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1 Abstract

Machine translation is a widely researched topic in the field of Natural

Language Processing and most recently, neural network models have been

shown to be very effective at this task. The model, called sequence-to-sequence

model, learns to map an input sequence in one language to a vector of fixed

dimensionality and then map that vector to an output sequence in another

language without any human intervention provided that there is enough

training data. Focusing on English-French translation, in this paper, I present

a way to simplify the learning process by replacing English input sentences

by word-by-word translation of those sentences. I found that this approach

improves the performance of a sequence-to-sequence model which is 3-layer

deep and has a bidirectional LSTM encoder by more than 30% on the same

dataset.

2 Introduction

Deep neural networks have been shown to very effective at wide variety of

tasks including computer vision, speech recognition, image captioning and

many others. The way they work is that provided enough training data,

these models learn to approximate functions which map the input data to

the output data. We will briefly discuss how neural networks work in general

and then talk about recurrent neural networks to develop understanding of

sequence to sequence models.

2.1 Neural Networks

The building block of a neural network is called a neuron. Each neuron takes

in inputs and gives an output. Let’s look at how a sigmoid neuron works.

Let’s say x1, x2, x3 are inputs to this neuron.

Figure 1: A simple neuron
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Each input is associated with a weight value. To calculate the output for

this neuron, we multiply the inputs by their wights and add them. We then

add a bias term. Let’s call this quantity z, that is, z =
∑

xiwi + b. Next, we

squash the z value using a sigmoid gate (called activation gate). Overall, we

get:

output =
1

1 + e−z

.

A neural network consists of layers of such interconnected neurons. In

general, it consist of an input layer, one or may hidden hidden layers and an

output layer. A simplified diagram would look like:

Figure 2: A neural network

All the nodes in the input layer take in an input, calculate output and

pass it as input to the nodes in the hidden layer. The hidden layer nodes do

the same and pass their output as input to other hidden layer nodes or to

one of the output nodes. The ouput of output layer nodes is the output of

the whole neural network. Each of the interconnections between the nodes

corresponds to a weight variable.

To make the network learn, we calculate the loss between the predicted

output and desired output using a loss function and minimize it using an

optimization function such as gradient descent and backpropagation. The

details of these algorithms are not discussed here. They basically find out

how much each variable, such as weights, affects the loss and by how much

they should be changed so as to drive down the loss.
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Each training step involves calculating loss and updating weights and

biases to decrease it. With enough data and training data, these models learn

to map inputs to outputs.

2.2 Recurrent Neural Networks

The simplified neural network that we just discussed has one major limitation.

It has fixed size input and is thus suited to tasks where the input sequence

varies. This is especially true when we are dealing with languages. Let’s look

at the task of predicting next word in a sentence given previous words in

the sentence. For this purpose, a fixed input layer neural network would not

work. To address this limitation, we use a variant of neural network called

Recurrent Neural Network. It consists of single cell, which takes in a

input, calculate its call state, and then gives an output. With each new input,

the RNN cell updates its state which can be thought of as updating memory.

However, in practice, we roll out the network depending on the length of

input sequence and visualize it as:

Figure 3: A recurrent Neural Network

With each input, xt, the RNN cell updates its cell state st with the

following rule:

st = tanh(Uxt + Wst−1)

.
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Here, sT−1 is the previous cell state and tanh squashes the value between

-1 and 1.

To calculate the output, we use the following rule:

ot = softmax(V st)

At time step t, these networks can also be thought of as regular neural

network except that the weights connecting input nodes (U) to the hidden

nodes(RNN cell) are same across all inputs. Similarly, the weights connecting

hidden nodes, W, are also same and so are the weights connecting each

hidden node to the output. With this analogy, we can see that the regular

optimization and backpropagation algorithms can be applied to train such

networks.

However, this version of RNN does not do very well on longer sequences

because of something called vanishing gradient problem which makes the

network forget what it saw a certain time ago. The solution to this problem

is to replace the vanilla RNN cell with something called LSTM (Long Short

Term Memory) cell. The details of how it works and solves the problem of

remembering long term dependencies can be found in this paper [3].

2.3 Machine Translation

Translating documents using machines is a very old problem. To do this, one

could employ someone who knows both the source language and the target

language. However, this is very slow in practice. So, scientists have been

working for several years to come up with a automated machine translation

system. Before looking at how they did it, let’s think about how would one

approach the problem of translation.

• Word by word translation: This is the simplest way to approach

this problem. One can just replace each word in the source sentence

with the corresponding word in the target language.

Figure 4: Example of word by word translation
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• Use grammar rules of the source and target language: Trans-

lating word by word ignores context and might not work well. Instead,

one can try to incorporate grammar rules to divide the sentences into

chunks of words, translate and reorder if necessary. For example:

Figure 5: Example of using grammar rules

In fact, the second approach was the one which scientists building

the early translation systems used. They brought in linguists who

were expert in the interested language. They would program each and

every language rule to build the translation system. However, this

approach was only effective for official documents which were written

in standard grammar. For normal communication, this method was not

very effective.

• Use statistics: Since rule based system did not work for normal human

communication, new models were developed which used statistics. They

used parallel corpora to train the models. Parallel corpora contains

the same text written in multiple languages.In fact, ancient Egyptian

hieroglyphics were decoded using the Rosetta stone which had a par-

allel translation into Greek.Instead of generating one translation,the

statistical model looks at multiple translation of the same group of

words in the training data and scores them based on their probability

of occurring in the training data.

It then generates all the possible sentences. For example (in Figure 6),

it could generate I want to go to more pretty the beach. It could also

generate I want to go to the prettiest beach. It then scores each possible

sentence based on how frequently the chunks in sentence occur and

how normal they sound based on the training examples. The second
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Figure 6: Example of using statistics

sentence definitely sounds more English and contains chunks which are

more likely to occur in an English sentence.

Statistical machine translation worked really well and was incorporated

in Google Translate in 2000s.However, these models are hard to build

and maintain. Moreover, for every pair, one has to build a whole new

model.

This is where Deep Learning made a significant impact in this field.

With Deep Learning models, one can treat them as a black box and just

feed in input and output training sample and let it learn everything by

itself without needing someone to tweak anything. The same model,

if fed different language pairs, would get trained to translate between

those pairs. We will next discuss this Deep Learning model. [2]

3 Sequence to Sequence models for English-

French Translation

As we have already seen, when we are working with sequences (sentences)

where input length could vary, recurrent neural networks seem to work best

because of their flexibility. Hence, we will use RNNs to build a neural machine

translation model. This model is called Sequence to Sequence (Seq2Seq)
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model. This was a major breakthrough for machine translation. The model

we are going to discuss was proposed by Sutskever et al.[8] who were inspired

by earlier works by Cho et al.[1] and Kalchbrenner and Blunsom [4].

3.1 The Model

Seq2Seq model consists of an encoder and a decoder. The encoder takes in

an input sequence and converts it to something called thought vector (or

an immediate representation). Then the decoder takes the thought vector

and converts it to a output sequence. We use a recurrent neural network for

encoder and a another recurrent neural network for decoder. The complete

setup looks like this:

Figure 7: Sequence to Sequence model

While training, we might encounter long term dependency, so we will use

LSTM which handles this issue as discussed earlier.

Assume we have input sequence {x1, x2....xt} and output sequence {y1, y2....yt′}
where t may not be equal to t′. Using encoder-decoder system, we can calculate

the conditional probability P (y1, ..., yt|x1, ..., xt). As discussed, to calculate

this, the encoder LSTM will first obtain a fixed size vector v for the input

sequence {x1, x2....xt}. We then use the decoder LSTM as a regular LSTM

RNN Language Model. In a RNN Language Model, we input a word/token

in the first node and it will output a probability distribution over all the

target vocabulary. We take the most probable word/token and feed that as

the next input and continue. In this way, we will get the required conditional

probability that we were looking for.

P (y1, ..., yt|x1, ..., xt) =
T ′∏
t=1

P (yt|v, y1, ..., yt−1)
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3.2 Implementing Seq2Seq model

There are various available libraries which let us implement these models

relatively easily. Theano, PyTorch, Keras,TensorFlow are some of the

most popular ones. For the implementation, I chose TensorFlow mainly

because it makes it easy to run the code on multiple GPUs, has a strong

community and has a lot of tutorials, including one for machine translation.

TensorFlow has a built-in Seq2Seq function which takes in input sequence

and target sequence and returns outputs and losses. However, I chose to

implement it myself to better understand the model. I used other TensorFlow

features to build a encoder and then a decoder. Moreover, TensorFlow has

APIs for python which makes it easy to implement.

Below, I will describe my implementation of the model which I trained to

translate from English to French.

3.2.1 Initialization

I first define the parameters used for the model such as RNN cell, size of

hidden state of encoder, size of hidden state of decoder, number of layers for

the encoder RNN and decoder RNN. I use LSTM cells for both the encoder

and decoder. I also define the vocabulary size of source (encoder vocab size)

training file and target training file (decoder vocab size).

Then, for each item (integer i) in the input sequence, I first convert it

to a vector representation. To do this, the most straightforward way to

do it make a one-hot vector, that is, a vector of length encoder vocab size

whose all coordinates are 0 except the ith position which is 1. However, this

results in very high dimensional vectors and matrices in our system. This

makes the computation slow and resource-intensive. Instead, we will embed

each input integer to a vector in a embedding space of lower dimension.

We define a parameter embedding size which is less than the vocabulary

size. So, for input sequences, we define encoder embeddings matrix which

has encoder vocab size rows and and embedding size columns and randomly

initialize it. For integer i in the input sequence, we take the ith row of this

matrix. We do the same for the decoder.

While training, this matrix gets updated to give us better representation

of inputs in the embedding space.
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3.2.2 Encoder

For the encoder, I used the TensorFlow built in RNN function which takes in

embedded input sequence, the LSTM cell and returns the outputs and final

state of the encoder RNN. At this point, we are not interested in the outputs

of the encoder RNN, we just need the final state vector v of the encoder RNN.

This vector v is the thought vector that we were talking about earlier.

3.2.3 Decoder

I used the TensorFlow built-in RNN function too but a slightly different

version of it. In the The difference between encoder and decoder is that for

the encoder RNN, we have all the inputs provided. But for the decoder,

we have to generate the outputs from the thought vector v provided by the

encoder RNN . The way we do that is as follows:

• Set the initial state of the decoder RNN to be the final state of the

encoder RNN.

• Set the initial input of the decoder RNN to be EOS token.

• Get the initial output vector, find the token with the highest probability,

get the and make it the next input to the RNN.

• Make a list of all the outputs from the decoder RNN and compare it to

the expected outputs and find the loss. The loss function used here is

cross entropy loss function.

After calculating the loss, I use the provided optimizers to minimize the

loss. Note that this is a very general setup and depending on the data

provided, it will work for any sequence to sequence mapping task. I will

now describe how I prepared data to train this model for English-> French

translation.

3.2.4 Loss function

To evaluate the performance, we need a loss function. For sequence to

sequence models, cross-entropy loss function is widely used for evaluation.
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The cross entropy function is defined as:

Hy′(y) := −
∑
i

y′i log(yi)

Then we calculate

perplexity = eloss

3.2.5 Data preparation

I scraped some online sources to get about 2000 short and simple English

sentences. Then I used Google Translate to get the corresponding French

translation. About 1600 sentences were used for training and 400 used for

testing. Since the sentences were simple, I assumed that the translation

(from Google Translate) is accurate. Then I divided the data into four files

-train-source, train-target, test-source, test-target. The model trains on train-

source, train-target (English) files and we can test using test-source, test-target

(French). Since we cannot feed in literal words into our model, we have to

convert them to numbers. For English-French translation data, I did the

following:

• Scan the training source and target file. For each new word, map it to

an integer value and save the mapping. Reserve special values for EOS

(for end of sentence),UNK (for words not in the mapping), and PAD

(for empty space) tokens. To convert predicted tokens to words, also

save a reverse mapping.

• Using the mapping, write a new tokenized file for all the four files train-

source, train-target,test-source, test-target. In the tokenized version of

these files, the words are replaced by the corresponding token.

Since the mapping was constructed by just scanning the training files,

there will be some words in the test file, which do not have a corre-

sponding token value. These words will be replaced by a special UNK

token.

3.3 Performance

For the training, we take a batch of tokenized sentences from the source and

target data. Next we find the length of longest sentence and pad the rest
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sentences in the batch to make it equal to that length. We do that same

for target batch. Now, we can pass the batch of padded input and output

tokenized sentences into our Seq2Seq model.

The Seq2Seq model predicts a sequence if output tokens. We then use the

reverse mapping to convert them back to words.

The model was trained for 6000 steps and at every 25 steps, its performance

was checked by feeding in unseen sentences from the test data. Let’s see

how the model performed while changing various parameters. Note that the

graphs show the perplexity of our Seq2Seq model against number of training

steps. For a better visualization, instead of plotting raw perplexity values, we

use moving average. This step decreases the zig-zag nature of the curve while

preserving its nature. For the models, I used area under curve of perplexity

against training time steps as a measure of performance. The lower the area

under curve (AUC), the better the performance.

3.3.1 Effect of optimizers

TensorFlow provides various built-in optimizers such as GradientDescentOpti-

mizer, Adam Optimizer, Adagrad Optimizer. Optimization in deep networks

is a complex topic and will not be discussed here. They are discussed here

[5] and [6] talk about these concepts in detail. We will however look at the

performance of our model with different optimizers.

Figure 8: Effect of optimizers on learning
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As we can see during the training Adam Optimizer converges faster. Hence,

for the next experiments, Adam Optimizer is used.

3.3.2 Effect of Bidirectional Encoder

Let’s say we want to translate the sequence x1, x2, ...xT to y1, y2, ...y
′
T . If we

have an incomplete sequence x1, x2, ..xt where t < T , its meaning might not

be clear and might depend on future words in addition to past words. So,

it would be nice if we could train our encoder RNN in both directions with

respect to the input sequence. Such RNN is called Bidirectional RNN and

was first proposed by Schuster and Paliwal in [7]

Figure 9: Bidirectional RNN

In this RNN, the neuron has two independent states, one for forward

direction and one for backward direction. To get the thought vector v from

the encoder, we concatenate both the RNN forward cell state and backward

cell state.

(a) Training (b) Testing

Figure 10: Performance of Bidirectional Encoder
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For training, the AUC decreased by 25.56 whereas for testing, the AUC

went down by 18.04 %.

3.3.3 Making it Deep

Now we can see that the bidirectional encoder works better than vanilla

encoder while building Seq2Seq model. Now, we want make the network deep

and see how it performs. The deeper the model, the better the immediate

representation (or the thought vector) will be.

Figure 11: Training results for Deep Model

Compared to 1 layer, having 2 layers of encoder and decoder brought

down the area under curve by 7.33 % for training and 10.37% for testing. On

the other hand, having 3 layers brought down the area under curve by 9.36

% for training and 12.36 % for testing.
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Figure 12: Testing results for Deep Model

4 An alternative approach

Translation from English to French is a tough challenge for anyone, especially

when they are not familiar with both the languages. Our model is certainly

not aware of English or French. So, I thought about whether I could make

this task easier. One of the most straightforward way to translate is to replace

each word in the English language with the corresponding French word using

a dictionary. This approach does not work always as we saw earlier. But

it does get us somewhere. For someone who knows some French, he/she

might understand it or even better correct it. In other words, the problem of

translating from English to French can be reduced to a problem of correcting

a scrambled French sentence to a correct French sentence. So, the question

arises: What if we train our Seq2Seq model to tackle the latter problem

instead of the former on? The hypothesis is that it would be easier to train

the model to solve the problem of correcting an incorrect French sentence to

a correct Sentence would be easier than translating an English sentence to a

French sentence.
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4.1 Performance

The underlying model is left unchanged to check the effectiveness of the new

model except for one aspect. The embedding matrix for source and target is

same for the new setup. This is because the source and target language is

same. So, they share the same vocabulary.

I ran the new set up with 3 layers, bidirectional encoder and compared with

the regular 3-layer bidirectional-encoder English-French translation system.

The results are given below:

Figure 13: Training results for alternative approach

During training, both models performed similarly. The word-by-word

model slightly outperformed and decreased the area under curve by 4.41

% . However, as predicted, the word-by-word model greatly outperformed

the regular model during testing and decreased the area under the curve by

34.01%. This is a remarkable result and shows that the word-by-word model

is very promising.
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Figure 14: Testing results for alternative approach

5 Conclusion

In this paper, I explored sequence to sequence model and implemented it

using TensorFlow. I showed how using Adam Optimizer, using bidirectional

RNN for encoder and making the network deep improves the performance of

the Seq2Seq model over vanilla Seq2Seq model. I then provided an alternative

approach to machine translation by first word-by-word translation and then

training Seq2Seq model to convert word-by-word translation into proper

translation. The results were really promising and have inspired me to further

investigate this idea. I used short and simple sentences and a rather limited

data for this project. The big question now is whether this new approach

would work on more complicated data.
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