
Colby College Colby College

Digital Commons @ Colby Digital Commons @ Colby

Honors Theses Student Research

2016

Using Genetic Algorithms to Evolve Artificial Neural Networks Using Genetic Algorithms to Evolve Artificial Neural Networks

William T. Kearney
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses

 Part of the Artificial Intelligence and Robotics Commons, Numerical Analysis and Scientific

Computing Commons, and the Theory and Algorithms Commons

Colby College theses are protected by copyright. They may be viewed or downloaded from this

site for the purposes of research and scholarship. Reproduction or distribution for commercial

purposes is prohibited without written permission of the author.

Recommended Citation Recommended Citation

Kearney, William T., "Using Genetic Algorithms to Evolve Artificial Neural Networks" (2016).

Honors Theses. Paper 818.

https://digitalcommons.colby.edu/honorstheses/818

This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital
Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital
Commons @ Colby.

http://www.colby.edu/
http://www.colby.edu/
https://digitalcommons.colby.edu/
https://digitalcommons.colby.edu/honorstheses
https://digitalcommons.colby.edu/student_research
https://digitalcommons.colby.edu/honorstheses?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages

Using Genetic Algorithms to Evolve Artificial
Neural Networks

Honors Thesis in Computer Science

Colby College

Advisor: Stephanie Taylor

William T. Kearney

May 2016

Contents

1 Introduction 2
1.1 Artificial Neural Networks . 2
1.2 Genetic Algorithms . 3

2 NeuroEvolution 5
2.1 The Competing Conventions Problem 5
2.2 Topological Innovation . 6

3 The NEAT Algorithm 7
3.1 Overview . 7
3.2 Encoding Scheme and Historical Markers 7

3.2.1 Crossover . 8
3.2.2 Speciation . 8

3.3 Mutations . 9
3.4 Complexification . 9

4 Parallelization 10
4.1 Parallel Python . 10
4.2 Cluster vs. SMP . 11

5 Parameter Selection 12

6 Data 14

7 Implementation 15
7.1 Fitness Function . 15

8 Results 16

9 Conclusion 19

Abstract

This paper demonstrates that neuroevolution is an effective method
to determine an optimal neural network topology. I provide an overview
of the NeuroEvolution of Augmenting Topologies (NEAT) algorithm,
and describe how unique characteristics of this algorithm solve vari-
ous problem inherent to neuroevolution (namely the competing con-
ventions problem and the challenges associated with protecting topo-
logical innovation). Parallelization is shown to greatly speed up ef-
ficiency, further reinforcing neuroevolution as a potential alternative
to traditional backpropagation. I also demonstrate that appropriate
parameter selection is critical in order to efficiently converge to an
optimal topology. Lastly, I produce an example solution to a medi-
cal classification machine learning problem that further demonstrates
some unique advantages of the NEAT algorithm.

1

1 Introduction

Recently, ANN’s have enjoyed considerable more attention from the research
community, particularly in fields such as deep learning (e.g. see [1, 6, 12])
where so-called “deep” ANN’s have won numerous contests in pattern recog-
nition, computer vision, natural language processing, and machine learning.

Still, many current machine learning problems can be solved using smaller
neural networks. In these cases, NeuroEvolution can prove a useful method
to discover an efficient network topology and connection weights. This pa-
per provides an overview of the NeuroEvolution of Augmenting Topologies
(NEAT) method [14], an algorithm that allows for the efficient evolution of
complex neural network topologies using genetic algorithms. I also discuss
the importance and associated challenges of parameter selection, demonstrate
how parallelization can be used to greatly improve computation time, and
use NEAT to produce an example solution to a medical classification machine
learning problem.

1.1 Artificial Neural Networks

Artificial Neural Networks (ANN’s) are biologically inspired computational
models that seek to mimic the behavioral and adaptive capabilities of cen-
tral nervous systems. ANN’s are used for regression or classification tasks,
and are capable of solving highly complex non-linear problems due to their
role as universal function approximators. Typically, ANN’s are composed
of interconnected processing units called nodes or neurons. The connection
weights between neurons are called synaptic weights. Neurons are classified
as input, hidden, or output. Usually, there are as many input neurons as
there are features in the dataset; likewise, there are as many output neurons
as there are classes to predict (one output neuron can be used for regression
tasks). The number of hidden nodes needed varies greatly with the task.

The architecture of an ANN is characterized by its topology, i.e. the
specific structure of nodes and connections that create a certain network.
Traditionally, the topology is determined a priori by the programmer before
training (or a set of possible topologies are evaluated during a validation
step). Unfortunately, although two neural networks with different topologies
can theoretically represent the same function [2], the most efficient topology
might not be readily apparent. Backpropagation (BP)—a portmanteau of
“backward propagation of errors”—is used to train the synaptic weights of a

2

Figure 1: A generic ANN architecture composed of input neurons, hidden
neurons, and output neurons connected by synaptic weights.

network, minimizing a cost function by adapting weights. Werbos [15] first
described the process of using BP to train neural networks; a few years later,
a seminal paper used computational experiments to demonstrate that BP
could indeed yield useful internal representations in neural network hidden
layers [10]. BP is now the de facto standard algorithm for any supervised
learning task.

1.2 Genetic Algorithms

Genetic algorithms are a family of computational models inspired by Dar-
winian natural selection, and can offer an alternative to backpropagation
when finding a good set of weights in a neural network. The original genetic
algorithm was introduced and investigated by John Holland [5] and his stu-
dents (e.g. [3]). A genetic algorithm encodes a potential solution to a problem
(the phenotype) in a chromosome-like data structure called the genotype or
genome. The canonical genetic algorithm has used binary strings to represent
chromosomes [5]. Traditionally, a genetic algorithm creates an initial popu-
lation of (typically random) genomes, which are materialized as phenotypes

3

Figure 2: Flowchart
of a basic genetic
algorithm. Initialize
population: generate
random population of
n chromosomes. Eval-
uate fitness : evaluate
the fitness f(x) of
each chromosome x in
the population. New
population: create a
new population by
repeating selection,
crossover, and mu-
tation until the new
population is com-
plete. Termination
criteria: if end con-
dition satisfied, stop;
otherwise, return to
evaluate fitness step.

and evaluated on the basis of some fitness function. Those genomes that
represent better solutions to the problem at hand are given opportunities
to “reproduce”, producing genomes for the next generation. Genomes also
undergo mutation in order to ensure genetic diversity from one population
to the next (analogous to biological mutation) [9].

As a search heuristic, genetic algorithms have some benefits over other
forms of search. For example, while gradient descent methods might get
trapped in local minima in the error surface, genetic algorithms avoid this
pitfall by sampling multiple points on the error surface. Furthermore, genetic
algorithms require very little a priori knowledge of the problem domain [13].
See [9] or [16] for more in-depth information on genetic algorithms.

4

Figure 3: Two neural networks that are functionally equivalent (i.e. compute
the same function) but whose hidden nodes appear in different orders, and
thus represented by different chromosomes. Using single-point crossover,
[A,B,C]× [C,B,A] yields [A,B,A] and [C,B,C]; both offspring are missing
one of the 3 main components of the solution (redrawn from [14]).

2 NeuroEvolution

As mentioned previously, the architecture of a neural network and the learn-
ing algorithm used to train the model are important decisions when seeking
to solve a particular task. NeuroEvolution seeks to solve these problems by
using genetic algorithms to evolve the topology of neural networks [4]. How-
ever, this solution class comes with its own baggage; namely, the competing
conventions problem and the issue of protecting topological innovation. As
we’ll discuss in a later section, NEAT seeks to resolve these issues primarily
through using historical gene markers.

2.1 The Competing Conventions Problem

A main concern and well-known problem of NeuroEvolution is the Compet-
ing Conventions Problems [11]. It is possible that two genomes represent the
same solution but with different encodings; in other words, two neural net-
works that order their hidden nodes differently in their genomes might still

5

be functionally equivalent (see figure 3). This is a problem because differing
representations of the same structure are highly likely to produce a damaged
offspring during crossover. The issue becomes more serious when we consider
the pervasiveness of the problem. Stanley writes, “in general, for n hidden
units [neurons], there are n! functionally equivalent solutions” [14].

As an example, consider two functionally equivalent genomes with dif-
ferent structures, represented as [A,B,C] and [C,B,A]. A useful (because
it is easy to quantify the effects) method of performing crossover during a
genetic algorithm is to use single-point crossover, in which a randomly cho-
sen recombination point is used to split each genome into two parts, one of
which is swapped with the other parents [16]. Using single-point crossover
with our two example genomes yields,

[A,B,C]
× [C,B,A]

[A,B,A] and [C,B,C]

Unfortunately, both [A,B,A] and [C,B,C] are missing a hidden node
that was (presumably) important to the solution. Thus, both offspring are
likely not good candidate solutions that the algorithm will now needlessly
evaluate. Crossing over functionally equivalent genomes needlessly increases
computation time by creating damaged children. How can we ensure stan-
dard crossover produces viable offspring?

2.2 Topological Innovation

A second major problem exists when we consider the fitness implications from
adding new or adjusting existing structure. Take, as an example, the action
of adding a new connection in a neural network. Often, such a change will
initially decrease fitness before the connection weight is given an opportunity
to optimize. If that genome was culled from the population before it was
given an opportunity to reproduce in order for its children to develop the new
structure further, we might be inadvertently halting a promising structural
development. Stanley again turns to biological inspiration for an answer:
speciation can help protect topological innovation by ensuring genomes only
compete within a population niche [14]. Networks with innovative structures
are protected by only competing with other networks in their species. Two

6

organisms are said to be in the same species if they represent topologically
similar networks. How do we determine if two genomes represent structurally
similar networks?

3 The NEAT Algorithm

3.1 Overview

The NeuroEvolution of Augmenting Topologies (NEAT) algorithm was de-
veloped by Ken Stanley in 2002 while at the University of Texas at Austin,
and is outlined here. The algorithm seeks to resolve some of the shortcom-
ings of previous neuroevolution methods, including evolving neural network
topologies along with weights. NEAT proves to be effective due to “(1) em-
ploying a principled method of crossover of different topologies, (2) protecting
structural innovation using speciation, and (3) incrementally growing from
minimal structure” [14].

3.2 Encoding Scheme and Historical Markers

NEAT uses a direct encoding scheme, in which a network architecture is
directly encoded into a GA chromosome [9]. Genomes are represented in
a list-like data structure that contains node genes and connection genes.
Connection genes contain information about the nodes it connects, the weight
of the connection, whether or not the connection is enabled, and a historical
marker that provides information about the ancestral history of the gene.

Genes that share a historical origin necessarily represent the same struc-
ture in a neural network phenotype [14]. Thus, each new gene that is created
through structural mutation is assigned a unique global innovation number.
When individual genes are copied to an offspring genome, they retain their
historical marker. This allows genomes to be compared by matching up
genes that share a historical marker (and thus represent the same structural
component in possibly differing larger network structures). Thus, historical
marking seeks to answer the previous questions regarding viable offspring and
topological innovation by framing them as topological matching problems.

7

3.2.1 Crossover

During crossover, genes in each genome are aligned based on their historical
marker in a process called artificial synapsis [14]. Genes that share an an-
cestral origin are called matching genes ; those that don’t are called disjoint
genes or excess genes depending on if they exist inside or outside the range
of innovation numbers of the other parent, respectively. Thus, although two
parents might (and likely do) look different, their historical markers allow
us to find structural similarities without any (likely expensive) topological
analysis. Matching genes are inherited randomly. Excess genes and disjoint
genes are inherited from the more fit parent.

Artificial synapsis helps counteract the negative side effects caused by
the competing conventions problem. Compatible organisms mate in a way
which allows for the preservation of functional subunits; offspring are likely
to be undamaged. Although competing conventions might still exist in the
population, NEAT does not spend time evaluating damaged offspring, and
thus the main consequence of competing conventions is avoided.

3.2.2 Speciation

Genomes are allowed to compete with populations niches by grouping them
into species. Although this appears to be a topological matching problem,
historical markers again provide a useful solution. The topological discrep-
ancy between two neural networks can be quantified with the number of
excess and disjoint genes between their genomes. Stanley writes, “the more
disjoint the genomes, the less evolutionary history they share, and thus the
less compatible they are” [14]. The amount of evolutionary history shared
between two genomes is measured with a compatibility function:

δ =
c1E

N
+
c2D

N
+ c3 ·W (1)

where δ is the compatibility distance, E is the number of excess genes,
D is the number of disjoint genes, W is the average weight differences of
matching genes, and the coefficients c1, c2, and c3 allow us to adjust the
relative importance of the three factors. The compatibility is used as a hard
threshold; thus, once an organism crosses it, a new species is created.

8

3.3 Mutations

There are four main types of mutation operations in NEAT: (1) add a neu-
ron, (2) add a connection, (3) remove a node, (4) remove a connection, and
(5) perturb a synaptic weight. The probability of each mutation occurring is
controlled by the programmer via a configuration file. When adding a neu-
ron, a random connection is selected and replaced by a new neuron and two
new connections. The weights of the two new connections are selected to be
effectively the same as the replaced connection in order to avoid overly-drastic
movements over the fitness landscape. Adding a new connection works in a
similar fashion; two neurons are selected at random, between which a new
connection is added. Checks are performed to ensure a connection doesn’t
already exist between the source and destination neuron. This also highlights
two interesting features of NEAT: hidden neurons aren’t ordered in a tradi-
tional hierarchy of hidden levels and, relatedly, recurrent neural networks
are allowed to evolve (and ideally will, if that will solve the problem more
efficiently than a feed-forward neural network). For example, when adding a
new connection, the source and destination neuron chosen are allowed to be
the same neuron.

The removal of neurons and connections is performed similarly. Both con-
nections and neurons can be randomly selected for removal. Hidden neurons
are removed if there are no remaining connections interacting with them.
When a synaptic weight is randomly chosen to be perturbed, a random
number from a zero-centered normal distribution is added to the weight.
The standard deviation of the normal distribution is also specified by the
programmer. For an analysis of parameter selection, see section 5.

3.4 Complexification

Many genetic algorithms start out with a random collection of initial organ-
isms [5]. This poses a problem when evolving neural networks; it is very
possible an organism will be a disconnected graph (i.e. not every node will
be connected with the network containing the output). This will take time
to remove from the population.

Stanley [14] identifies a more serious problem: “Starting out with random
topologies does not lead to finding minimal solutions, since the population
starts out with many unnecessary nodes and connections already present.”
That is to say, randomly generated nodes and connections have not under-

9

gone any sort of justification for their existence. It is not known if they
contribute to the solution. Conversely, all subsequent structural additions
undergo evaluation by the nature of how they change the fitness of the organ-
ism. Starting with minimal structure allows the algorithm to search for the
solution in a low-dimensional search space, greatly improving performance
[14].

4 Parallelization

As Whitley [16] astutely notes, “part of the biological metaphor used to
motivate genetic search is that it is inherently parallel. In natural popula-
tions, thousands or even millions of individuals exist in parallel.” Because
genomes are evaluated on their fitness level completely independent of other
organisms in the population, genetic algorithms are practically pleading to
be implemented in parallel.

4.1 Parallel Python

I used the open source and cross-platform python module Parallel Python
(http://www.parallelpython.com), which provides support for the parallel
execution of python code on SMP (systems with multiple processors or cores)
and clusters (computers connected via a network). Parallel Python has the
important capability of overcoming the Global Interpreter Lock that the
python interpreter uses for internal bookkeeping with the widely known side
effect of allowing only sequential execution of python byte-code instructions,
even on SMP computers.

A population of N genomes was divided into N/P sub-populations, where
P is the number of available processors. Each processor evaluated each
genome in its sub-population (i.e. built a phenotype and propagating the
training data through the network) based on a fitness function, reassigning
each fitness value and sending the sub-population back to the master proces-
sor to perform mutation and crossover.

Genetics algorithms can be computationally expensive, particularly as the
population size increases (in other words, “there is no such thing as a free
lunch”). Thus, the speed advantage parallelization provides is important.
By offering a partial solution to the often-large computation requirements of
genetic algorithms, parallel processing returns neuroevolution to the realm of

10

Figure 4: Each sub-population sent to a processor for fitness evaluation. Note
how the sub-populations are independent of species (denoted by a different
color in the population); the blue species, for example, contains genomes that
are being sent to different processors.

efficient optimization techniques—parallelization becomes only increasingly
important as data sets continue to grow in size. Even for a relatively simple
problem, parallelization reduced the time it took NEAT to find a solution
from 25 minutes running sequentially to 8 minutes running in parallel. These
types of speedups become more important when solving more complex prob-
lems or when working with larger data sets.

4.2 Cluster vs. SMP

When comparing cluster versus SMP performance, it quickly became appar-
ent that keeping all computation on a local machine was more efficient if
the fitness evaluation wasn’t computationally expensive. This is because the
overhead cost of serializing the sub-population, compressing the data, pass-
ing the data over the local network to another machine, uncompressing the
data, and un-serializing the sub-population was prohibitively expensive when
compared to the time spent actually evaluating the sub-population. I suspect
that if fitness evaluation became relatively more expensive (i.e. larger, more
complex neural networks were needed to solve the problem), then it would
begin to make more sense to use a distributed cluster. Because the problem
domain I used was fairly simple, all computation was done on a local machine
in parallel across 12 cores, preventing the need to send data across a local
network.

11

Figure 5: A heat map showing the average number of epochs needed to reach
a 1 −MSE threshold of 0.983 as a function of the probability of adding a
node and the probability of adding a connection during mutation. It suggests
that an optimal combination is found when the probability of adding a node
is 0.2 and the probability of adding a connection is 0.4 or 0.5.

5 Parameter Selection

It became apparent that choosing appropriate parameters is essential for
ensuring the NEAT algorithm makes proper headway towards an effective
and efficient neural network topology. My experimentation suggest that the
parameters that dictate mutation probability are particularly important be-
cause they determine how finely or coarsely the algorithm searches over the
search space. Large topological changes are equivalent to large movements
over the fitness landscape; if these changes are excessively large, the algo-
rithm will not be able to converge on an optimal or near-optimal solution.
Conversely, if mutations don’t occur frequently enough, topological diversi-
fication doesn’t occur as often as desired, and the algorithm can stagnant.

To that end, I performed comparison tests examining the tradeoff between
important and related parameters—two of those experiments are discussed
here. The NEAT algorithm was run 3 times for each parameter pair in each

12

Figure 6: This heat map shows the average number of epochs needed to reach
a 1 −MSE threshold of 0.983 as a function of the probability of mutating
a weight and the weight mutation power (i.e. the standard deviation of the
zero-centered normal distribution from which a weight change is drawn) dur-
ing mutation. When both probabilities are high, the algorithm has difficulty
reaching the error threshold.

test. The algorithm reached termination criteria when either 1 −MSE >=
0.983 or a total of 500 epochs had been evaluated. I produced heats maps
that illustrate the average number of epochs (across the three trials) reached
for each combination of parameter values. It is important to keep in mind
that these parameters are very domain-specific; for a different problem, a
different fitness landscape exists, and thus a different set of parameters might
be needed to yield optimal results.

The first comparison, illustrated in figure 5, alters the probability of
adding a node with the probability of adding a connection. Both values
were altered in the range [0.1, 0.9] at intervals of 0.1. This heat map sug-
gests that an optimal combination is found when the probability of adding a
node is 0.2 and the probability of adding a connection is 0.4 or 0.5. Further-
more, as the probabilities increase in magnitude, NEAT is unable to make

13

efficient progress towards an optimal network topology. This fits nicely with
what intuition might suggest: excessively-large changes in structure mean
we are sampling the fitness landscape too coarsely and are thus unable to
converge on a optimal topology. The algorithm benefits from a relatively
lower probability for adding nodes compared with the probability for adding
connections, suggesting that, from a fitness perspective, adding nodes results
in a larger topological change than adding connections. This also fits with in-
tuition: adding nodes is mathematically equivalent to introducing non-linear
relationships between inputs and outputs. This can possibly manifest as a
particuarly large movement across the fitness landscape.

The second comparison, illustrated in figure 6, alters the probability of
mutating a connection weight with the weight mutation power. The weight
mutation power is the standard deviation of the zero-centered normal dis-
tribution from which a weight change is drawn; this weight change is added
to the current connection weight. The heat map suggests that an optimal
combination of parameters exists when the probability of mutating a weight
is 0.4 and the weight mutation power is 0.5. Again, we see that when both
probabilities are high the algorithm has difficulty reaching our threshold error
within a reasonable number of epochs.

Interestingly, figure 6 suggests that as one of the parameters becomes in-
creasingly small, the other can become increasingly large without adversely
affected performance. Again, this is because smaller probability values (and
smaller weight perturbations) represent smaller steps across the error sur-
face; when one parameter decreases in magnitude, it allows more leeway in
the other parameter to grow in size while still keeping the overall topological
change manageable. Sometimes, a relatively small parameter value can com-
pensate for a relatively larger parameter value. This compensation affect is
not observed in figure 5 because adding a node represents such a large topo-
logical change. When this probability is large, the algorithm will struggle to
find an optimal solution regardless of the other parameter value.

6 Data

For this study, I used the Wisconsin Breast Cancer Database (January 8,
1991), obtained from the University of Wisconsin Hospitals, Madison from
Dr. William H. Wolberg [7]. This classic dataset seeks to classify breast
cancer masses as benign or malignant. There were a total of 683 instances

14

(699 total minus 16 due to missing attribute information), of which 65.5%
are benign and 34.5% are malignant. 80% of the observations were ran-
domly selected for the training data; the other 20% were used to test results.
The following 9 variables were used; each fell within a range [1, 10] but was
normalized to fall within [0, 1]:

1. Clump Thickness

2. Uniformity of Cell Size

3. Uniformity of Cell Shape

4. Marginal Adhesion

5. Single Epithelial Cell Size

6. Bare Nuclei

7. Bland Chromatin

8. Normal Nucleoli

9. Mitoses

7 Implementation

I used a python implementation of NEAT forked from the project by @Mat-
tKallada and further developed by McIntyre (aka CodeReclaimers), who is
currently updating it to provide more features and a (hopefully) simpler and
better documented API [8]. The python-neat implementation contains a
configuration file within which all parameter values must be explicitly enu-
merated.

7.1 Fitness Function

At the conclusion of each epoch, a measure of the discrepancy between the
observed and predicted values of the dependent variable is calculated. Often,
this discrepancy is expressed as a mean square error (MSE), which for this
study was the error function:

15

E(g) =
1

N

N∑
i=1

(ŷi − yi)
2 (2)

where E(g) is the mean square error term, N is the number of observation
(input) vectors presented to the network, ŷi is the predicted response, and
yi is the observed response. The N observations constitute the training data
set. Fitness is simply 1−E(g); a perfect organism would have a fitness equal
to 1. Theoretically, NEAT should find the genome that represents the neural
network that minimizes E(g) (i.e. maximizes fitness).

8 Results

Figure 7 visualizes an evolved network with a mean squared error of 0.0248
and a correct classification rate of 97.08% on the test data set. There was
no initial structure (i.e. only 9 input nodes and on output node). It took
approximately 8 minutes to evolve, running in parallel on 12 cores with a
population size of 240 (a similar neural network took 25 minutes to evolve
sequentially). After the last generation during training, the genome had a
fitness of 0.9868 (or MSE = 0.0132) while the population as a whole had
an average fitness of 0.9549 (or MSE = 0.0451). There were a total of 12
species in the final population. The confusion matrix (see table 1) shows
relatively low false positive and false negative rates.

Actual
1 0

Observed
1 34.31% 1.46%
0 1.46% 62.77%

Table 1: Confusion matrix

This network serves as a useful example for illustrating some interesting
features inherent to NEAT. First, we can see that the algorithm employs
automatic feature selection. Feature 8 is not connected to the rest of the
network, implying that it is not particularly important when predicting out-
put. Though it is possible, of course, that given more time to evolve, the best
performing genome would connect feature 8 to the rest of the network. This
eliminates the need for the programmer to perform independent feature selec-
tion. Secondly, we can see how some features (e.g. 1) are related linearly to

16

Figure 7: Dark grey boxes represent input nodes; white circles represent hid-
den nodes; and the blue circle represents the output node. The thickness
of the connection corresponds to the magnitude of the weight. Green con-
nections are positive, red connections are negative. Disabled connections are
not shown.

the output while others (e.g. 0, 2, 3, 6, etc.) are not. This demonstrates that
the algorithm is able to build up complexity over time, even when starting
with no initial structure.

The “best genome” initially made very rapid progress (see figure 8), but
began to plateau as topological complexity increased. The reason the av-
erage population fitness didn’t also obviously improve is due to speciation.
Although many organisms in the population were not particularly effective
when compared to the best genome, they were protected by competing only
within their species. This is desirable; it is very possible that sudden jumps
in the best genome’s fitness were a result of a new genome evolving to become
a better predictor than the current best genome (as opposed to a beneficial
mutation occurring in the best genome’s species, though this is also possi-
ble). This kind of topological innovation is only possible through speciation,
which can be visualized in figure 9. The initial population (containing 240
organisms) is initially all one species; as generations progress, organisms be-
gin to diverge and, once the compatibility threshold is crossed, a new species
is created (for example around epoch 700). After 1000 epochs, there are 12
species present in the population.

17

Figure 8: A plot visualizing how fitness improves over generations. The
“best genome” initially made very rapid progress, but began to plateau as
topological complexity increased.

Figure 9: Each color represents a different species in the population. As
generations progress, more species are realized as topological diversity occurs.

18

9 Conclusion

NEAT proves to be an effective method for evolving neural networks that
would be unrealistic to create by hand. The algorithm is able to approach
comparable classification results in a surprisingly short number of genera-
tions. By using historical markers, the competing conventions problems is
alleviated and speciation is made computationally efficient. In addition, au-
tomatic feature selection is an interesting “bonus” benefit that fits with the
NEAT philosophy of preventing a programmer from making potentially sub-
optimal decisions. However, it is clear that appropriate parameter selection
is critical for evolving networks in an efficient manner. If probabilities of
mutation are too large, genomes take excessively large steps over the fit-
ness landscape, and are unable to converge on an optimal or near-optimal
solution. This is, of course, a tradeoff: as some parameters decrease in mag-
nitude (materializing as finer search steps), others are allowed to increase in
size without sacrificing convergence to an optimal or near-optimal solution.

Like many genetic algorithms, NEAT is particularly well-suited to par-
allelization. This can greatly improve computation time, as well as allow
for larger populations. My results indicate that SMP is preferable to cluster
computing as long as the chromosome evaluation remains somewhat triv-
ial; as topological complexity or the amount of data increases, it may prove
beneficial to move to a cluster environment.

Acknowledgement

I want to thank my thesis advisor, Stephanie Taylor, for her guidance and for
always making herself available to provide thoughtful and useful feedback.
Your dedication to your students–and their success—is admirable. I also
want to thank Bruce Maxwell for his helpful comments.

19

References

[1] Yoshua Bengio. Learning deep architectures for ai. Foundations and
Trends in Machine Learning, 2(1):1–127, 2009.

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2:303–314, 1989.

[3] Kenneth Alan DeJong. An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, University of Michigan, 1975.

[4] Dario Floreano, Peter Durr, and Claudio Mattiussi. Neuroevolution:
from architectures to learning. Evolutionary Intelligence, 1(1):47–62,
2008.

[5] John H. Holland. Adaptation in natural and artificial systems. University
of Michigan Press, 1975.

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Na-
ture, 521:436–444, May 2015.

[7] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear
programming. SIAM News, 23(5), 1990.

[8] Alan McIntyre. Python implementation of the neat algorithm.

[9] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,
1998.

[10] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by back-propagating errors. Nature, 323:533–
536, 1986.

[11] J. D. Schaffer, D. Whitley, and L. J. Eshelman. Combinations of ge-
netic algorithms and neural networks: a survey of the state of the art.
In Combinations of Genetic Algorithms and Neural Networks, 1992.,
COGANN-92. International Workshop on, pages 1–37, 1992.

[12] Jurgen Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85–117, 2015.

20

[13] Kenneth O. Stanley. Efficient Evolution of Neural Networks through
Complexification. PhD thesis, The University of Texas at Austin, August
2004.

[14] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation, 10(2):99–
127, 2002.

[15] Paul Werbos. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[16] Darrell Whitley. A genetic algorithm tutorial. Computer Science De-
partment, Colorado State University.

21

	Using Genetic Algorithms to Evolve Artificial Neural Networks
	Recommended Citation

	tmp.1464017304.pdf.zboLl

