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Localization of phones is a ubiquitous part of the modern mobile electronics landscape.
However, there are many situations where the current method of networked localization
fails. A Pedestrian Dead Reckoning System where the location of the user is calculated
by counting the steps and direction of the user was implemented as an iOS app with
python for data analysis. A novel algorithm for wireless sensor localization using Ad-
Hoc Bluetooth networks was proposed. A small experiment was performed proving
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Chapter 1

Introduction

Mobile phones are a ubiquitous part of the modern landscape. Most people carry them
at all times, and rely on them to complete any number of basic tasks. Of these, one
of the most common is to guide the user from place to place and provide geographic
context. Localization is critical to providing a user with directions, or direct services
to the user as in apps like Uber and Lyft. More recently interest has grown in using
localization data to give users information relating to their current location like nearby
shops. To do so, a natural first step is to know where the user is, called the problem
of localization. Since the explosion of cellular phones over the last two decades, many
different strategies have been proposed. Currently, the most widely used are the Global
Positioning System or GPS, and using know cell tower locations (provided by cell com-
panies) or WiFi points (collected by traveling while recording open WiFi services, and
commonly called wardriving) to triangulate the user’s location. Smart phone platforms
like Android or iOS use a combination of these strategies in their core location services
to return a phone’s last location [1] [2].

However, all three strategies are reliant on access to at least one in place network in-
frastructure. GPS works by connecting to a system of satellites around the earth, cellular
towers rely on the user having a cellular network connection, and WiFi connections re-
quire a rebuilt Internet framework for the user. However, there are many situations in
which none of these systems can be accessed. For instance, in remote wilderness loca-
tions like Acadia National Park in Maine there may be no cellular service or Internet
access, and GPS may become unreliable as it requires clear line of sight to the satellites
in the sky. Another example is a building, where both GPS services and cellular data
may not be able to penetrate the walls, and there may not be enough WiFi access points
to reliably locate the user. Finally, in a rescue situation after some sort of disaster we
may see all infrastructure fail, leaving emergency responders with no way to accurately
locate themselves or use services reliant on location data. All of these present significant
challenges for computer science.

In order to solve these challenges, interest has grown around ways to locate users
without a network infrastructure. The most common method has been to use some
kind of dead reckoning, the act of repeatedly updating a known location with estimates of
speed, and then use another source of information to correct errors from dead reckoning
[3].
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1.1 Ad-Hoc Networks

Simultaneous with the growth of interest in the problem of localization of phones is the
growth of interest in the problem of mobile network localization. Take a group of wire-
less sensors, all linked in a network. In particular, this thesis is interested in the idea
of Ad-Hoc Networks, networks where there is no fixed routing infrastructure between
nodes, but each node acts to pass along packages itself. So, we can imagine a group
of phones which pass messages between them using Bluetooth or WiFi without send-
ing messages through a router or some other network component as a simple Ad-Hoc
Network. Many WSNs are also Mobile Ad-Hoc Networks abbreviated MANETs, where
each node passes messages between each other while also moving. So, going back to
our animal example, each wireless sensor node may be attached to a moving animal,
and form connections when it is in range of another device, and break connections as
the device moves away from nodes. Similarly, we can think of phones in the pockets of
different people as forming a MANET if all are connected by some Ad-Hoc network. As
people go a bout their day, connections are formed, and then disconnected as different
users pass each other by.

Combining these two approaches leads to some interesting observations. Since phones
can be both wireless sensor networks and gather significantly more sensor data than
many WSN nodes, they have properties that can use ideas from both areas. This thesis
involves using two ideas, PDR and network positioning, to try and improve on local-
ization algorithms.

1.2 MANET Localization

I am particularly interested in one kind of network. As an example, consider a network
that is used to gather data on wildlife. Each animal has a small device, abstractly a node
that measures some data on the animal. Each node is wireless, and sends data through
other nodes. These sorts of systems are referred to as a Wireless Sensor Network (WSN).
Many of these devices may be too small or have too little battery to have a GPS or cellu-
lar receiver built in, and since they may move into areas with an Internet infrastructure,
will not be connected to a fixed WiFi system. However, many uses for these systems
may require localization information. Therefore, many different algorithms have been
suggested for localization of individual nodes within the WSN.

In this study I use PDR coupled with a WSN algorithm using ad-hoc Bluetooth con-
nections between iOS devices acting as a mobile WSN. with messages between phones,
a better idea of location can be generated by using the various different mobile phones
as what are refereed to as landmarks. In particular, in this case we use mobile landmarks,
meaning that the landmarks themselves move, not just the nodes, as in this set up the
nodes are the landmarks and vice versa. Because the maximum range is known already,
we can infer that the user must be within the range of any connected nodes, and thereby
use their position to help locate the user.
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1.3 Pedestrian Dead Reckoning

The first step uses ideas from Pedestrian Dead Reckoning, a specific type of dead reck-
oning mentioned above. Since we can measure the acceleration and angular velocity
of the phone, we can get an idea of the motion of the user. Then, using this data and
assuming that the user is a pedestrian who is walking we can determine when the user
takes a step. Compare this with Inertial Navigation where there is no assumption about
the motion of the user and the acceleration and angular velocity are used to find the ve-
locity and attitude, and then the position with double integration given a known change
in time. This method is generally not usable with a phone, as the commercial sensors
in phones lack the necessary accuracy [4]. Then, as each step is detected using accelera-
tion data, the heading is found using gyroscope and magnetosensor data. With the last
known position, the heading, and stride length, location can then be updated by adding
the displacement of the step in the direction of the heading to the last known location.

1.4 Thesis Outline

In chapter 2, there is a literature review of PDR systems and Monte Carlo Localization
for WSNs. Following in chapter 3 is an explanation of the method broken down by the
architecture of the project. There is a brief description of the overall architecture, the iOS
client, the server, and the post data collection processing. Chapter 4 contains the results
of experiments using the platform. Chapter 5 is a conclusion and a plan for future work.
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Chapter 2

Related Work

Many different approaches to phone localization and pedestrian dead reckoning (PDR)
have been used [5–9]. All of these methods use the same fundamental approach: using
accelerometers, gyroscopes, and magnetosensors to calculate the number of steps and
direction for PDR, and then trying to error correct using some other source of informa-
tion. Several have used bluetooth as error correction[10, 11]. However these approaches
so far suffer from a similar set of problems: 1) Requiring fixed network landmarks set
up before localization, 2) using Recieved Signal Strength Indication (RSSI) to get dis-
tance from the source even though RSSI is not standardized for bluetooth devices and
is inaccurate, 3) using a complicated network relying on many different heterogeneous
devices, and 4) requiring the user to hold the phone face up, an awkward position for
daily use. Some have tried correcting a few of these problems, but not all.

There has also been significant work on localization of wireless sensor networks
(WSN) with mobile landmarks [12, 13]. This has assumed that the WSN nodes have
weak bounds on their movement, however thanks to the advances in internal sensors
of smartphones we can get much stronger limits on the movement of the phone. In
particular, PDR has become feasible within the past decade even without specialized
inertial measurement units, which have a high cost and are not common among non-
specialists. These systems are also usually tested in simulation and not implemented on
a real device.

Constandache et. all describe one of the first systems of GPS-less phone localization,
reliant on having a map availible [5]. Using the map to find segments that are walkable
or not, they match up segments with user sensor readings, choosing the best path. Ini-
tial location is given by a GPS reading. This system relies on having certain segments
marked as “walkable” or not. Another system is Wang et. all who assume a dense
landscape of static landmarks, identifiable from WiFi, and magnetic or physical signals
[14]. Their system UnLoc system uses k-clustering to discover locations of landmarks
after several passes, using several predefined types of landmarks commonly found in
indoor environments. They combine these landmarks with PDR data to correct for in-
accuracies to correct inaccurate heading data. Both of these examples use static access
to networks, including WiFi and GPS signals. Kang and Han present a PDR system
for modern phones which has both a step detection system and dynamic step length
estimation model, using the fact that modern consumer phones typically contain 3-axis
accelerometer, 3-axis gryoscope, and a magneto sensor [9]. They were able to use the
system without having the phone facing directly up by combining readings from the
magnetosensor and the 3-axis gyroscope, a major improvement.
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Bluetooth aided localization has been studied by many authors. Early work by Feld-
mann et. all used Bluetooth signal strength through RSSI and triangulation with known
static landmarks to locate a PDA [10]. They used least squares estimation to triangulate
given distances from a polynomial fit to RSSI. A more recent approach was taken by
Mirowski et. all in their SignalSLAM system [11]. SignalSLAM uses the GraphSLAM
algorithm to locate and map the user, combining the signal readings and PDR measure-
ments of a group of networked phones. A variety of different static landmarks were
used, including WiFi hotspots, bluetooth RSSI, LTE, GPS, and NFC data. Using this
they reconstructed a map of an indoor space. The actual localization took place off the
phone on a seperate back end due to the computational complexity of GraphSLAM. A
more recent approach by Liao et. all uses bounding boxes from known static bluetooth
landmarks [8]. They used bounding boxes and triangulation to get initial estimates of
position, which they then update with PDR, but did not try and combine the PDR values
and bluetooth values beyond that. They did not use RSSI values except as a threshold
of being within range, avoiding the problem of inaccurate RSSI values.

In a seperate area, WSNs are a popular field. Several approaches have been sug-
gested for systems with mobile landmarks and mobile nodes. Hu and Evans worked on
a system that uses a Monte Carlo simulation filtered by connection data [13]. They use
both “positive” data of a succesful connection and “negative” data of a lost connection
to filter - assuming that a node within range of another node is within that area, and
that a node not in the range of a recently lost connection must have moved out of range
of the previous node. They also use 2nd order connections. Nodes are assumed to have
some maximum velocity from their previous location, but that is the only bound on the
movement of the node. Baggio and Langendoen working from Hu and Evans, used
an algorithm that pre-filtered instead of post filtered in the Monte Carlo simulation,
and disregarded negative data [12]. Because radio signals are easily blocked by walls
and other obstructions even when in range, Baggio and Langendoen found that by ex-
cluding areas from disconnections the data became more inaccurate, as it’s possible the
node had not gone out of range, but had simply gone behind some solid structure. Both
approaches were tested on simulations and not in a real implementation.

All the reviewed phone localization systems assumed fixed landmarks, whether
they were pre located or discovered. Many algorithms including [6, 11, 14] rely on
making several different passes, either with the same device or as part of a network.
Phone localization assumes some fixed infrastructure like WiFi systems. WSNs algo-
rithms on the other hand are built with very little information on the movement of the
nodes besides network data for localization. Therefore we propose a system assuming
mobile landmarks, but also using the PDR data to provide more accurate bounds on
the movement of the node. Liao came closest to fixing several of these problems, but
they used bluetooth only for initialization, instead of trying to combine bouth sources
of information when they conflict.
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Chapter 3

Method

3.1 Architecture

In my study the system was built in two parts, a client side on the iPhone, and a server
side run on a PC. The system was split in order to make running the analysis on data
easier, this way I could turn on and off features at different times. In particular, I could
analyze the effect of using Bluetooth correction by comparing the result on the same
data using the Bluetooth algorithm, and then not using Bluetooth reliant solely on the
PDR algorithm. This does present the problem that the algorithm was not designed for
the constraints of running on a mobile device, and when transported to the phone (as
planned), may be too computationally or energy intensive. However, due to the overall
simplicity of the algorithm, I believe it will be doable as part of possible future work.

The client collects the necessary sensor data, and sends it back to the server which
records the data in log files. Afterwards, data analysis was performed. I will describe
each step in sequence. For a full diagram of the system, see Figure 3.1

3.2 Client

When a user opened the app on the iPhone (see Figure 3.2), they entered some identifi-
cation (name, experiment number), and a fixed landmark given to them by the experi-
menter to serve as a known starting location. Then each client opened a TCP connection
to the server, and sent accelerometer, gyroscope, magnetosensor, and Bluetooth data to
the server. All iphones have an accelerometer, for example the iPhone 6 comes with both
a three-axis Bosch BMA280 accelerometer and a MPU-6700 six-axis accelerometer from
InvenSense, and all iPhones past the 3G also have a magnetosensor and a gyroscope
(note that the gyroscope is often built into the accelerometer as in the example iPhone
6). All iPhones of models 4s and later have Bluetooth Low Energy (BLE) built in as well.
Therefore, 4s was the minimum the system could be run on. The app read accelerom-
eter, gyroscope, and magnetosensor data at 60Hz, and registered BLE connections and
disconnections. The app sent a message to the server indicating that a connection was
made. Similarly, the user could input that they are at a known fixed location, to allow
the experimenter to analyze the data after the experiment.

When done, the user simply closed the app or starts a new session.
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FIGURE 3.1: A chart of the overall system, and how information flows
through the system. Certain sections are incomplete as of this time and

are labelled so.
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FIGURE 3.2: The left screen is the intro screen, where the user inputs
some identifying information. The right screen is the screen once the ex-
periment has begun, where the user can put down landmarks, identified

by a single letter, to help the experimenter calculate error
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3.3 Server

The server is a simple system in Python that accepted TCP connections from each client,
and then logged each raw transmission in the order of reception. It was not built to
handle more than 20 or so connections, since it was only for experimental purposes.

3.4 Data Processing

The following approach to Data Processing for PDR was primarily drawn from Kang
and Han [9], with a different heading system, and the Bluetooth work was from the
algorithm presented by Baggio and Langendoen [12]. The overall approach to data
processing was as follows: convert the acceleration readings into the global coordinate
system using the attitude, use acceleration to detect steps, use the attitude to find the
user’s heading, detect step length, predict location from PDR using the detected steps
and heading, and then correct using Bluetooth data.

3.4.1 Coordinate System Transformation

In order for the data to be usable, there must be a coordinate system transformation
from the local coordinate system (LCS) of the iPhone, to the global coordinate system
(GCS) used by all the devices. This is done in two steps: correcting for the heading and
gravity, and correcting for the initial heading.

Since I needed a fixed starting point, I needed both a known location in the coordi-
nate plane, and a known 3-axis orientation or attitude. There are many ways to repre-
sent the attitude of an object. Two common ways are with Euler Angles and quaternions.
The Euler Angles of an object are the angles around each of the 3 axes: the pitch around
the x-axis, the roll around the y-axis, and the yaw around the z-axis. I assumed that the
phone was held flat facing up when the user starts with the phone in front of the user,
so that the z-axis was pointing up away from the ground. See figure 3.3 for the location
of the axes on an iPhone for all iPhone sensors. This was important as it means that
the yaw of the phone was the user’s heading, assuming that the user walks forwards,
where the heading was the user’s direction of movement on the 2-d coordinate plane.
The quaternions are an extension of the complex numbers in the form a + b̂ı + ĉ + dk̂,
where ı̂, ̂, k̂ are the fundamental quaternion units. Quaternions can be used to repre-
sent attitudes in 3-dimensional space. Particularly for our case, given a vector a (which I
cant treat as a quaternion with a real part equal to 0) , and a quaternion q that represents
a rotation, then the rotation of a by q was given by

qaq−1 (3.1)

where I treat multiplication as the Hamiltonian product, and the inverse as the Hamil-
tonian inverse [4].

Apple’s Core Motion package, which allows the user to access accelerometer, gyro-
scope, and magnetosensor data, provides for a quaternion representation of the attitude
of the phone relative to the starting location. Therefore, the client before sending the
data rotated the raw acceleration vector from the accelerometer aLCS by the attitude
q, and sent aGCS = qaq−1 to the server. Quaternions were chosen as Euler angles are
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FIGURE 3.3: The axes of an iPhone. [15]
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FIGURE 3.4: Raw versus corrected acceleration

susceptible to the problem of gymbal lock, but quaternions are not. I also subtracted a
vector representing gravity g = −9.8k, to remove the effects of gravity.

For an example of data that has been corrected from the local coordinate system to
the global coordinate system see Figure 3.4.

One more step was needed however, to rotate in reference to the initial heading.
Because I assume the phone was held flat to begin with I could find the initial heading
by using the phone’s magnetosensor to get the phone’s magnetic heading. Given the

Unfortunately, it was not possible to get the magnetic heading system working prop-
erly. The read magnetic heading value was not accurate, and therefore a manual correc-
tion was applied afterwards to rotate the coordinates to the GCS. It’s not clear why this
happened, I suspect the magnetosensor in iPhones is not accurate enough to use just
one reading.

Finally, the z-axis acceleration data was filtered using a moving average filter, with
the window size W set to 5 on the z-axis. This acted as a low pass filter, as I was seeking
signal of frequencies in the low Hertz, and human steps have a period of a few seconds.
A moving average filter was chosen as it is the optimal filter for removing random
white noise while keeping the optimal step response [16]. I needed good step response
because the step response was used in the step detection 3.4.2, to determine when a step
was taken, and I wanted to remove random noise from accelerometer error. See Figure
3.5 for an example on a set of steps.

The mathematics are as follows, where az(t) is the filtered z-acceleration in the GCS
as a function of time, and aCORz (t) is the unfiltered z-acceleration in the GCS as a func-
tion of time. Then

az(i) =
1

W

W
2∑

j=−W
2

aCORz (i+ j) (3.2)

3.4.2 Step Detection

The goal of step detection was to find the points in time where the user took a step.
Following the work of Kang and Han [9], I divided this into three steps: finding steps
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FIGURE 3.5: The raw acceleration data versus the filtered acceleration
data
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by looking for peaks, finding the step by looking at the peak to peak difference, and
finding the step by looking at slopes, and then taking the intersection as the set of steps.
In all cases, the idea is similar: a step will appear on the filtered z− acceleration in GCS
as a peak and a valley as the foot lifts off (I chose the peak as the step), and I want to
find the peaks that represents steps and not just noise. I take the intersection, because
each of the methods generates false positives, and fewer false negatives, and therefore
the intersection contains fewer false positives. Figure 3.6 shows all three methods and
the intersection for a sample walk.

Peak Detection

In peak detection I looked for all peaks, points higher then all other points within the
window, and above a threshold apeak = 1.00ms−2. That is I looked for the set of points
tpeak in time, such that

tpeak =

{
t

∣∣∣∣ az(t) > az(t+ i), |i| < W

2
, i 6= 0

}
(3.3)

This was mostly correct but sees several false positives when there are smaller peaks
next to one peak due to random noise.

Peak to Peak Detection

Here, I looked for all peaks such that the difference between them and all points in the
window W is greater than some threshold app = 0.005ms−2. That is, letting such points
be called tpp

tpp =

{
t

∣∣∣∣ |az(t)− az(t+ i)| > app, |i| <
W

2
, i 6= 0

}
(3.4)

This generated many false positives when the user is not moving, as it sees small peaks
from random noise, not drowned out by the movement of the user.

Slope Detection

Another way to think about steps is to look for points where all points leading up to
that points are increasing (positive slope) and all points leading away from that point
are decreasing (negative) slope within the window. That is I are looking for points tslope

where

tslope =

{
t

∣∣∣∣ az(t)− az(t+ k) > 0, a(zt)− az(t+ j) < 0, 0 > k > −W
2
− 1, 0 < j <

W

2
+ 1

}
(3.5)

Finally I combine all three methods by taking the intersections. If the final set of
times where the algorithm detects a step is tstep I set

tstep = tpeak ∩ tpp ∩ tslope (3.6)
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FIGURE 3.6: Step detection in a sample with 34 steps. In all sections, the
line is filtered z-acceleration over time, and dots represent detected steps.
Blue Xs are from one method, red from the intersection. In method (1) I
looked for peaks above a threshold, but notice that this catches an extra
double peak at 11 seconds. Then in (2) I looked for steps by seeking points
that are above all of their neighbors, and got many false positives in the
region from 15 to 20 seconds which are random noise (the example user
was standing still at that time). In (3), I look for peaks where the reading
has a positive slopes for all points left of it in the window, and a negative
slope to all points rightwards in the window, again getting many false
positives in the still region from 15 to 20s. In (4) I show the intersection,

which correctly identifies the 34 steps in red.
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3.4.3 Heading Detection

For heading detection, I used the Core Motion Package’s attitude package. To do this, a
Core Motion Manager is started, and the Device Motion Updates are started. The start-
ing initial reference frame is CMAttitudeReferenceFrameXArbitraryZVertical,
which means that the phone is assumed when starting to be facing with the z-axis point-
ing directly up, as mentioned earlier. Then, at each update, the quaternion form of the
phone’s attitude is sent to the server. See Section 3.4.1 for details on how this was used
to correct for the user’s acceleration data.

Then, since the user’s initial reference frame had the z-axis pointing up, the user’s
heading on the 2-d x-y plane was simply the user’s Yaw ψ. I found this by transforming
the quaternion form to the Euler angle form, and then taking the yaw. The formula for
this is as follows. Given a quaternion of the form

q = [qw qx qy qz]
T = qw + qxı̂+ qy ̂+ qzk̂ (3.7)

, then we can use the atan2 function, the inverse tangent, to get

ψ = atan2(2(qwqz + qxqy), 1− 2(q2y + q2z)) (3.8)

This provides a continuous 60Hz sample of headings. However, I only wanted the
heading at each step. Following Kang and Han [9], I used the acceleration valley as the
start of each step, and the acceleration peak as the time of each step. To put it another
way, I assumed that the user’s heading when taking a step is fixed upon the beginning
of the step, which occurs at the valley of low acceleration before a step occurs, when the
foot pushes off, and then that the step is done at the peak of the step, which corresponds
(theoretically) to the middle of the step, as the whole step cycle would see valley-peak-
valley. To determine this, we take the tstep found in Subsection 3.4.2, and then find the
argmin of az(t) between this step and the last step (or the beginning of data for the first
step) which is taken to be the valley. Mathematically

theadings(i) = argmin tsteps(i−1)<t<tsteps(i)az(t) (3.9)

For an example, please see Figure 3.7.

3.4.4 Step Length Detection

The goal of step length detection was to determine at each step, how long each of the
user’s steps was. Following the Improvements of Kang and Han [9] on Weinberg [17], I
did so in the following way.

I start with the assumption that distance between valley acceleration found in Sub-
section 3.4.3 and the peaks found Subsection 3.4.2for each step, the distance between
each peak and valley for a step should correlate with the total length of the step. Wein-
berg, using a kinesiological argument where the leg is a series of bars on pivots, find
that for a given step, l(i), then with an acceleration difference of astepz (i) defined as
apeakz (i)− avalleyz (i), with constants β and γ, then

l(i) = β
4

√
astepz (i) + γ (3.10)
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FIGURE 3.7: Heading Detection. The blue squares represent the heading
times, determined as the valley below the steps in red circles on z accel-
eration data in the top graph. Below we show the found heading with
heading times overlaid. The sample is for a test where the user walked
straight at a heading of 0rad, and then turned around going the opposite

direction at πrad.
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FIGURE 3.8: To minimize error, I found that tweaking the constants for
step length discovery was needed.

Kang and Han [9] also used the formula β log astepz (i)+γ and found it was more effective
above a threshold astepτ = 3.230ms−2.

So then

l(i) =

{
β 4

√
astepz (i) + γ, if az(i) < astepτ

β log astepz (i) + γ, otherwise
(3.11)

The values for β, γ were found by using the ratio given in [9], and then minimizing
over the average error in several runs. Kang and Han provided a set of constant values,
however when using them I got wildly inaccurate results. In playing with it, I found that
the ratio β

γ was important, and varying away from the values provided in [9] resulted

in a high error. I denoted the constant factor the ratio β
γ was multiplied by as the ‘scale’

σ. The values that minimized average error was found to be β = 0.38454
3
4
√
m
√
s
−1

and γ = −0.32734m when run over a set of sample results. An example error curve is
presented in Figure 3.8. In the tests performed, I found σ = 0.4 Created thebest results.

3.4.5 Finding Location

The algorithm for finding the user’s location is as follows: At each detected step i, the
user’s position

( x
y

)
is updated by finding the heading ψ(i) (see 3.4.3) and the step length

l(i) (see 3.4.4), we combine this projecting the step length vector onto the heading, and
adding this to the previous x and y value.[

xi
yi

]
=

[
cosψ(i) · l(i)
sinψ(i) · l(i)

]
+

[
xi−1

yi−1

]
(3.12)
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3.4.6 Bluetooth Correction

FIGURE 3.9: This figure illustrates how Monte Carlo Boxed Localization
(MCBL) would be performed in the app. At time t + 1, from an original
location (xt, yt) the app calculates the next location (xt+1, yt+1) . Then a
bounding box is drawn around the new location defined by the heading
error θε and a step error lε. Note how in the diagram this bounding box
is truncated to a trapezoid for easier calculating. This is then intersected
with the range of a nearby other device m that is connected via Bluetooth
to the device. Again, the range is presented as a box for easier calculation.
Points are then drawn from the intersection and the weighted average
taken as the location. In practice, there would be many more connections.

The idea of Monte Carlo Boxed Localization as presented in Baggio and Langendoen
[12] is simple in concept.

In each time interval, generate a set of samples around the user’s predicted location.
Filter those samples by removing all of those out of the range of the other Bluetooth
connected devices. Then take the weighted average of the points as the new location.

I propose to use this, since Bluetooth has a maximum range, and the app connects
to other users of the app via Bluetooth.

For a figure explaining this algorithm see 3.9. What makes this ‘boxed’ is that the
filtering is done before hand, and points are drawn from the intersection to start instead
of filtering. In Baggio and Langendoen the initial box is drawn on the previous point
(xt, yt) from some calculated vmaxδt which is the maximum velocity of a pedestrian
times the change in time since the last calculation.

This expands on Baggio and Langendoen’s work because in the proposed algorithm,
we know significantly more about the movement of the user. Here we can draw the
initial box (really a trapezoid) around the predicted location from the app described in
the previous sections. Then assuming that there is some maximum error to the heading
2θε and some maximum step length error lε, our box can be defined as the trapezoidal
approximation of the conic section defined as
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[
cos (ψ ± θε) · (l ± lε)
sin (ψ ± θε) (l ± lε)

]
+

[
xi−1

yi−1

]
(3.13)

As seen in figure 3.9. We intersect this with the box of the other connected devices, in
the figure just one m is shown, and draw samples pi from the intersection (xt+1, yt+1) =∑

i pi
Unfortunately, enough data was not collected to test this algorithm, and so it was

not implemented.
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Chapter 4

Results

4.1 Experimental Design

To test the app, the following experiment was conducted. ‘Landmarks’ consisting of
a piece of paper printed with a lowercase letter from ‘a’ to ‘v’ were placed at 1.5m on
the walls of the second floor of the Davis science building at Colby College. The Davis
science building second floor is a loop of approximately 40m by 20m. The placement of
the landmarks is in Figure 4.1. Three volunteers were recruited and provided an iPhone
to which the app was installed. They then performed three trials where they walked
on the second floor of Davis for 180sec, marking on the app each time they passed a
landmark by sending the associated letter.

The data was then sent to a computer running the server over a WiFi network for
data analysis.

FIGURE 4.1: Placement of landmarks on the second floor of the Davis
Science Building in colby College. Each Red dots represent one landmark.
Each landmark was a small piece of paper with a printed letter on it.
Upon reaching a landmark users sent their fixed landmark location as a

check on the app’s accuracy.
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The three figures were of varying height, with leg lengths of 90cm, 97cm, 120cm each.
They did not start in the same position, but at any landmark they chose. However,
they had to indicate before the app started which landmark they started, and for the
experiment to work they had to beholding their phone flat, as explained in Subsection
3.4.3. As we will see, this proved problematic There was no fixed direction of travel,
they were allowed to walk as they liked as long as they stayed on the second floor of
the Davis science building.

The landmarks were then used to compare the app’s position calculations to the
ground truth. Since at the point when the user sent in the landmark, I knew their real
location at that time. The analysis of the collected data is in Section 4.2.

4.2 Collected Data

FIGURE 4.2: One example run, where the subject walked around the floor
of Colby’s Davis building twice. The top section is the user’s calculated
location (blue) compared to the known location of the user from the land-
marks (green). The bottom is the euclidean distance error at each land-
mark reading in red. This never goes beyond 3m, and has no obvious
pattern over the 3m. The user’s starting landmark was the landmark at
26m on the x axis. Note that the x and y axes in this plot are completely
arbitrary, chosen just to make the picture easiest to see, and in the creation

of the graph a rotation was performed to get these results.
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As explained in Chapter 3, the position of the user was calculated by the app. We
can then compare this to the actual location of the volunteer using the landmarks. See
Figure 4.2 for an example of one such run. An animated version of another trial ca be
seen at

The ‘scale’ σ used in the step finding constants was 0.4 as found in the section de-
noted 3.8 in Chapter 3.

Error was determined by finding the euclidean distance
√
(x1 − x2)2 + (y1 − y2)2

between the calculated location and the known landmark location.
Notice that there is no obvious pattern to the error as over the course of the 3 min-

utes. Usually in inertial navigation systems error accumulates over time as any error in
the measured acceleration propagates to the velocity and then the location. Therefore
the error over time increases often very drastically. Interestingly in pedestrian naviga-
tion systems that is often not the case, including in this example.

Of the collected data, only three runs were usable all from the same volunteer. This
is because the instructions were not well explained to the other volunteers, and so they
did not hold their phone flat when they began . This rendered their data useless as
it meant that all of the data was rotated incorrectly to an incorrect global coordinate
system.

FIGURE 4.3: Taken from one subject walking three times, for a total of
142 data points. Each data point consisted of a time and an error from
a known position at that time. Data points were binned in 15sec long
chunks. Each run lasted 3 minutes in length. Error showd no consistent

patter and varied between 0m and 6m over all three runs.

The collected data of the three usable runs was then used to form Figre 4.3 as a
summary results. All of the known time and euclidean error pairs from all three exper-
iments were binned in 15sec increments from 0sec to 180sec. The average of each point
was then plotted in Figure 4.3. The average error does not go higher then 4.0m, and
again there is no obvious pattern, even decreasing over time.
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The maximum error experienced in any run was 7.1m, the minimum was 0.29m.
The average was 3.19m, with standard error 1.65m.

The main barrier to performing more trials turned out to be the fact that Apple Free
Developer’s accounts have a maximum of 5 devices that can have an app loaded onto
them without using the app store. This can be lifted to 100 devices for an annual sub-
scription of $100 which I did not have the funds to pay. So I was limited on the number
of devices I could use, which prevented testing the MCBL algorithm.

4.2.1 Bluetooth Results

Although the proposed algorithm was not implemented, since only one of the volun-
teers data was usable, all three devices did connect and disconnect correctly and record
this. This suggests that in a real test with the algorithm and more participants, the app is
usable. Due to the small scale of the Davis Science Building most users were connected
to the other two devices at most times, but did disconnect when behind walls or other
obstacles.
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Chapter 5

Conclusion

In Kang and Han [9], average localization error is kept below 2m with trials of 120sec.
This is slightly better in performance than the implementation of their algorithm con-
tained in this paper, where the average error was below 4.0m. They do not provide
maximums, so we cannot compare all aspects of the project. The maximum average
value in my study also occurred before 120sec, so it is not due to the increased length
of the trials in this study. The patterns used by the volunteers were also more complex
than in Kang and Han, who had all subjects walk in a fixed loop.

The only major difference between Kang and Han’s algorithm and the one imple-
mented here is that they use a more complex algorithm for heading detection. Kanga
and Hang directly use the magnetosensor and gyroscope to determined heading by
diving the readings into four different cases and calculating each case separately. In
this app, Apple’s provided API was used. Kang and Han demonstrate that other meth-
ods of heading detection significantly increase the error, and so this is the likely source.
However, Apple’s built in platform still performed relatively well and better than just
using the gyroscope or magnetosensor data from Kang and Han [9] if you compare the
heading error data they present using just magnetosensor or gyroscope to the results
found in this paper.

Since the phones are different in the two studies (Kang and Han usa Samsung Galaxy
Notes, generation I and II) it’s possible the difference comes from the hardware. How-
ever the Samsung Galaxy Note uses the STMicroelectronics LSM330DLC for it’s 6 axis
accelerometer and gyroscope [18], which has 0.03dps/

√
Hz for rate noise density, a mea-

surement of the precision of a gyroscope [19]. In comparison, the iPhone 6’s MPU-6700
six-axis accelerometer has a rate noise density of 0.01dps/

√
Hz [20], so it is more accu-

rate. This makes sense as it is a few years younger. So it is unlikely to be hardware error
that cased the worse performance.

Broadly, the accurracy we see in Kang and Han is typical of methods in the last sev-
eral years [7, 8, 11]. Thus the platform built in this project is near the best performance,
and improvements in heading detection could likely make the algorithm competitive.

The proposed wireless algorithm has not been tried before in a PDR system, see
Chapter 2. It also contains improvements over the algorithm proposed by Baggio and
Langendoen [12]. Using the new information provided by the PDR system beyond a
hypothetical maximum velocity. Since Bluetooth is already a ubiquitous element of
smart phones it could be widely used.

In total, this thesis implemented a PDR system as a base for further experimentation,
proposed a novel wireless localization algorithm using PRD information, and a small
experiment was performed to check the accuracy of the system. Through step detection,
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heading detection, and step length detection it is possible to construct a relatively good
localization system on commercial phones, with accuracy within single digit meters.

5.1 Future Work

The work that remains is in two parts: to implement the proposed Bluetooth algorithm,
and to perform larger tests.

The proposed wireless localization algorithm is certainly computationally feasible
and would present an advance over current systems. using the PDR information we
can get a much better ideas as to the likely location on the next step, thereby making
our initial sample space more accurate. The main block to implementing this feature
was the lack of data to use, which brings up the next problem.

The fact that two of the three volunteers data was unusable severely limited the
ability to test the algorithm. This was purely the fault of experimental design and a
lack of clear communication and could easily be removed, although it does suggest the
brittleness of the app when it comes to initial conditions. Similarly, Apple’s limitation to
5 devices could be alleviated with a little more funding. The original experiment design
called for five volunteers for the initial tests shown in Chapter 4. With 5 participants,
we would see more connections and disconnections, and would hope to see that as the
number of participants increased, there would be better accuracy.

A larger experiment may also need a larger space. There are a few challenges in this
instance, the largest one being that if the space is too open then Bluetooth devices con-
nect too easily to one another, making the test not as illuminating. All devices connected
to one another is not a very realistic scenario. Therefore a larger indoor space with cor-
ridors and walls is preferable. An experiment with 10 - 20 participants would probably
be sufficient. This may also require a better system for landmarks, as landmarking a
larger space could prove difficult.

Finally, another avenue of possible work would be to take the current algorithm
on post-processing side and move it to the app. The use of the server was purely to
make data collection easier. A purely app based algorithm would be more realistic and
move this project closer to being usable in the real world, in order to help localization
in situations where access to GPS, WiFi, and Cellular networks are limited.
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