p2(t,x) = x3− t2+27
4 x− t2+27

4

b p2(b,x) Irreducibility Galois Group isomorphic to
−1 x3 + x2−4x+1 irreducible C3
0 x3−3x+1 irreducible C3
1 x3− x2−2x+1 irreducible C3
2 x3−2x2− x+1 irreducible C3
3 x3−3x2 +1 irreducible C3

Remark 3.6.

In fact, if b is an integer, then p3(b,x) = x3−bx2+(b−3)x+1 is always a cyclic
cubic over Q.
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Here is the argument: if for some b ∈ Z the specialized polynomial p3(b,x) =
x3− bx2 +(b− 3)x+ 1 is reducible, then it has a rational root. By the Rational
Roots Theorem, its rational root can only be ±1. In other words, p3(b,1) = 0 or
p3(b,−1) = 0. Since p3(b,1) = 1−b+(b−3)+1 =−1 is never 0, the only case
p3(b,x) is reducible for integer b is when p3(b,−1) = −1− b− (b− 3) + 1 =

−2b+ 3 = 0. However, this implies b =
3
2
/∈ Z. Therefore, if b is an integer,

p3(b,x) is a cyclic cubic.

We can think about some cases when b ∈ Q and p3(b,x) is reducible. We know

one example of b =
3
2

. Since we have showed that p3

(3
2
,−1

)
= 0, p3

(3
2
,x
)
=

x3− 3
2

x2 +
(3

2
− 3
)

x+ 1 has to be reducible. Indeed, in this case, p3

(3
2
,x
)

can

be factored as (x+1)
(

x− 1
2

)
(x−2).

More generally, if the specialized polynomial p3(b,x) in Q[x] is reducible for
some b ∈Q, then it has a rational root r.

p3(b,r) = 0 ⇐⇒ r3−br2 +(b−3)r+1 = 0

⇐⇒
(
− r2 + r

)
·b =−1+3r− r3.

Since p3(b,0) = 0−b ·0+(b−3) ·0+1 = 1 and p3(b,1) =−1, the rational root
r cannot be 0 or 1, which implies −r2 + r is never 0. So

p3(b,r) = 0 ⇐⇒ b =
r3−3r+1

r2− r
.

Hence, for any non-zero rational number r, the specialized polynomial p3(b,x) in

Q[x] is reducible for b =
r3−3r+1

r2− r
. We can make the following remark:

Remark 3.7.

There are infinitely many rational number b’s such that p3(b,x) = x3− tx2 +(t−
3)x+1 is reducible over Q.

The table below demonstrates some examples of some specialized p3(t,x) that are
reducible in Q[x].
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Table 4: Examples of specialized p3(t,x) = x3− tx2 +(t−3)t +1
that are reducible

r b p3(b,x) Factorization
1
2

3
2

x3− 3
2

x2− 3
2

x+1 (x+1)(x− 1
2
)(x−2)

2
3

19
6

x3− 19
6

x2− 1
6

x+1
1
6
(3x−2)(2x+1)(x−3)

1
3

−1
6

x3 +
1
6

x2− 19
6

x+1
1
6
(3x−1)(2x−3)(x+2)

−3 −17
12

x3 +
53
12

x2− 19
12

x+1
1
12

(4x−1)(3x−4)(x+3)

Now we have an interesting parametric cyclic cubic over Q p3(t,x) = x3− tx2 +
(t − 3)x+ 1. It is natural to ask whether there can be two different b1,b2 ∈ Q
such that the specialized polynomial p3(b1,x) and p3(b2,x) parametrize the same
C3-extension of Q.

The answer is yes.

Theorem 3.8.

For all b ∈Q such that p3(b,x) is a cyclic cubic, p3(b,x) and p3(3−b,x) have the
same splitting field over Q.

Proof.

Suppose b ∈ Q and p3(b,x) is a cyclic cubic with splitting field L. We will show
p3(3−b,x) = x3− (3−b)x2−bx+1 has the same splitting field as p3(b,x).

In the proof of Theorem 3.5, we have showed that there is an irrational β ∈ L such

that b= β +
1

1−β
+

β −1
β

and p3(b,x) = (x−β )
(

x− 1
1−β

)(
x− β −1

β

)
. Then

3−b = 3−
(

β +
1

1−β
+

β −1
β

)
= (1−β )+

(
1− 1

1−β

)
+

1
β
.

Write u = 1− β , v = 1− 1
1−β

=
β

β −1
, w =

1
β

. Notice β is not rational, so

u,v,w cannot be rational. Since Q(u,v,w)≤Q= L and Q(u,v,w) 6=Q, it must be
true that Q(u,v,w) = L.

14



We claim that (x−u)(x−v)(x−w) = x3− (u+v+w)x2+(uv+uw+vw)x−uvw
is a polynomial in Q[x]. In other words, we will show u+ v+w, uv+ uw+ vw,
uvw ∈Q through straight forward computation.

By assumption, u+ v+w = 3−b ∈Q. Now consider

uv =(1−β )
(

1− 1
1−β

)
= (1−β )−1 =−β ,

uw =(1−β ) · 1
β
=

1
β
−1 =

1−β

β
,

vw =
(

1− 1
1−β

)
· 1

β
=
−β

1−β
· 1

β
=
−1

1−β
.

As we can see, uv+uw+ vw =−β +
1−β

β
+
−1

1−β
=−b ∈Q.

And uvw = (uv)w =−β · 1
β
=−1

Hence, (x− u)(x− v)(x−w) = x3− (3− b)x− b + 1 is a polynomial in Q[x].
Moreover, (x−u)(x−v)(x−w) = p3(3−b,x), and has splitting field Q(u,v,w) =
L.

Therefore, we have shown that for all b ∈Q such that the specialized polynomial
p3(b,x) is a cyclic cubic over Q, p3(3− b,x) in Q[x] has the same splitting field
as p3(b,x).

Let z be an indeterminate, and t = z+
1

1− z
+

z−1
z

. We know that the paramet-

ric cyclic cubic p3(t,x) = (x− z)
(

x− 1
1− z

)(
x− z−1

z

)
. Theorem 3.8 implies

that p4(t,x) = p3(t− 3,x) in Q(t)[x] is also a parametric cyclic cubic of Q, and

p4(t,x) =
(

x− (1− z)
)(

x− z
z−1

)(
x− 1

z

)
. It is natural to think about the rela-

tionship between p3

(
t,

1
x

)
and p4(t,x) in the field Q(t,x).

p3

(
t,

1
x

)
=

1
x3 −

t
x2 +

t−3
x

+1, and

p4(t,x) = x3− (3− t)x2− tx+1

= x3 · p3

(
t,

1
x

)
.
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For the specialized polynomials p3(b,x) and p4(b,x) = p3(3−b,x), who have the

same splitting field, the only case b= 3−b is when b=
3
2

, but we have shown that

p3

(3
2
,x
)

is reducible. So we can claim that for any C3-extension L/Q, there are at
least two distinct b’s such that L is the splitting field of the specialized polynomial
p3(b,x) = x3−bx2+(b−3)x+1. And there can be more than two. For example,
p3(0,x), p3(−3,x), p3(6,x), and p3(3,x) all parametrize the same C3-extension.

Recall that when we proved p3(t,x) = x3 + tx+ t is a parametric polynomial for
S3-extensions of Q, we showed that for every cubic polynomial f (x),there exists
b∈Q such that p3(b,x) = x3+bx+b by computing this b∈Q directly. However,
as indicated in the proof of Theorem 3.5, we can do the similar thing for the
parametric cyclic cubic p3(t,x) = x3− tx2 +(t − 3)x+ 1 as long as we have an
algorithm that can compute the normal basis {α,σ(α),σ2(α)} of a given C3-
extension over L/Q.

For some simpler cases, we can try to do this without computing the normal basis.

Suppose f (x) is a cyclic cubic with integer coefficients. Since f (x) in Z[x] has
Galois group isomorphic to C3, then its discriminant d f is a square in Z. So the
simplest case is when d f = p2, where p is a prime number. Suppose f (x) has
splitting field L with field discriminant dL. Since d f is always a square multiple
of the field discriminant dL, and dL cannot be 1 (see reference [6]) , then it has
to be true that d f = dL = p2. We know from the proof of Theorem 3.5 that if
for some b ∈ Q, the specialized polynomial p3(b,x) in Q[x] has splitting field L
, then its discriminant dp3(b) = (b2− 3b+ 9)2. We can try to solve the equation
(b2−3b+9)2 = p2 for b to see whether it has rational solutions. If b2−3b+9 =
−p, then there is no real solution, because 9− 4 · (9+ p) < 0. We only need to

consider when b2− 3b+ 9 = p, which is when b =
1
2
(3±

√
4p−27). Notice

1
2
(3+

√
4p−27) +

1
2
(3−

√
4p−27) = 3. So by Theorem 3.8, these two b’s

parametrize the same splitting field. We can work with only one of them.

As we can see, if 4p− 27 is a square, then we can try and see whether p(b,x)

with b =
1
2
(3+

√
4p−27) has the same splitting field L as f (x). Since we need

p >
27
4

to have 4p−27 be a square, we can try this method for odd primes greater
than 5. Note that for a prime number p, 4p− 27 is a square in Z implies some
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congruence conditions:

4p−27 = k2 =⇒ k2 ≡−27(mod p)
=⇒−3 is a square modulo p
=⇒ p≡ 1(mod 3).

Also, if 4p−27 is a square, it must be an odd square, and b =
1
2
(3+

√
4p−27)

must be an integer. This implies that our method only helps us find integer param-
eters.

Table 5: Examples of cyclic cubics with b’s found by this method

f (x) d f = p2 4p−27 b p3(b,x)
x3− x2−2x+1 72 1 2 x3−2x2− x+1
x3− x2−4x−1 132 25 = 52 4 x3−4x2 + x+1
x3− x2−6x+7 192 49 = 72 5 x3−5x2 +2x+1

x3− x2−12x−11 372 121 = 112 7 x3−7x2 +4x+1
x3− x2−26x−41 792 289 = 172 10 x3−10x2 +7x+1

Because there can be non-isomorphic number fields that are C3 extensions with
same field discriminant, we cannot generalize the following method as an algo-
rithm of finding a specialized polynomial p3(b,x) for some C3-extension with field
discriminant p2, but we can always try and find out whether the method works.

Since not every prime number p has the property that 4p− 27 is a square, this
method does not find an integer b when dL = p2 for such p. For example, x3−
x2−10x+8 has discriminant 312, and 4 ·31−27 = 97. For such a field extension,

no integer value of b works. In fact, taking t =
1
2
, p
(1

2
,x
)

has the same splitting

field as x3− x2− 10x+ 8, and the discriminant of p
(1

2
,x
)

is dp3

(1
2

)
=
(31

4

)2
,

which is a square multiple of 312 over Q. However, we know of no algorithm to

find t =
1
2

from the given polynomial. Indeed, we constructed this example by

taking t =
1
2

and then find an integer polynomial with the same splitting field.
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4 Quartic Polynomials

Again, recall that for an irreducible polynomial f (x) of degree n, the Galois group
is isomorphic to a subgroup of Sn and acts transitively on the roots of f (x). So
for an irreducible quartic polynomial f (x), its Galois group is isomorphic to a
transitive subgroup of S4. Unlike the cubic case, where S3 only has 2 transitive
subgroups, S4 has 5 transitive subgroups: C4,D4,V4,A4,S4. Before we start find-
ing parametric polynomials for those subgroups, we first think about when given
an irreducible quartic polynomial, how we decide which subgroup of S4 its Galois
group is isomorphic to.

Let f (x) = x4 +a3x3 +a2x2 +a1x+a0 be a monic irreducible quartic polynomial
over Q with splitting field M and Galois group G. We know that G must be
isomorphic to one of C4,D4,V4,A4,S4. Since we have learned a lot about cubic
polynomials, we can make a related cubic polynomial to help us find out which
one of the 5 subgroups G is isomorphic to. We call this helping cubic polynomial
the cubic resolvent for f (x), and it is defined as the following:

Definition 4.1. (Cubic Resolvent)

Let γ1,γ2,γ3,γ4 be the roots of f (x) = x4 + a3x3 + a2x2 + a1x+ a0. The cubic
resolvent for f (x) is the cubic polynomial g(y), where

g(y) =
(

y− (γ1γ2 + γ3γ4)
)(

y− (γ1γ3 + γ2γ4)
)(

y− (γ1γ4 + γ2γ3)
)

= y3−a2y2 +(a1a3−4a0)y− (a0a2
3−4a0a2 +a2

1).

Notice that g(y) is always a polynomial in Q[x], and that its splitting field is con-
tained in the splitting field of f (x). Here are some examples.

Table 6: Examples of cubic resolvents

Polynomial f (x) Cubic Resolvent g(y) Irreducibility of g(y) Gal
x4− x3− x2 + x+1 y3 + y2−5y−6 g(y) = (y+2)(y2− y−3) D4
x4− x3 + x2− x+1 y3− y2−3y+2 g(y) = (y−2)(y2 + y−1) C4

x4− x2 +1 y3 + y2−4y−4 g(y) = (y+1)(y−2)(y+2) V4
x4−2x3 +2x2 +2 y3−2y2−8y+8 irreducible A4

x4− x+1 y3−4y−1 irreducible S4
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As we can see from the table, g(y) can be reducible. It turns out that we can use
g(y) to get information about f .

For our irreducible quartic polynomial f (x), the cubic resolvent g(y) has discrim-
inant

∆(g) =
(
(γ1γ2 + γ3γ4)− (γ1γ3 + γ2γ4)

)2(
(γ1γ2 + γ3γ4)− (γ1γ4 + γ2γ3)

)2

(
(γ1γ3 + γ2γ4)− (γ1γ4 + γ2γ3)

)2

=
(
(γ1− γ4)(γ2− γ3)

)2(
(γ1− γ3)(γ2− γ4)

)2(
(γ1− γ2)(γ3− γ4)

)2

=(γ1− γ4)
2(γ2− γ3)

2(γ1− γ3)
2(γ2− γ4)

2(γ1− γ2)
2(γ3− γ4)

2

=∆( f ).

From Theorem 3.3, we know that the discriminant of an irreducible polynomial
tells us whether the polynomial has Galois group isomorphic to a subgroup of
the alternating group. Since f (x) has the same discriminant as its cubic resolvent
g(y), we can work with g(y) since we have learned a lot about cubic polynomials
and their splitting fields.

Again, let f (x) be an irreducible quartic polynomial over Q with splitting field
M and Galois group G. Let g(y) in Q be the cubic resolvent for f (x), L be the
splitting field of g(y) over Q, and let m = [L : Q] = |Gal(L/Q)|. Notice Gal(L/Q)
has to be isomorphic to a subgroup of S3. So m = 1,2,3, or 6. In particular, m = 3
or 6 if g(y) is irreducible; m = 2 if g(y) has a unique rational root; m = 1 if g(y)
splits over Q.

Since M is a Galois G-extension, then [M : Q] = |Gal(M/Q)|= |G|. Clearly, L is
a subfield of M. So by Tower Law, [M : Q] = [M : L][L : Q]. This gives us that m
divides |G|.

We claim that with one exception, the number m tells us which subgroup of S4 G
is isomorphic to.

Proposition 4.2.

G∼=


S4 if m = 6,
A4 if m = 3,
D4 or C4 if m = 2,
V4 if m = 1.
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Proof.

First we apply Theorem 3.3 here. by looking at the discriminant ∆( f ) of the given
quartic polynomial f , we get:

(1). If the discriminant ∆( f ) of f is a square in Q, then its Galois group G is
isomorphic to a subgroup of A4. i.e. G∼=V4 or A4.

(2). If the discriminant ∆( f ) of f is not a square in Q, then its Galois group
G is not isomorphic to a subgroup of A4. i.e. G∼=C4,D4 or S4.

Case 1: m = 6.

Then Gal(L/Q) ∼= S3, and g(y) is irreducible. So the discriminant ∆(g) = ∆( f )
is not a square in Q. By (2), G is isomorphic to C4,D4 or S4. Since we have
shown that m divides |G|, and among those subgroups only |S4| = 24 is divisible
by m = 6, then G has to be isomorphic to S4.

Case 2: m = 3.

Then Gal(L/Q)∼=C3, and g(y) is irreducible again. The discriminant ∆(g)=∆( f )
has to be a square in Q. By (1), G is isomorphic to V4 or A4. Since only |A4|= 12
is divisible by m = 3, then G has to be isomorphic to A4.

Case 3: m = 2.

Then g(y) is reducible, and among the three roots γ1γ2+γ3γ4, γ1γ3+γ2γ4, γ1γ4+
γ2γ3 of g(y), there is one rational root and two irrational roots. Without loss of gen-
erality, assume γ1γ2 + γ3γ4 ∈Q, and γ1γ3 + γ2γ4, γ1γ4 + γ2γ3 are not in Q. Then
γ1γ3 + γ2γ4, γ1γ4 + γ2γ3 must be complex conjugates. Hence, there exists ϕ ∈G
such that

ϕ(γ1γ2 + γ3γ4) = γ1γ2 + γ3γ4,

ϕ(γ1γ3 + γ2γ4) = γ1γ4 + γ2γ3,

ϕ(γ1γ4 + γ2γ3) = γ1γ3 + γ2γ4.

Since ϕ has to permute the four roots γ1,γ2,γ3,γ4 of f (x), and ϕ cannot fix any of
the γi, it has to be the power of the automorphism of the splitting field M of f (x)
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identified with

γ1 7−→ γ3 , γ3 7−→ γ2

γ2 7−→ γ4 , γ4 7−→ γ1.

Clearly, ϕ is a 4-cycle. So G must contain a 4-cycle, and thus G∼=C4 or D4.

Case 4: m = 1.

Then all three roots of g(y) are rational. So G consists of permutations of the four
roots γ1,γ2,γ3,γ4 of f (x) that fix γ1γ2+γ3γ4, γ1γ3+γ2γ4, γ1γ4+γ2γ3. Since the
elements of G cannot fix any γi, they must be the permutations that swapping the
two pairs of roots γ1,γ2,γ3,γ4. Each of such swapping has order 2. So G∼=V4.

Since when Gal(L/Q) ∼= C3 or S3 are exactly the cases that g is irreducible. We
can also translate Proposition 4.2 into this:

Suppose f (x) is a monic irreducible quartic polynomial with cubic resolvent g(y)
and Galois group G,

(1) If g(y) is irreducible, and ∆(g) = ∆( f ) is a square in Q, then G∼= A4;

(2) If g(y) is irreducible, and ∆(g) = ∆( f ) is not a square in Q, then G∼= S4;

(3) If g(y) is reducible, and ∆(g) = ∆( f ) is a square in Q, then G∼=V4;

(4) If g(y) is reducible, and ∆(g) = ∆( f ) is not a square in Q, then G∼=C4 or
D4.

Let us work out the 5 examples displayed in Table 6 with their discriminants. The
discriminants of x4−x3−x2+x+1, x4−x3+x2−x+1, x4−x+1 are not squares
in Q. Among them, x4− x3− x2 + x+ 1 and x4− x3 + x2− x+ 1 have reducible
cubic resolvents, so their Galois groups are isomorphic to D4 or C4. It remains to
separate the two cases of C4 and D4. x4− x+ 1 has irreducible cubic resolvents,
so its Galois group is isomorphic to S4. The discriminants of x4− x2 + 1 and
x4−2x3+2x2+2 are squares in Q. The cubic resolvent of x4−x2+1 splits in Q,
so its Galois group is isomorphic to V4; the cubic resolvent of x4−2x3 +2x2 +2
is irreducible, so its Galois group is isomorphic to A4.
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Table 7: Examples of cubic resolvents

f (x) g(y) Factorization of g(y) ∆(g) = ∆( f ) Gal
x4− x3− x2 + x+1 y3 + y2−5y−6 (y+2)(y2− y−3) 117 D4
x4− x3 + x2− x+1 y3− y2−3y+2 (y−2)(y2 + y−1) 125 C4

x4− x2 +1 y3 + y2−4y−4 (y+1)(y−2)(y+2) 144 = 122 V4
x4−2x3 +2x2 +2 y3−2y2−8y+8 irreducible 3136 = 562 A4

x4− x+1 y3−4y−1 irreducible 229 S4

From Proposition 4.2 and its proof, we know that when m = 2, or equivalently,
g is reducible and ∆(g) = ∆( f ) is not a square in Q, g can be factored as g(y) =
(y−r)(y2+sy+t) with r,s, t ∈Q and y2+sy+t irreducible over Q, but we cannot
distinguish whether the Galois group of f is isomorphic to C4 or D4. Therefore,
to decide the Galois group in the m = 2 case, we need an additional criterion.

Proposition 4.3. Suppose m = 2, and g(y) = (y− r)(y2 + sy+ t) with r,s, t ∈ Q
and y2 + sy+ t irreducible over Q. Then G is isomorphic to C4 if and only if
x2− rx+a0 and x2 +a3x+(a2− r) both have roots in L, the splitting field of g.

Proof.

Since γ1,γ2,γ3,γ4 are the roots of f (x) = x4 +a3x3 +a2x2 +a1x+a0, then

a0 = γ1γ2γ3γ4,

a2 = γ1γ2 + γ1γ3 + γ1γ4 + γ2γ3 + γ2γ4 + γ3γ4

a3 = γ1 + γ2 + γ3 + γ4

One direction is easy: If G ∼= C4, then L is the unique subfield of M with degree
2. So the roots of these two quadratic polynomials must belong to L.

Now we need to show the converse. Suppose the two quadratic polynomials x2−
rx+a0 and x2 +a3x+(a2− r) both have roots in L.

Recall that g(y) =
(

y− (γ1γ2 + γ3γ4)
)(

y− (γ1γ3 + γ2γ4)
)(

y− (γ1γ4 + γ2γ3)
)

.

Without loss of generality, assume γ1γ2 + γ3γ4 = r ∈ Q, so that γ1γ3 + γ2γ4 and
γ1γ4 + γ2γ3 are the two irrational roots of y2 + sy+ t.

Then x2− rx + a0 = x2− (γ1γ2 + γ3γ4)x + γ1γ2γ3γ4 = (x− γ1γ2)(x− γ3γ4), and
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x2+a3x+(a2−r) = x2+(γ1+γ2+γ3+γ4)x+(γ1γ3+γ1γ4+γ2γ3+γ2γ4) =
(

x−

(γ1 + γ2)
)(

x− (γ3 + γ4)
)
.

By our assumption, γ1γ2, γ3γ4, γ1 + γ2, γ3 + γ4 ∈ L.

Since γ1+γ2 ∈ L,γ1γ2 ∈ L, then (γ1−γ2)
2 = (γ1+γ2)

2−4γ1γ2 ∈ L, which implies
[L(γ1− γ2) : L]≤ 2.

Notice γ1 =
(γ1 + γ2)+(γ1− γ2)

2
∈ L(γ1− γ2), and γ2 =

(γ1 + γ2)− (γ1− γ2)

2
∈

L(γ1− γ2). So L(γ1,γ2) = L(γ1− γ2).

Also, since γ1γ3 + γ2γ4, γ1γ4 + γ2γ3 are two roots of g, then they are in L, and
(γ1γ3 + γ2γ4)− (γ1γ4 + γ2γ3) = (γ1− γ2)(γ3− γ4) ∈ L. So γ3− γ4 ∈ L(γ1,γ2).

The fact both γ3 + γ4 and γ3− γ4 are in L(γ1,γ2) gives us that γ3,γ4 ∈ L(γ1,γ2).
Hence, M, the splitting field of our quartic polynomial f (x) = x4 +a3x3 +a2x2 +
a1x+a0, is equal to L(γ1,γ2,γ3,γ4) = L(γ1,γ2) = L(γ1− γ2).

So we see, [M : Q] = [M : L][L : Q] = [L(γ1− γ2) : L] ·m]≤ 2 ·2 = 4. Therefore, G
has to be isomorphic to C4.

From Proposition 4.3, we can derive a new propostion as follows:

Proposition 4.4. Suppose f (x) = x4 + ax2 + b ∈ Q[x] is irreducible over Q, and
has Galois group G.

(1) If b is a square in Q, then G∼=V4.

(2) If b is not a square in Q, but b(a2−4b) is a square in Q, then G∼=C4.

(3) If neither b or b(a2−4b) is a square in Q, then G∼= D4.

Proof.

By definition, g(y) = y3−ay2−4by+4ab= (y−a)(y2−4b). Since it is reducible,
by Lemma 4.2, G∼=V4,C4 or D4.

If b is a square in Q, then g(y) = (y−a)(y−2
√

(b))(y+2
√

(b)) splits in Q. This
shows G∼=V4.

Suppose b is not a square Q. Then the splitting field of g has degree 2 over Q,
and the splitting field L of g is equal to Q(

√
b). According to Lemma 4.3, we

need to consider the polynomials x2−ax+b and x2. It is trivial that x2 has roots
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in L. We only need to check whether the roots of x2− ax+ b are in L. Note that
a+
√

a2−4b
2

and
a−
√

a2−4b
2

are in L if and only if
√

a2−4b∈ L =Q(
√

b). If

b(a2−4b) is a square in Q, then
√

b(a2−4b) ∈Q implies
√

a2−4b ∈Q(
√

b) =
L. So in this case, roots of x2− ax+ b splits in L, and G ∼= C4. Hence, the only
case left when b(a2−4b) is not a square in Q, and G has to isomorphic to D4.

Table 8: Examples of irreducible x4 +ax2 +b

f (x) = x4 +ax2 +b b b(a2−4b) Gal
x4 +1 1 = 12 doesn’t matter V4

x4−3x2 +4 4 = 22 doesn’t matter V4
x4 +5x+5 5 25 = 52 C4

x4−20x2 +50 50 10000 = 1002 C4
x4−2x2 +2 2 −8 D4
x4 +5x2 +7 7 −21 D4

Lemma 4.5.

Suppose L/Q is a G-extension, where G ∼= V4,C4, or D4. Then L is the splitting
field of a biquadratic polynomial. i.e. there exists some a,b ∈ Q such that x4 +
ax2 +b has splitting field L.

Proof.

Notice all C4,V4,D4 are solvable, because 1BC2BC4, 1BC2BV4, 1BV4B
D4. Also since |C4 : C2|= |V4 : C2|= |D4 : V4|= 2, when L/Q is a C4- or V4- or D4-
extension, there exists intermediate field K such that [K : Q] = 2. In other words,
K/Q is a quadratic extension over Q. We can assume K = Q(

√
α) with α ∈ Q.

If L/Q is a C4- or V4-extension, then [L : K] = |C2| = 2 and L/K is a quadratic
extension. We let L = K(

√
β ) for β ∈ K = Q(

√
α). Then

√
β =

√
a+b

√
α ,

which is a root of the biquadratic polynomial x4− 2ax2 + a2− b2α . If L/Q is a
D4-extension, then Gal(L/K) ∼= V4, and so there exists β ∈ K but not a square in
K such that

√
β ∈ L. By the same argument, the minimal polynomial of

√
β is a

quartic polynomial and has splitting field L.
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Combining Proposition 4.4 and Lemma 4.5, we conclude that a G-extension of Q
can be parametrized by a biquadratic polynomial x4 +ux2 + v in Q(u,v)[x] if and
only if G ∼= C4,D4 or V4. If f (x) in Q[x] with splitting field L has Galois group
S4 or A4 over Q, then the degree 4 extension obtained by adjoining a root of f (x)
does not contain a quartic subfield.

Theorem 4.6.

p5(s, t,x) = (x2− s)(x2− t) is a parametric polynomial for V4-extensions of Q.

Proof.

This should be easy to see. First notice p5(s, t,x) clearly has Galois group V4 over
Q(s, t)[x], because every element of the Galois group has to have order 2. Now
let L/Q be a V4-extension. Then L/Q has three distinct quadratic intermediate
fields E1,E2,E3. Since E1,E2 are quadratic over Q, we can assume E1 =Q(

√
a),

and E2 = Q(
√

b), where a,b are not squares in Q. So ab must not be a square in
Q, and E3 =Q

√
ab. Therefore, the polynomial (x−a2)(x−b2) has splitting field

L.

Notice p5(s, t,x) = (x2− s)(x2− t) in Q(s, t)[x] is a biquadratic polynomial, but it
is not irreducible. The following is an irreducible biquadratic parametric polyno-
mial for V4:

Theorem 4.7.

p6(u,v,x) = x4 +ux2 + v2 is a parametric polynomial for V4-extension of Q.

Proof.

Since u2 is a square in Q(u,v), then according to Proposition 4.4, the splitting
field of p(u,v,x) over Q(u,v) is a V4-extension. Since we showed that every V4-
extension is the splitting field of a biquadratic polynomial, and that biquadratic
polynomial must have the constant term a square in Q, we can conclude that
p6(u,v,x) is a parametric polynomial for V4-extensions of Q.

Similarly, using Proposition 4.4 and Lemma 4.5, we can write the parametric
polynomials for C4- and D4-extensions of Q:
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Theorem 4.8.

p7(u,v,x) = x4 +ux2 +
u2

v2 +4
is a parametric polynomial for C4 over Q.

p8(u,v,x) = x4 +ux2 + v is a parametric polynomial for D4 over Q.

For any irreducible quartic polynomial f (x), we can go through the same process
as in Lemma 3.1 and find (a,b) ∈ Q2 such that x4 + ax2 + bx+ b has the same
splitting field as f (x). And we can prove p(s, t,x) = x4 + sx2 + tx+ t in Q(s, t)[x]
is a parametric polynomial for S4-extensions of Q by showing the discriminant
d(s, t) = 256t3−128s2t2+144st3−17t4+16s4t−4s3t2 is not a square in Q(s, t).

Theorem 4.9.

p9(s, t,x)= x4+sx2+tx+t in Q(s, t)[x] is a parametric polynomial for S4-extensions
of Q.

The only subgroup of S4 left is A4, which is the most sophisticated case. The
following is a parametric polynomial for A4-extensions of Q from reference [1],
but we will not include a proof.

Theorem 4.10.

p10(α,β ,x) = x4− 6A
B

x2−8x+
9A2−12(α3−β 3 +27)B

B2 in Q(α,β )[x], where

A = α
3−β

3−9β
2−27β −54,

B = α
3−3αβ

3−9αβ +9β
2−27α +27β +27,

is a parametric polynomial for A4-extensions of Q.

According to reference [1], all groups of degree ≤ 15 has been proved to be the
Galois group of field extensions over Q. Also, reference [1] gives specific results
of generic polynomials for degree 3,4,5,7 and 11 over a field K with character-
istic 6= 2. For a parametric polynomial p(~t,x) in K(~t,x) to be generic for some
G-extension, it requires the following additional condition besides the conditions
A1, A2 in Definition 2.2

A3. p(~t,x) is parametric for G-extensions over any field containing K.
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In fact, all the parametric polynomials we discussed in this paper are also generic.
Although much more complicated, the method used to construct the generic poly-
nomials of degree 5,7,11 is similar to what we did for quartic polynomials. It
uses resolvent polynomials over Q to reduce the case to smaller degre. The con-
structive aspects of the Inverse Galois Problem have made some progress, and the
work still needs to be continued.

27



5 Appendix

When L/Q is a C3-extension with Galois group G= 〈σ〉 ∼=C3, why can we always
find linearly independent x,y ∈ L such that σ(x) =−y and σ(y) = x− y?

Consider the representation G−→ GL2(Q) where

σ 7−→
[

0 −1
1 −1

]
,and σ

2 7−→
[

0 −1
1 −1

][
0 −1
1 −1

]
=

[
−1 1
1 0

]
.

Let V =Q×Q, then

for all
(

a
b

)
∈V =Q×Q : σ

(
a
b

)
=

(
−b

a−b

)
,and σ

2
(

a
b

)
=

(
−a+b

a

)
.

We want to show there exist two linearly independent elements x,y in L such that
σ(x) =−y, and σ(y) = x− y.

We start by looking at the dual space V ∗ of V , which is the set of all linear and
continuous maps from V =Q×Q to Q. It is a Q[G]-module by the action σ(ϕ) :
v 7−→ ϕ(σ−1v). We’ll show it is a cyclic Q[G]-module.

Clearly, V ∗ is generated by the two projection functions ε1,ε2, where

ε1 :
(

a
b

)
7−→ a,and ε2 :

(
a
b

)
7−→ b.

So to show V ∗ is a cyclic Q[G]-module, it is sufficient to show that ε2 can be
written as a linear combination of ε1,σ(ε1),σ

2(ε1).

For all v =

(
a
b

)
∈V :

(
σ(ε1)

)
(v) = ε1

(
σ
−1
(

a
b

))
= ε1

((
−a+b

a

))
=−a+b =−ε1(v)+ ε2(v).

Hence, σ(ε1) = −ε1 + ε2, which implies that V ∗ is cyclic generated by ε1 over
Q[G].

By Normal Basis Theorem, there exists α in L such that {α,σ(α),σ2(α)} spans
L.
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Now we claim the map

ρ : v 7−→ ∑
g∈G=〈σ〉

ε1(g−1v)g(α) is an injective homomorphism from V to L.

For all v =

(
a
b

)
∈V :

ρ

((
a
b

))
= ε1

(
Id
(

a
b

))
Id(α)+ ε1

(
σ
−1
(

a
b

))
σ(α)+ ε1

(
σ

(
a
b

))
σ

2(α)

= ε1

((
a
b

))
Id(α)+ ε1

((
−a+b

a

))
σ(α)+ ε1

((
−b

a−b

))
σ

2(α)

= a ·α +(−a+b) ·σ(α)−b ·σ2(α).

Clearly, ρ is a homomorphism. And it has trivial kernel, because for each
(

a
b

)
∈

Ker(ρ), it must be true that a = 0,−a+b = 0,−b = 0..

Hence, ρ is an injective homomorphism from V to L.

Now let x = ρ

((
1
0

))
= α−σ(α) , y = ρ

((
0
−1

))
=−σ(α)+σ

2(α)

Since
(

1
0

)
,

(
0
−1

)
are linearly independent over Q, then x,y are also linearly

independent over Q.
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Also,

σ(x) = σ

(
α−σ(α)

)
= σ(α)−σ

2(α)

=−y,

σ(y) = σ

(
−σ(α)+σ

2(α)
)

=−σ
2(α)+α

=−σ
2(α)+σ(α)+α−σ(α)

=−
(
−σ(α)+σ

2(α)
)
+
(

α−σ(α)
)

=−y+ x.
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