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Abstract

In quantum mechanics the replacement of complex vectors with operators is essential
to “quantizing” space. Nonetheless, in many physics textbooks there is no justification
for this action. Therefore in this thesis I will attempt to understand the mathematical
formalism that allows for such a “replacement” to be rigourous. I will approach this
topic by first defining a vector spaces and its dual space, a Hilbert space and a
conjugate Hilbert space, and an operator space. Next, I will look at the algebraic
tensor product of two vector spaces, two Hilbert spaces, and finally two operator
spaces. Ultimately we will look at the completion of the tensor product with resect
to the minimal norm and show that the minimal norm of a tensor has an analogous
inequality to the Cauchy-Schwarz inequality.
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Introduction

In the early Twentieth century, quantum mechanics became the main focus for physi-
cists around the world. This theory helped explain many curious phenomena that
could not be described classically. However, the mathematics of this theory was not
fully understood until much later. Von Neumann attempted to axiomatize quantum
mechanics and realized that it could be considered as a sort of Hilbert space. Further-
more, it was noticed that physical quantities could be represented as linear operators
acting on the Hilbert space. Nonetheless, the biggest issue was understanding the
replacement of scalar vectors with operators. Ruan’s Theorem provided the mathe-
matical structure and justification for physicists to “raise” scalar vectors to operators
and from there the theory of operator spaces was developed. However, Ruan’s Work
is by no means the first “mathematical quantization” but it is asn example of it.

Central to the field of operators space is the notion of a tensor product. The
main utility of the tensor product is to create a new vector space out of two existing
vector spaces. In this thesis I will study the formulation and the theory behind
tensor products and then prove an analogous form of the Cauchy-Schwarz inequality
for operators. First, I will look at properties of a vector space and create a new space
called the dual space. Then, I will define the universal property of tensor products
and prove the existence and uniqueness of the tensor product. Next, I will look at
the tensor product of Hilbert spaces and operator spaces. Finally, I will complete the
operator space with respect to the minimal norm and then prove the inequality.

1 Vector and Dual Spaces

In order to understand the concept of tensors and tensor products we must first have
a firm understanding of vector spaces and dual spaces. In the follow subsections we
will define both the vector and dual space and provide proofs of a few necessary and
relevant properties of the two spaces. My methods of describing vector spaces closely
follows Sheldon Axler’s textbook Linear Algebra Done Right and my approach to
duals spaces parallels Foster and Nightingale’s A short Course in General Relativity
and Nicholas Young’s textbook An Introduction to Hilbert space. My contribution
to this section is filling in the unmentioned steps between lines in the proofs below.
[1][2][3]

1.1 Dual Spaces

To begin our understanding of a dual space, I will first give a review on what a vector
space is.

Let us denote F to be either R or C.

Definition 1. A vector space is a set V along with an addition on V and a scalar
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multiplication on V such that the following properties hold: commutavity

u+ v = v + u,∀u, v ∈ V (1.1.1)

associativity

(u+ v) + w = u+ (v + w),

(ab)v = a(bv)

∀u, v, w ∈ V, a, b ∈ F (1.1.2)

additive identity

there exists an element 0 ∈ V such that v + 0 = v, ∀v ∈ V (1.1.3)

additive inverse

for every v ∈ V , there exists w ∈ V such that v + w = 0 (1.1.4)

multiplicative identity
1v = v, ∀v ∈ V (1.1.5)

distributive properties

a(u+ v) = au+ av, (a+ b)u = au+ bu, ∀a, b ∈ F, ∀u, v ∈ V (1.1.6)

An example of an n-dimensional vector space, or complex vector space would be
Cn. Another example would be the set of polynomials with coefficients in R or C
given these algebraic properties.

From a vector space, V , we can create a new vector space called the dual space
of V . The importance of the dual space is that to define the tensor product we are
reliant upon linear and bilinear functionals. To have a concrete understanding of
the dual space we will look at the simple case of real-valued functions defined on a
real vector space V , f : V → R. The set of all such functions if given the following
algebraic structure

(f + g)(v) = f(v) + g(v), ∀v ∈ V (1.1.7a)

(αf)(v) = α(f(v)) ∀v ∈ V (1.1.7b)

0(v) = 0 ∀v ∈ V (1.1.7c)

(−f)(v) = −(f(v)) ∀v ∈ V, (1.1.7d)

will then satisfy the definition of a vector space given above. Note, that in fact, the
set of homomorphisms between two vector spaces is also a vector space. Furthermore,
we will restrict the space of all real-valued functions to only those that are linear
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f(αu + βv) = αf(u) + βf(v) ∀α, β ∈ R,∀u,v ∈ V. (1.1.8)

The real-valued linear functions on a real vector space are called linear functionals
and if they are given the aforementioned algebraic properties it constitutes a vector
space called the dual of V , denoted by V ∗.

For simplicity we will point out the two types of vectors, those in V an those in
V ∗, and distinguish them from one another. For the basis vectors of V ∗ we will use
superscripts and for the components of vectors we will use subscripts, therefore if
{ea} is a basis of V ∗, then a vector λ ∈ V ∗ has the unique expression λ =

∑
a λae

a.
In a natural way, we will now prove that the that the dual space of V has the

same dimensionality as V .

Lemma 1.1. The dual space V ∗ of V has the same dimension as V .

Proof. First, let V be a N -dimenionsal vector space and let {ea} be the basis of V .
We define {ea} to be real-valued functions which maps vectors λ ∈ V into the real
number λa, which is the ath component relative to the basis vectors of V , {ea}. They
are given to be

ea(λ) = λa λ ∈ V (1.1.9a)

ea(eb) = δab . (1.1.9b)

On the last line the term denoted δab is the Kronecker delta function and is equal
to one when a = b and zero otherwise.This clearly gives N real-valued functions which
satisfy Eq(1.1.9b). Now we will show that they are linear and they constitute a basis
for V ∗.

The linearity of the real-valued functions is shown by the restriction

ea(αλ+ βµ) = αλa + βµa ∀α, β ∈ R ∀λ, µ ∈ V (1.1.10)

To prove that {ea} is a basis for any given ν ∈ V ∗ we can define N real numbers,
denoted νa by ν(ea) = νa. Then

ν(λ) = ν(λaea) = λaν(ea)

= λaνa

= νae
a(λ) ∀λ ∈ V (1.1.11)

Therefore for any ν ∈ V ∗ we have ν =
∑
νae

a, for some νa in R, showing that
{ea} is the basis of the dual space V ∗. The independence of the basis vectors comes
from Eq(??). Thus dim(V ∗) = dim(V ).
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Although we have only considered real-valued linear functionals on a real vector
space V the proof of the dual and the vector space having the same dimensions can
be generalized to other finite dimensional vector spaces. In the infinite dimensional
case the dual space has a strictly larger dimension than the original space.

Before we continue, we will first need to define a few terms as they are essential
to the following theorems we prove.

Definition 2. A norm on a vector space V is a mapping ‖·‖ : V → R which satisfies
the following conditions:
(i)

‖x‖ > x 6= 0; (1.1.12)

(ii)
‖λx‖ = |λ|‖x‖ ∀λ ∈ F, x ∈ V ; (1.1.13)

(iii)
‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V. (1.1.14)

Note that the last condition is precisely the triangle inequality.

Definition 3. A metric is a function that defines the distance between each pair of
elements in the set.

Definition 4. An inner product space is a complex vector space V with an addi-
tional structure that is a mapping

〈·, ·〉 : V × V → C (1.1.15)

such that, for all x, y, z ∈ V and all λ ∈ F,
(i)

〈x, y〉 = 〈y, x〉−, (1.1.16)

where 〈·, ·〉− is the conjugate of the inner product;
(ii)

〈λx, y〉 = λ〈x, y〉; (1.1.17)

(Iii)
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉; (1.1.18)

(iv)
〈x, x〉 > 0 when x 6= 0. (1.1.19)

Definition 5. A Hilbert space H is an inner product space which is a complete
metric space with respect to the metric induced by its inner product.

Definition 6. A normed space is a pair (V, ‖ · ‖) where V is a real or complex
vector space and ‖ · ‖ is a norm on V .
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Definition 7. A Banach space is a normed space which is a complete metric space
with respect to the metric induced by its norm.

Theorem 1.2. Let F be a linear functional on a normed space (E, ‖ · ‖). The
following statements are then equivalent to each other:

1. F is continuous;

2. F is continuous at 0;

3. sup {|F (x)| : x ∈ E, ‖x‖ ≤ 1} <∞

Proof. From statement 1 the proof of statement two is trivial.
Assuming statement 2, given for all ε > 0 there is a δ > 0 such that ‖x‖ < δ ⇒

|F (x)| < ε. Take ε = 1 then there exists a δ > 0 such that ‖x‖ < δ ⇒ |F (x)| < 1.
Therefore ∀x ∈ E such that ‖x‖ ≤ 1 we have ‖ δx

2
‖ < δ ⇒ |F ( δx

2
)| < 1. Therefore

|F (x)| < 2
δ

becauuse of linearity.
Suppose statement 3 and let M be the finite supremum. Taking any pair of

x, y ∈ E, (x−y)
‖x−y‖ is a unit vector and therefore

F

(
(x− y)

‖x− y‖

)
≤M

|F (x− y)| ≤M‖x− y‖
|F (x)− F (y)| ≤M‖x− y‖; (1.1.20)

the last step follows from linearity of the linear functional. Let δ ≤ ε
M

then it is clear
that F is continuous.

Lemma 1.3. Let E∗ be the set of all continuous linear functionals on the normed
space (E, ‖ · ‖) and F ∈ E∗. Then ‖F‖ = supx∈E,‖x‖≤1 |F (x)| is a norm on E∗.

Proof. We simply need to check if the norm satisfies the following three conditions:

1. ‖F‖ > 0 if F 6= 0;

2. ‖λF‖ = |λ|‖F‖ ∀λ ∈ C ∀F ∈ E∗

3. ‖F + F ′‖ ≤ ‖F‖+ ‖F ′‖ ∀F, F ′ ∈ E∗

Clearly conditions 1 and 2 satisfy the definition of the norm. For condition 3 we
have

‖F + F ′‖ = sup
x∈E,‖x‖≤1

|F (x) + F ′(x)|. (1.1.21)
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By triangle inequality we have

sup
x∈E,‖x‖≤1

|F (x) + F ′(x)| ≤ sup
x∈E,‖x‖≤1

[
|F (x)|+ |F ′(x)|

]
≤ sup

x∈E,‖x‖≤1

|F (x)|+ sup
x∈E,‖x‖≤1

|F ′(x)|

= ‖F‖+ ‖F ′(x)‖ (1.1.22)

Theorem 1.4. The set E∗ of all continuous linear functionals on the normed space
(E, ‖ · ‖) is itself a Banach space with respect to pointwise algebraic operations and
norm

‖F‖ = supx∈E,‖x‖≤1

∣∣F (x)
∣∣ (1.1.23)

Proof. E∗ is a vector space over the same field as E. From Theorem 2.3, we know
that ‖F‖ is a real number. Lemma 2.3 also tells us that the norm from Lemma 2.3
is a norm on E∗. We will now show that E is complete.

Let (Fn) be a Cauchy sequence in E∗ so that ‖Fn − Fm‖ → 0 as n,m → ∞.
Therefore for all x ∈ E ⇒ |Fn(x)− |Fm| → 0 as n,m go to infinity. We see that this
is Cauchy sequence of scalars; we denote the limit of this scalar sequence by F (x).
We must now show that F ∈ E∗ and that Fn → F with respect to the norm on E∗.

Let ε > 0 and pick n0 ∈ N such that for all m,n ≥ n0 ⇒ ‖Fm − Fn‖ < ε
Then for all x ∈ E such that ‖x‖ ≤ 1 and for all m,n ≥ n0,

|Fm(x)− Fn(x)| < ε (1.1.24)

Letting m→∞,∀n ≥ n0 and for all x such that ‖x‖ ≤ 1,

|F (x)− Fn(x)| ≤ ε (1.1.25)

Since for all x ∈ E such that ‖x‖ ≤ 1, |F (x)−Fn(x)| ≤ ε, thereby implies F −F0

and Fn0 are bounded, then F is also bounded on the unit ball and by Theorem 2.3
it is continuous. Thus F ∈ E∗. Whenever n ≥ n0 ⇒ ‖F − Fn‖ ≤ ε implies that
Fn → F ∈ E∗ and so E∗ is complete.

Theorem 1.5. For any vector x in a normed space E and any continuous linear
functional F on E,

|F (x)| ≤ ‖F‖‖x‖. (1.1.26)
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Proof. Suppose that x ∈ E such that x 6= 0. Then x
‖x‖ is a unit vector and therefore

F

(
x

‖x‖

)
≤ ‖F‖

|F (x)|
‖x‖

≤ ‖F‖ (1.1.27)

Lemma 1.6. Let V be an inner product space with an inner product 〈·, ·〉. For all
x, y, z ∈ V , if 〈x, z〉 = 〈y, z〉 for all z ∈ V then x = y.

Proof. If 〈x, z〉 = 〈y, z〉 then

0 = 〈x, z〉+ (−1)〈y, z〉
= 〈x, z〉+ 〈−y, z〉

〈x− y, z〉 (1.1.28)

If this is true for all z ∈ V then z = x− y ⇒ x− y = 0.

Lemma 1.7. Let M be a linear subspace of a Hilbert space H and let x ∈ H. Then
x ∈M⊥ if and only if

‖x− y‖ ≥ ‖x‖ ∀y ∈M (1.1.29)

Proof. (⇒) If x ∈M⊥ then, ∀y ∈M x and y are orthogonal then by the Pythagoras’
theorem we have

‖x− y‖2 = ‖x‖2 + ‖y‖2 ≤ ‖x‖2 (1.1.30)

(⇐) Suppose that Eq(1.1.29) holds. for all y ∈M and for all λ ∈ F, then λy ∈M
and

‖x− λy‖2 ≥ ‖x‖2. (1.1.31)

Rewriting this as an inner product we have

〈x− λy, x− λy〉 ≥ ‖x‖2

‖x‖2 − λ̄〈x, y〉 − λ〈x, y〉− + |λ|2‖y‖2 ≥ ‖x‖2

−2Reλ̄〈x, y〉+ |λ|2‖y‖2 ≥ 0. (1.1.32)
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The last line comes from ∀z ∈ C ⇒ z + z̄ = 2Re{z}. Eq(1.1.32) holds for any
λ ∈ C, it also holds for λ = tz where t > 0 and z ∈ C, where |z| = 1, then
z̄(x, y) = |(x, y)|. Thus

−2t|〈x, y〉|+ t2‖y‖2 ≥ 0

‖〈x, y〉‖ ≤ 1

2
t‖y‖2. (1.1.33)

Letting t→ 0 the result shows (x, y) = 0.

Lemma 1.8. Let M be a closed linear subspace of a Hilbert space H and let x ∈ H.
There exists y ∈M z ∈M⊥ such that x = y + z.

Proof. Take y ∈M and let it be the closest point to x in M , by definition

‖x− y‖ ≤ ‖x−m‖ ∀m ∈M. (1.1.34)

Let z = x− y then x = y + z. ∀m ∈M ⇒ y +m ∈M and so

‖z‖ = ‖x− y‖ ≤ ‖x− (y +m)‖
≤ ‖z −m‖ ∀m ∈M. (1.1.35)

By Lemma 2.7, z ∈M⊥.

Theorem 1.9. Riesz-Frechet Theorem
Let H be a Hilbert space and let F be a continuous linear functional on H. There

exists a unique y ∈ H such that

F (x) = (x, y) ∀x ∈ H. (1.1.36)

Furthermore ‖y‖ = ‖F‖.

Proof. From Lemma 2.6 we know that y is unique because

(x, y) = F (x) = (x, y′) ∀x ∈ H (1.1.37)

implies y = y′.
A trivial case of F is when F is the zero operator and we take y = 0. Now let us

assume the case were the functional F is not equal to the zero operator.
Let M be the kernel of the linear functional F ,

M = KerF = {x ∈ H : F (x) = 0}, (1.1.38)
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and M is a proper closed subspace of H by the continuity of F . From Lemma 2.8,
we know that H = M ⊕M⊥ and therefore M⊥ 6= {0}. Let z ∈M⊥ such that z 6= 0.
We can scale z with a scalar such that F (z) = 1. Then pick a z ∈ M⊥ such that for
any x ∈ H

x = (x− F (x)z) + F (x)z (1.1.39)

Because H is a direct some of M and its orthogonal complement M⊥, the first
term on the right hand expression is an element of M and the second term is an
element of M⊥. Taking an inner product of both sides with z,

(x, z) = (F (x)z, z) = F (x)‖z‖2 ∀x ∈ H, (1.1.40)

since z ⊥M . If we let y = z
‖z‖2 we have

(x, y) = F (x) (1.1.41)

If ‖x‖ ≤ 1 then by Cauchy-Schwarz,

|F (x)| = |(x, y)| ≤ ‖x‖‖y‖ ≤ ‖y‖ (1.1.42)

Let x = y
‖y‖ , which is a unit vector, and therefore

‖F‖ ≥ |F (x)| = |F (y)|
‖y‖

=
|(y, y)|
‖y‖

= ‖y‖. (1.1.43)

Therefore ‖F‖ = ‖y‖.

2 Tensor Products

Previously, in the sections above, we have defined a vector space and created a new
space called its dual. However, in the general case, looking at infinite dimensional
vector spaces, we cannot simply repeat this process. Therefore we introduce the tensor
product and it generates a new vector space from two other vector spaces. Primarily,
tensor products came around for vector spaces due to its inherent need in physics and
engineering, nonetheless it is a vital aspect of functional analysis and operator space
theory. We will use tensor products in order to formally prove the generalization of
the Cauchy-Schwarz inequality of complex vectors to that of operators. The following
description of tensor products is of vector spaces, however it can be extended to that
of Hilbert spaces and ultimately operator spaces. When building the tensor product
space we are actually constructing the algebraic tensor product and therefore the
resultant space is not necessarily complete. Professor Ben Mathes and I constructed
the following proofs on the tensor product.
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2.1 Building the Tensor Product

To begin the construction of tensor products of vectors spaces over a field, I will first
define the term linear extension.

Definition 8. Let E ⊂ V be a basis of V . Let f0 : E → W be a function. The linear
extension f of f0 to V is defined by

f
(∑
e∈E

αee
)
≡
∑
e∈E

αef0(e), (2.1.1)

where αe ∈ F and αe is finitely non-zero.

Next let us define bilinear and the universal property of tensor products.
Let V1, V2,W be vector spaces over a field F. A map φ : V1 × V2 → W is called

bilinear if for all x, α ∈ V1, y, β ∈ V2, the maps that take

x 7→ φ(x, β), y 7→ φ(α, y) (2.1.2)

holding α and β constant are linear maps. Linearity of the maps can be easily shown,
let the map f(x) : V1 → W such that f(x) = φ(x, β) then

f(ax) = φ(ax, β) = aφ(x, β) (2.1.3a)

f(x+ y) = φ(x+ y, β) = φ(x, β) + φ(y, β) (2.1.3b)

where it holds for any a ∈ F, β ∈ V2, x, y ∈ V1.
A bilinear map from φ : V1×V2 → W has the universal property of tensor products

when ∀ bilinear maps ψ : V1×V2 → W ′ there is a unique linear map from ψ̂ : W → W ′

ψ̂
(
φ(x, y)

)
= ψ(x, y), ∀x ∈ V1, y ∈ V2. (2.1.4)

Now, we will prove several properties of tensor products. To prove the theorem
on existence we will first prove a Lemma that provides a sufficient condition.

Lemma 2.1. Let E and F be the basis of V1 and V2 respectively. If φ : V1× V2 → W
has {φ(x, y)|x ∈ V1, y ∈ V2} as a spanning set of W and if φ has the property that
{φ(e, f)|e ∈ E , f ∈ F} is linearly independent whenever E ⊆ V1 and F ⊆ V2 are
linear independent, then φ satisfies the universal product.

Proof. First assume that E and F are the basis of V1 and V2 respectively and that
φ : V1 × V2 → W has {φ(x, y)|x ∈ V1, y ∈ V2} as a spanning set of W . Now consider
the diagram

11



V1 × V2 W

W ′

φ

ψ

Suppose E and F are both linearly independent and that {φ(e, f)|e ∈ E , f ∈ F}
is linearly independent whenever E ⊆ V1 and F ⊆ V2 are linear independent.

So {φ(e, f)|e ∈ E , f ∈ F} is linearly independent and φ(x, y) = φ
(∑

e∈E αee,
∑

f∈F βff
)

and by bilinearity we have

φ
(∑
e∈E

αee,
∑
f∈F

βff
)

=
∑

e∈E,f∈F

αeβfφ(e, f) (2.1.5)

so {φ(e, f)|e ∈ E , f ∈ F} spans {φ(x, y)|x ∈ V1, y ∈ V2} and this spans W therefore
{φ(e, f)|e ∈ E , f ∈ F} is a basis of W . Now to finish the proof note that a bilinear
function is defined by where it sends the basis vectors of the vector space. Therefore
if we let ψ̂

(
φ(e, f)

)
= ψ(e, f) and we extend linearly we will have a unique linear

function that makes the diagram commute.

Now let us combine our knowledge of vector and duals spaces with the notion of
tensor products.

Theorem 2.2. The tensor product exists.

Proof. Let V1 and V2 be vector spaces.
Consider a bilinear mapping

φ : V1 × V2 → BL[V ∗1 × V ∗2 → F] = {φ∗ : V ∗1 × V ∗2 → F|φ∗ is bilinear}, (2.1.6)

that is defined as such

φ(µ,ν)(x, y) = µ(x)ν(y). (2.1.7)

The bilinear function φ is dependent upon the linear functionals µ, ν which are
elements of the duals of V1 and V2 respectively. It is clear that the map is bilinear

φ(µ,ν)(αx+ βy, z) = µ(αx+ βy)ν(z)

= αµ(x)ν(z) + βµ(y)ν(z) (2.1.8a)

φ(µ,ν)(x, αy + βz) = µ(x)ν(αy + βz)

= αµ(x)ν(y) + βµ(x)ν(z), (2.1.8b)
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for all x ∈ V1, y ∈ V2, α, β ∈ F, µ ∈ V ∗1 , ν ∈ V ∗2 . Let both E and F be a linearly
independent bases of V1 andV2 respectively then from above .

Then to show the linear independence of the space BL[V ∗1 × V ∗2 → F] we set an
arbitrary linear combination of the basis vectors

∑
e∈E,f∈F α(e,f)φ(e, f) in BL[V ∗1 ×

V ∗2 → F] equal to zero and solve for the constant coefficients:

0 =
∑

e∈E,f∈F

α(e,f)φ(e, f)

⇒
∑

e∈E,f∈F

α(e,f)φ(e, f)(e∗0, f
∗
0 )

=
∑

e∈E,f∈F

α(e,f)e
∗
0(e)f ∗0 (f) = 0

⇒ α(e0,f0) = α = 0. (2.1.9)

In this case we have defined φ to be dependent upon the basis vectors e∗0 and f ∗0
of the dual spaces respectively. Since we have shown that all coefficients of the linear
combination are zero this implies that the basis vectors are linearly independent and
thus fulfills our condition given by Lemma 3.1 of the existence of the tensor product.

Theorem 2.3. If φ : V1 × V2 → W and φ′ : V1 × V2 → W ′ both have the universal
property then W is isomorphic to W ′ via an isomorphism.

Proof. Suppose φ : V1 × V2 → W and φ′ : V1 × V2 → W ′ have the universal property
of tensor products. Now consider the diagram

W

V1 × V2

W ′

φ

φ′

but because both bilinear functionals φ and φ′ have the universal property of the
tensor product our diagram can be rewritten as

13



W

V2 × V2 W ′

W

φ

φ′

φ

f

f ′

where f and f ′ are unique linear functionals. Notice that f ◦ f ′ and f ′ ◦ f are
the identity on W . Therefore f and f ′ are inverses of each other and W W ′ are
isomorphic to each other.

Note that because of the uniqueness up to an isomorphism, when you generate
the tensor product of two spaces it is the only tensor product of the two spaces.

Now let us introduce the notion of the ”conjugate” of a Hilbert space H. For a
”normal” Hilbert space, H has the algebraic structure and inner product defined by
the mappings

(x, y)→ x+ y : H×H → H (2.1.10a)

(a, x)→ ax : C×H → H (2.1.10b)

(x, y)→ 〈x, y〉 : H×H → C. (2.1.10c)

However we define the ”conjugate” Hilbert space with a slight twist.

Definition 9. The conjugate Hilbert space H̄ is the same set H, with the algebraic
structure and inner product defined by the mappings:

(x, y)→ x+ y : H×H → H (2.1.11a)

(a, x)→ ā·x = āx : C×H → H (2.1.11b)

(x, y)→ 〈x, y〉− = 〈x, y〉 : H×H → C (2.1.11c)

where

〈x, y〉− = 〈x, y〉 = 〈y, x〉. (2.1.12)

Now we will look at the tensor products of two Hilbert spaces, H and H̄, H̄ being
the conjugate linear Hilbert space. An elementary tensor of H⊗H̄ is denoted as x⊗y
and is an element of the bounded linear operators on H. We define the elementary
tensor on an element of H and the inner product of two tensors by

14



x⊗ y(z) = 〈z, y〉x; (2.1.13a)

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉〈y1, y2〉 (2.1.13b)

for some x, z ∈ H, y ∈ H̄.
Now we will prove a simple theorem about the tensor product of Hilbert spaces

H⊗ H̄.

Theorem 2.4. Let {ei}ni=1, {fi}mi=1 be independent sets of H and H̄ respectively. The
set {ei ⊗ fi}ij is independent.

Proof. It is sufficient to show that∑
ij

αijei ⊗ fj = 0 (2.1.14)

such that αij = 0 for all i, j. Given j0 there exists a z ∈ H such that z is perpendicular
to the independent set

{f1, ..., fj0−1, fj0+1, ..., fm}. (2.1.15)

so that

〈z, fj0〉 6= 0. (2.1.16)

Now we have

∑
ij

αijei ⊗ fj(z) =
n∑
i

αij0〈z, f0〉ei (2.1.17)

which implies that

αij0 = 0 (2.1.18)

for all i because the set {ei} is independent and the choice of j0 is arbitrary. Using a
similar argument for the other half completes the proof.

Next we will prove two lemmas that will show the relationship between tensors
and operators.

Lemma 2.5. The conjugate Hilbert space is isomorphic to the dual space of the Hilbert
space H. Furthermore, this relationship is linear.
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Proof. Let there be a mapping ψ : H̄ → H∗. Then we define the mapping to be

ψ(y) = 〈 , y〉H. (2.1.19)

Therefore this is the desired isomorphism. Finally, it is linear as

ᾱ·y 7→ 〈 , ᾱy〉 = α〈 , y〉. (2.1.20)

An intuitive approach to our next lemma can be seen if one were to associate the
conjugate Hilbert space with the dual of the Hilbert space.

Lemma 2.6. The space of finite rank operators are isomorphic to the tensor product
H⊗ H̄.

Proof. Let V,W be Hilbert spaces and let B(V,W ) be the set of all bounded operators
from V to W . Then let φ be a mapping from W⊗V to B(V,W ), denoted φ : W⊗V →
B(V,W ). We define this mapping to be

φ(w, λ) : v 7→
(
〈v, λ〉

)
w. (2.1.21)

Thus we have our desired isomorphism.

In our next step, we will consider the tensor product of bounded linear operators
on Hilbert spaces H and K.

Let A ∈ B(H) and B ∈ B(H). Then the tensor product of A and B, denoted as
A⊗B is an operator defined as

A⊗B : H⊗K → H⊗K. (2.1.22)

We define the operator acting on a tensor as

A⊗B(x⊗ y) ≡ Ax⊗By, (2.1.23)

and by linearity of the operator we have

A⊗B
( n∑

i

xi ⊗ yi
)

=
n∑
i

Axi ⊗Byi. (2.1.24)

We will now prove that the A operator and B operator on a tensor x⊗ y act as a
left multiplier and a conjugate right multiplier respectively for finite rank operators
on a Hilbert space:

LA ' A⊗ IH̄, RB ' IH ⊗B∗. (2.1.25)
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Theorem 2.7. Let A be a bounded linear operator on H and B a bounded linear
operator on H̄. A is then the left multiplier and B is the conjugate right multiplier.

Proof. Let x⊗ y be an element of H⊗ H̄.

A(x⊗ y)(z) = A(〈z, y〉x)

= 〈z, y〉A(x)

= A(x)⊗ y(z)

= A⊗ IH̄(x⊗ y)(z)

= LA(x⊗ y)(z). (2.1.26)

Now for the conjugate right multiplier B

(x⊗ y)B(z) = x⊗ y(Bz)

= 〈B(z), y〉x
= 〈z, B∗(y)〉x
= x⊗B∗y(z)

= IH ⊗B∗(x⊗ y)(z)

= RB(x⊗ y)(z) (2.1.27)

We will now prove a simple theorem for tensors that are isomorphic to the Hilbert-
Schmidt operators, however in order to do so we will first prove a lemma.

Lemma 2.8. Let x⊗ y ∈ H ⊗ H̄.

Tr(x⊗ y) = 〈x, y〉. (2.1.28)

Proof. First note that clearly

(x⊗ y)ij = xiyj, (2.1.29)

then applying the trace operation to x⊗ y we obtain

Tr(x⊗ y) =
∑
i

(x⊗ y)ii

=
∑
i

xiyi

= 〈x, y〉. (2.1.30)
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Theorem 2.9. The tensor product of the Hilbert space H and the conjugate Hilbert
space H̄, denoted as H⊗H̄, is isomorphic to the space of Hilbert-Schmidt Operators.

Proof. It is sufficient to show that

Tr
(
(x2 ⊗ y2)∗(x1 ⊗ y1)

)
= 〈x1 ⊗ y1, x2 ⊗ y2〉, (2.1.31)

where x1 ⊗ y1, x2 ⊗ y2 ∈ H ⊗ H̄.

Tr
(
(x2 ⊗ y2)∗(x1 ⊗ y1)

)
= Tr

(
(y2 ⊗ x2)(x1 ⊗ y1)

)
= Tr

(
(y2 ⊗ x2(x1))⊗ y1

)
= 〈y2 ⊗ x2(x1), y1〉

= 〈〈x1, x2〉y2, y1〉
= 〈x1, x2〉〈y1, y2〉

= 〈x1 ⊗ y1, x2 ⊗ y2〉 (2.1.32)

2.2 Tensor products and the Hilbert-Schmidt Class

From a general construction of the algebraic tensor products we will look at specific
examples of tensor products limited to Hilbert spaces. I will formally show that the
tensor product of Hilbert spaces is a Hilbert space and actually is the space of Hilbert-
Schmidt functionals on the conjugate Hilbert space of the cartesian product of the
Hilbert spaces. My approach closely follows Kadison and Ringrose’s Fundamentals of
the Theory of Operator Algebras. My work in this section also adding in the steps to
each proof.[4]

In order to begin, we first will prove a basic theorem that is essential to under-
standing Hilbert spaces.

Theorem 2.10. If Y is an orthonormal set in a Hilbert space H, the following three
conditions are equivalent:

(i)

∀u ∈ H, u =
∑
y∈Y

〈u, y〉y; (2.2.1)

(ii)

∀u, v ∈ H, 〈u, v〉 =
∑
y∈Y

〈u, y〉〈y, v〉; (2.2.2)

(iii)
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∀u ∈ H, ‖u‖2 =
∑
y∈Y

|〈u, y〉|2; (2.2.3)

Proof. (i→ ii): Let u, v ∈ H such that u =
∑

y∈Y 〈u, y〉y and v =
∑

y∈Y 〈v, y〉y. Then
we have

〈u, v〉 =

〈∑
y∈Y

〈u, y〉y,
∑
y∈Y

〈v, y〉y
〉

=
∑
y∈Y

〈
〈u, y〉y, 〈v, y〉y

〉
=
∑
y∈Y

〈u, y〉〈v, y〉〈y, y〉

=
∑
y∈Y

〈u, y〉〈y, v〉 (2.2.4)

Therefore i) implies ii).
(ii → iii): Let u, v ∈ H such that the inner product is defined to be 〈u, v〉 =∑
y∈Y 〈u, y〉〈y, v〉. Now to find the square of the norm we have

‖u‖2 = 〈u, u〉

=
∑
y∈Y

〈u, y〉〈y, u〉

=
∑
y∈Y

|〈u, y〉|2 (2.2.5)

Therefore ii) implies iii).
(iii → i): Let u ∈ H such that ‖u‖2 =

∑
y∈Y |〈u, y〉|2. Then to solve for u in

terms of the basis vectors, y, of Y we have

‖u‖2 =
∑
y∈Y

|〈u, y〉|2

=
∑
y∈Y

〈u, y〉〈y, u〉

=
∑
y∈Y

〈u, y〉〈y, u〉〈y, y〉

=
∑
y∈Y

〈
〈u, y〉y, 〈u, y〉y

〉
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= 〈u, u〉
⇒ u = 〈u, y〉y (2.2.6)

Therefore iii) implies i) and the proof of the theorem is complete. On a side note
if Y is an orthonormal basis, then condition ii) is also known as Parseval’s equation.

In defining the (Hilbert) tensor product H of two Hilbert spaces H1,H2, the
approach we take will utilize the “universal” property of the tensor product. In
terms of operators, rather than mappings, the Hilbert space H is characterized, up
to isomorphism, by the existence of a bilinear mapping p : H1 × H2 → H. It has
the following property that each ”suitable” bilinear mapping L from H1 ×H2 into a
Hilbert space K has a unique factorization L = Tp, with T being a bounded linear
operator from H into K.

Before the formal construction of the theory, we need to understand the intuitive
aspects of it. When x1 ∈ H1, x2 ∈ H2, we want to view the element p(x1, x2) ∈ H
as a “product” x1 ⊗ x2 of sorts. Later we will see the parallels between the formal
product and the tensor product. The linear combinations of such products form an
everywhere-dense subspace of H. The bilinearity of p implies that these products
satisfy certain linear relations:

(x1 + y1)⊗ (x2 + y2)− x1 ⊗ x2 − x1 ⊗ y2 − y1 ⊗ x2 − y1 ⊗ y2 = 0

x1, y1 ∈ H1, x2, y2 ∈ H2 (2.27)

All the linear relations satisfied by product vectors can be achieved by use of the
bilinearity of p. The inner product on H satisfies the conditions:

〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉〈x2, y2〉 (2.2.8a)

‖x1 ⊗ x2‖2 = 〈x1 ⊗ x2, x1 ⊗ x2〉
= 〈x1, x1〉〈x2, x2〉 = ‖x1‖2‖x2‖2

‖x1 ⊗ x2‖ = ‖x1‖‖x2‖. (2.2.8b)

Our construction of the Hilbert space H, the elements of H are complex-valued
functions defined on the product H1 ×H2 and conjugate-linear in both variables. If
v1 ∈ H1, v2 ∈ H2, v1 ⊗ v2 is the function that assigns the value 〈v1, x1〉〈v2, x2〉 to the
element (x1, x2) ∈ H1 ×H2.

Now, suppose that H1, ...,Hn are Hilbert spaces and φ is a mapping from the
cartoon product of all these Hilbert spaces into the scalar field C. The mapping φ is
called a bounded multilinear functional on H1 × · · · × Hn if φ is linear in each of its
variables, assuming that the other variables remain fixed, and there is a real number
c such that
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|φ(x1, ..., xn)| ≤ c‖x1‖ · · · ‖xn‖, x1 ∈ H1, ..., xn ∈ Hn. (2.2.9)

If this is so then the lest such constant c is denoted by the norm of the mapping
‖φ‖. Then φ is a continuous mapping from H1×·· ·×Hn → C relative to the product
tor the norm topologies on the Hilbert spaces.

Theorem 2.11. Suppose that H1, ...,Hn are Hilbert spaces and φ is a bounded mul-
tilinear functional on H1 × · · · × Hn.

(i) The sum ∑
y1∈Y1

· · ·
∑
yn∈Yn

|φ(y1, ..., yn)|2 (2.2.10)

has the same finite or infinite value for all orthonormal bases Y1 of H1,..., Yn of
Hn.

(ii) If K1, ...,Kn are Hilbert spaces, Am ∈ B(Hm,Km), (m = 1, ..., n), ψ is a
bounded multilinear functional on K1 × · · ·Kn, and

φ(x1, ..., xn) = ψ(A1x1, ..., Anxn)

x1 ∈ H1, ..., xn ∈ Hn (2.2.11)

then

∑
y1∈Y1

· · ·
∑
yn∈Yn

|φ(y1, ..., yn)|2 ≤ ‖A1‖2 · · · ‖An‖2
∑
z1∈Z1

· · ·
∑
zn∈Zn

|φ(z1, ..., zn)|2, (2.2.12)

when Ym and Zm are orthonormal bases of Hm and Km, respectively where m =
1, ..., n.

Proof. To prove (i) it is sufficient to show that∑
y1∈Y1

· · ·
∑
yn∈Yn

|φ(y1, ..., yn)|2 ≤
∑
z1∈Z1

· · ·
∑
zn∈Zn

|φ(z1, ..., zn)|2, (2.2.13)

whenever Ym, Zm are orthonormal bases of Hm,m = 1, ..., n. Note that since Ym, Zm
are orthonormal bases we can represent the basis vectors in one in terms of a linear
combination of the other.

y1 =
∑
z1∈Z1

〈y1, z1〉z1, ..., yn =
∑
zn∈Zn

〈yn, zn〉zn (2.2.14)

Therefore,
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∑
y1∈Y1

· · ·
∑
yn∈Yn

|φ(y1, ..., yn)|2 =
∑
y1∈Y1

· · ·
∑
yn∈Yn

|φ(
∑
z1∈Z1

〈y1, z1〉z1, ...,
∑
zn∈Zn

〈yn, zn〉zn)|2

=
∑
y1∈Y1

· · ·
∑
yn∈Yn

|
∑
z1∈Z1

· · ·
∑
zn∈Zn

〈y1, z1〉 · · · 〈yn, zn〉φ(z1, ..., zn)|2

≤
∑
z1∈Z1

· · ·
∑
zn∈Zn

‖z1‖2 · · · ‖zn‖2|φ(z1, ..., zn)|2

=
∑
z1∈Z1

· · ·
∑
zn∈Zn

|φ(z1, ..., zn)|2

(2.2.15)

The third line is arrived by noticing that we can rewrite the zm ∈ Zm basis in
terms of ym ∈ Ym

z1 =
∑
y1∈Y1

〈z1, y1〉y1, ..., zn =
∑
yn∈Yn

〈zn, yn〉yn. (2.2.16)

Also note that by definition 〈ym, zm〉 = 〈zm, ym〉 and that

‖zm‖2 = 〈
∑

ym∈Ym

〈zm, ym〉ym,
∑

ym∈Ym

〈zm, ym〉ym〉

=
∑

ym∈Ym

〈〈〈ym, zm〉ym, 〈ym, zm〉ym〉

=
∑

ym∈Ym

|〈ym, zm〉|2‖ym‖2

=
∑

ym∈Ym

|〈ym, zm〉|2 (2.2.17)

Using the same argument and exchanging the orthonormal bases we can show
equality.

Then for the proof of (ii), we suppose that 1 ≤ m ≤ n we choose and fix vectors
y1 ∈ Y1, ..., ym−1 ∈ Ym−1, zm+1 ∈ Zm+1, ..., zn ∈ Zm. By the Riesz-Frechet theorem
there exists the mapping

z → ψ(A1y1, ..., Am−1ym−1, z, zm+1, ..., zn) : Km → C (2.2.18)

such that it is a bounded linear functional on Km, and ∃w ∈ Km such that

ψ(A1y1, ..., Am−1ym−1, z, zm+1, ..., zn) = 〈z, w〉, z ∈ Km (2.2.19)

Looking at a particular case, we use Parseval’s equation along with Theorem 2.10:
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∑
ym∈YM

|ψ(A1y1, ..., Am−1ym−1, Amym, zm+1, ..., zn)|2

=
∑

ym∈YM

|〈Amym, w〉|2

=
∑

ym∈YM

|〈ym, A∗mw〉|2

= ‖A∗mw‖2. (2.2.20a)

Then using Cauchy Schwarz and Theorem 2.10 again we have

‖A∗mw‖2 ≤ ‖Am‖2‖w‖2 = ‖Am‖2
∑

zm∈Zm

|〈zm, w〉〉|2

= ‖Am‖2
∑

zm∈Zm

|ψ(A1y1, ..., Am−1ym−1, z, zm+1, ..., zn)|2. (2.2.21)

In the first line we have expanded the norm square of w in terms of the orthonormal
basis Zm of Km. Applying this inequality to the whole sum given in (ii) we have

∑
y1∈Y1

· · ·
∑
yn∈Yn

|φ(y1, ..., yn)|2 =
∑
y1∈Y1

· · ·
∑
yn∈Yn

|ψ(A1y1, ..., Anyn)|2

≤ ‖An‖2
∑
y1∈Y1

· · ·
∑

yn−1∈Yn−1

∑
zn∈Zn

|ψ(A1y1, ..., An−1yn−1, zn)|2

≤ ‖An−1‖2‖An‖2

×
∑
y1∈Y1

· · ·
∑

yn−2∈Yn−2

∑
zn−1∈Zn−1

∑
zn∈Zn

|ψ(A1y1, ..., An−2yn−2, zn−1, zn)|2

≤ · · · ≤ ‖A1‖2 · · · ‖An‖2
∑
z1∈Z1

· · ·
∑
zn∈Zn

|ψ(z1, ..., zn)|2 (2.2.22)

With H1, ...,Hn Hilbert spaces, a mapping φ : H1 × · · · × Hn → C is called a
Hilbert-Schmidt functional on H1×· · ·×Hn if it is a bounded multilinear functional,
and the sum of Eq(2.2.10) is finite for any choice of the orthonormal bases Y1 in H1,
..., Yn in Hn. Our focus will be on bilinear functionals, however as we have proved
the theorem to be true for n-multilinear functionals, it is therefore true for bilinear
ones as well. To prevent further confusion we will work with Bilinear functionals.

Theorem 2.12. If H1,H2 are Hilbert spaces, the set HSF of all Hilbert-Schmidt
functionals onH1×H2 is itself a Hilbert space when the linear structure, inner product,
and norm are defined by
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(aφ+ bψ)(x1, x2) = aφ(x1, x2) + bψ(x1, x2) (2.2.23)

〈φ, ψ〉 =
∑
y1∈Y1

∑
y2∈Y2

φ(y1, y2)ψ(y1, y2) (2.2.24)

‖φ‖2 =

[ ∑
y1∈Y1

∑
y2∈Y2

|φ(y1, y2)|2
] 1

2

, (2.2.25)

respectively, where Ym is an orthonormal basis in Hm, m = 1, 2. The sum given by
Eq(2.2.24) is absolutely convergent, and the inner product and norm do not depend
on the choice of the orthonormal bases Y1, Y2.

For each v(1) in H1, v(2) in H2 the equation

φv(1),v(2)(x1, x2) = 〈x1, v(1)〉〈x2, v(2)〉, (x1 ∈ H1, x2 ∈ H2) (2.2.26)

defines an element φv(1),v(2) of HSF , and

〈φv(1),v(2), φw(1),w(2)〉 = 〈w(1), v(1)〉〈w(2), v(2)〉 (2.2.27)

‖φv(1),v(2)‖2 = ‖v(1)‖‖v(2)‖. (2.2.28)

The set {φy(1),y(2) : y(1) ∈ Y1, y(2) ∈ Y2} is an orthonormal basis ofHSF . There is
a unitary transformation U from HSF onto l2(Y1×Y2), such that Uφ is the restriction
φ|Y1 × Y2 when φ ∈ HSF .

Proof. Choose an orthonormal basis Ym in Hm, m = 1, 2, and then associate with
each bounded multilinear functional φ on H1 ×H2 the complex-valued function Uφ
obtained by restricting φ to Y1 × Y2. Remember that the condition for a Hilbert-
Schmidt functional is that if φ is a Hilbert-Schmidt functional if and only if

Uφ ∈ l2(Y1 × Y2). (2.2.29)

If Uφ = 0, then

φ(y1, y2) = 0 y1 ∈ Y1, y2 ∈ Y2. (2.2.30)

Ym is an orthonormal basis, with its closed linear span being Hm, it follows from
the multilinearity and continuity of φ that if Uφ = 0, for all the basis vectors in the
orthonormal bases Ym, φ vanishes throughout H1 ×H2.

Let φ, ψ be Hilbert-Schmidt functionals onH1×H2, then let aφ+bψ be a bounded
multilinear functional and Uφ, Uψ ∈ l2(Y1 × Y2) thus

U(aφ+ bψ) = aUφ+ bUψ ∈ l2(Y1 × Y2). (2.2.31)
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This tells us that the linear structure is maintained even under the restriction U .
Looking at the inner product, the sum, given by Eq(2.2.24), can be rewritten in the
form

〈φ, ψ〉 =
∑
y1∈Y1

∑
y2∈Y2

φ(y1, y2)ψ(y1, y2) =
∑

y∈Y1×Y2

(Uφ)(y)(Uψ)(y) (2.2.32)

and it is absolutely convergent with the sum 〈Uφ, Uψ〉, the inner product in l2(Y1 ×
· · · × Yn) of the two restricted functionals Uφ and Uψ.

The set HSF of all Hilbert-Schmidt functionals on H1 × H2is a complex vector
space. Eq(2.2.24) then defines an inner product on HSF , the restriction U |HSF is a
one-to-one linear mapping from HSF into l2(Y1 × Yw), and 〈Uφ, Uψ〉 = 〈φ, ψ〉 when
φ, ψ ∈ HSF . The inner product on l2(Y1×Y2) is definite, same in HSF ; if φ ∈ HSF
and 〈φ, φ〉 = 0, we have 〈Uφ, Uφ〉 = 0, whence Uφ = 0 ⇒ φ = 0. From this we see
that HSF is a pre-Hilbert space, and it is apparent from Eq(2.2.24) that the norm,
denoted ‖ ‖2 in HSF is given by Eq(2.2.25).

〈φ, φ〉 =
∑
y1∈Y1

∑
y2∈Y2

φ(y1, y2)φ(y1, y2)

=

[ ∑
y1∈Y1

∑
y2∈Y2

|φ(y1, y2)|2
]

= ‖φ‖2
2

‖φ‖2 =

[ ∑
y1∈Y1

∑
y2∈Y2

|φ(y1, y2)|2
] 1

2

(2.2.33)

From Theorem 2.11, this norm is independent of the choice of the orthonormal
bases Y1, .., Yn; this is also true of the inner product on HSF .

Now we will show that U brings HSF onto the whole of the l2 space. Let f ∈
l2(Y1 × Y2) and xm ∈ Hm,m = 1, 2, the Cauchy-Schwarz inequality and Parseval
equation gives

|f(x1, x2)| = |f
( ∑
y1∈Y1

〈x1, y1〉y1,
∑
y2∈Y2

〈x2, y2〉y2

)
|

=
∑
y1∈Y1

∑
y2∈Y2

|f(y1, y2)〈x1, y1〉〈x2, y2〉|

≤
[ ∑
y1∈Y1

∑
y2∈Y2

|f(y1, y2)|2
] 1

2

×
[ ∑
y1∈Y1

∑
y2∈Y2

|〈x1, y1〉|2|〈x2, y2〉|2
] 1

2
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= ‖f‖
( ∑
y1∈Y1

|〈x1, y1〉|2
) 1

2
( ∑
y2∈Y2

|〈x2, y2〉|2
) 1

2

= ‖f‖‖x1‖‖x2‖ (2.2.34)

From this, the equation

φ(x1, x2) =
∑
y1∈Y1

∑
y2∈Y2

f(y1, y2)〈x1, y1〉〈x2, y2〉 (2.2.35)

defines a bounded multilinear functional φ on H1 × H2, with ‖φ‖ ≤ ‖f‖. The or-
thonormality of the sets Y1, Y2, leads to the fact that

(Uφ)(y1, y2) = φ(y1, y2) = f(y1, y2) y1 ∈ Y1, y2 ∈ Y2 (2.2.36)

so Uφ = f . Furthermore φ ∈ HSF because Uφ ∈ l2(Y1 × Y2), since U carries
HSF onto the l2 space.

Since U is a norm preserving linear mapping from HSF onto l2(Y1 × Y2) com-
pleteness of the l2 space entails completeness of HSF ; so HSF is a HIlbert space,
and U is a unitary operator.

When v(1) ∈ H1, v(2) ∈ H2, and φv(1),v(2) is a multilinear functional on H1 ×H2

as defined above, it is bounded since

|φv(1),v(2)(x1, x2)| ≤ ‖v(1)‖‖v(2)‖‖x1‖‖x2‖ (2.2.37)

by the Cauchy-Schwarz inequality. Furthermore, Parseval’s equation gives

〈φv(1),v(2), φv(1),v(2)〉 =
∑
y1∈Y1

∑
y2∈Y2

φ(y1, y2)φ(y1, y2)

=
∑
y1∈Y1

∑
y2∈Y2

|φv(1),v(2)(y1, y2)|2

=
∑
y1∈Y1

∑
y2∈Y2

|〈y1, v(1)〉|2|〈y2, v(2)〉|2

=

( ∑
y1∈Y1

|〈y1, v(1)〉|2
)( ∑

y2∈Y2

|〈y2, v(2)〉|2
)

= ‖v(1)‖2‖v(2)‖2. (2.2.38)

Hence φv(1),v(2) ∈ HSF and ‖φv(1),v(2)‖2 = ‖v(1)‖‖v(2)‖. Using Parseval’s equa-
tion again and by absolute convergence,
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〈φv(1),v(2), φw(1),w(2)〉

=
∑
y1∈Y1

∑
y2∈Y2

φv(1),v(2)(y1, y2)φw(1),w(2)(y1, y2)

=
∑
y1∈Y1

∑
y2∈Y2

〈y1, v(1)〉〈y2, v(2)〉〈w(1), y1〉〈w(2), y2〉

=

( ∑
y1∈Y1

〈w(1), y1〉〈y1, v(1)〉
)( ∑

y2∈Y2

〈w(2), y2〉〈y2, v(2)〉
)

= 〈w(1), v(1)〉〈w(2), v(2)〉 (2.2.39)

To show that {φy(1),y(2) : y(1) ∈ Y1, y(2) ∈ Y2} is an orthonormal basis, when
y(1) ∈ Y1, y(2) ∈ Y2, the orthonormality of Y1, Y2 implies that Uφy(1),y(2) is the func-
tion that takes the value 1 at (y(1), y(2)) and 0 elsewhere on Y1 × Y2. Therefore

{Uφy(1),y(2) : y(1) ∈ Y1, y(2) ∈ Y2} (2.2.40)

is an orthonormal basis of l2(Y1 × Y2), and therefore

{φy(1),y(2) : y(1) ∈ Y1, y(2) ∈ Y2} (2.2.41)

is a basis of HSF .

A useful aspect that arises is that a subset of a Hilbert space is linearly indepen-
dent, orthogonal, or orthonormal, or an orthonormal basis of that space, if and only
if it has the same property relative to the conjugate Hilbert space. If H1 and H2 are
Hilbert spaces and T is a mapping from the set H1 into the set H2, the linearity of
T : H1 → H2 is equivalent to linearity of T : H̄1 → H̄2, and corresponds to conjugate-
linearity of T : H1 → H̄2 and of T : H̄1 → H2. Of course, continuity of T is the same
in all four situations, when T is linear the operators have the same bound, since the
norm on Hj is the same as that on H̄j.

Definition 10. Suppose that H1,H2 and K are Hilbert spaces and L is a mapping
from H1 ×H2 into K. L is a bounded bilinear mapping if it is linear in each of
its variables and there is a real number c such that

‖L(x1, x2)‖ ≤ c‖x1‖ ‖x2‖. (2.2.42)

The least such constant c is denoted by ‖L‖.

By a weak Hilbert-Schmidt mapping from H1 ×H2 into K, we mean a bounded
multilinear mapping L with the properties:

(i)
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Lu(x1, x2) = 〈L(x1, x2), u〉 ∀u ∈ K (2.2.43)

where Lu is a Hilbert-Schmidt functional on H1 ×H2.
(ii) There is a real number d such that ‖Lu‖2 ≤ d‖u‖ for each u ∈ K.
When these conditions are fulfilled, the least possible value of the constant d is

denoted by ‖L‖2.
A bounded bilinear mapping L : H1 ×H2 → K is (jointly) continuous relative to

the norm topologies on the Hilbert spaces. We see that condition (ii) actually follows
from (i) by an application of the closed graph theorem to the mapping.

Theorem 2.13. Suppose that H1,H2 are Hilbert spaces.
(i) There is Hilbert space H and weak Hilbert-Schmidt mapping p : H1×H2 → H

with the following property: given any weak Hilbert-Schmidt mapping L from H1×H2

into a Hilbert space K, there is a unique bounded linear mapping T from H into K,
such that L = Tp; moreover, ‖T‖ = ‖L‖2.

(ii) If H′ and p′ have the properties attributed in (i) to H and p, there is a unitary
transformation U from H onto H′ such that p′ = Up.

(iii) If vm, wm ∈ Hm and Ym is an orthonormal basis of Hm,m = 1, 2, then

〈p(v1, v2), p(w1, w2)〉 = 〈v1, w1〉〈v2, w2〉, (2.2.44)

the set {p(y1, y2) : y1 ∈ Y1, y2 ∈ Y2} is an orthonormal basis of H, and ‖p‖2 = 1.

Proof. Let H̄m be the conjugate Hilbert space of Hm and let H be the set of all
Hilbert-Schmidt functionals on H̄1 × H̄2 with the Hilbert space structure given in
Theorem 2.12. When v(1) ∈ H1, v(2) ∈ H2, let p(v(1), v(2)) be the Hilbert-Schmidt
functional φv(1),v(2) defined on the cartesian product of H̄1 × H̄2 by

φv(1),v(2)(x1, x2) = 〈x1, v(1)〉−〈x2, v(2)〉−

= 〈v(1), x1〉〈v(2), x2〉 (2.2.45)

Let Yj be an orthonormal basis of Hj, j = 1, 2 Theorem 2.12 then says that the
set {p(y1, y2) : y1 ∈ Y1, y2 ∈ Y2} is an orthonormal basis of H, and that

〈p(v1, v2), p(w1, w2)〉 =
∑
y1∈Y1

∑
y2∈Y2

φv1,v2(y1, y2)φw1,w2(y1, y2)

=
∑
y1∈Y1

∑
y2∈Y2

〈v1, y1〉〈v2, y2〉〈y1, w1〉〈y2, w2〉

= 〈v1, w1〉〈v2, w2〉, (2.2.46a)

‖p(v1, v2)‖2 = ‖v1‖‖v2‖. (2.2.46b)
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Note that

‖p‖2 = ‖p(y1, y2)‖2 = ‖y1‖‖y2‖ = 1 (2.2.47)

From above we know p : H1 × H2 → H is a bounded multilinear mapping: we
shall prove next that it is a weak Hilbert-Schmidt mapping. Suppose that φ ∈ H,
and consider the bounded multilinear functional pφ : H1 ×H2 → C defined by

pφ(x1, x2) = 〈p(x1, x2), φ〉. (2.2.48)

With y(1) ∈ Y1, y(2) ∈ Y2, orthonormality of the bases implies that φy(1),y(2) takes
the value 1 at (y(1), y(2)) and 0 elsewhere on Y1 × Y2. Thus

pφ(y(1), y(2)) = 〈p(y(1), y(2)), φ〉 = 〈y(1), φ〉〈y(2), φ〉
= 〈φ, y(1)〉−〈φ, y(2)〉− = 〈φy(1),y(2), φ〉

=
∑
y1∈Y1

∑
y2∈Y2

φy(1),y(2)(y1, y2)φ(y1, y2)

= φ(y(1), y(2)), (2.2.49)

then ∑
y(1)∈Y1

∑
y(2)∈Y2

|pφ(y(1), y(2))|2 = ‖φ‖2
2. (2.2.50)

From this we have proven that pφ is a Hilbert-Schmidt functional on H1×H2 and
that ‖pφ‖2 = ‖φ‖2; so p : H1 × H2 → H is a weak Hilbert-Schmidt mapping with
‖p‖2 = 1.

Next, suppose that L is a weak Hilbert-Schmidt mapping from H1 × H2 into
another Hilbert space K. Let u ∈ K and Lu is the Hilbert-Schmidt functional given
in Definition 10, while φ ∈ H and let F be a finite subset of Y1 × Y2 then we have
using the Cauchy-Schwarz inequality

|〈
∑

(y1,y2)∈F

φ(y1, y2)L(y1, y2), u〉|

≤
∑

(y1,y2)∈F

|φ(y1, y2)||Lu(y1, y2)|

≤
[ ∑

(y1,y2)∈F

|φ(y1, y2)|2
] 1

2
[ ∑

(y1,y2)∈F

|Lu(y1, y2)|2
] 1

2

≤ ‖Lu‖2

[ ∑
(y1,y2)∈F

|φ(y1, y2)|2
] 1

2
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≤ ‖u‖‖L‖2

[ ∑
(y1,y2)∈F

|φ(y1, y2)|2
] 1

2

(2.2.51)

Hence

‖
∑

(y1,y2)∈F

φ(y1, y2)L(y1, y2)‖

≤ ‖L‖2

[ ∑
(y1,y2)∈F

|φ(y1, y2)|2
] 1

2

(2.2.52)

Since ∑
y1∈Y1

∑
y2∈Y2

|φ(y1, y2)|2 = ‖φ‖2
2 <∞ (2.2.53)

it then follows from Eq(2.2.52) and the Cauchy criterion that the, unordered, sum∑
y1∈Y1

∑
y2∈Y2

φ(y1, y2)L(y1, y2) (2.2.54)

converges to an element Tφ ∈ K, and ‖Tφ‖ ≤ ‖L‖2‖φ‖2. Thus T is a bounded linear
operator from H into K, and ‖T‖ ≤ ‖L‖2. When y(1) ∈ Y1, y(2) ∈ Y2, we have

Tp(y1, y2) = Tφy(1),y(2)

=
∑
y1∈Y1

∑
y2∈Y2

φy(1),y(2)(y1, y2)L(y1, y2)

= L(y(1), y(2)). (2.2.55)

Both L and Tp are bounded and multiline and Ym has closed linear span, Hm,m =
1, 2 then it follows that L = Tp.

The condition that Tp = L uniquely determines the bounded linear operator T ,
because the range of p contains the orthonormal basis p(Y1 × Yw) of H. ∀u ∈ K,
Parseval’s equation gives

‖Lu‖2
2 =

∑
y1∈Y1

∑
yn∈Y2

|〈L(y1, y2), u〉|2

=
∑
y1∈Y1

sumy2∈Y2|〈Tp(y1, y2), u〉|2

=
∑
y1∈Y1

∑
y2∈Y2

|〈p(y1, y2), T ∗u〉|2

= ‖T ∗u‖2 ≤ ‖T‖2‖u‖2; (2.2.56)
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so we have ‖L‖2 ≤ ‖T‖, and thus ‖L‖2 = ‖T‖.
We now prove part (ii) of the theorem. Suppose that H′ and p′ : H1××H2 → H′

have the properties given in (i). When we have that K = H′ and L = p′, the equation
L = Tp′ is satisfied when T is the identity operator on H′, and also when T is the
projection from H′ onto the closed subspace [p′(H1 × H2)] generated by the range
p′(H1 ×H2) of p′. From the uniqueness of T ,

[p′(H1 ×H2)] = H′ (2.2.57)

furthermore,

‖p′‖2 = ‖L‖2 = ‖T‖ = ‖I‖ = 1. (2.2.58)

Using a similar argument and letting K = H′ and L = p′, it follows from the
properties of the Hilbert space H and p given in (i), that theres a bounded linear
operator U : H → H” such that p′ = Up and

‖u‖ = ‖L‖2 = ‖p′‖2 = 1 (2.2.59)

The roles ofH, p andH′, p′ can be reversed in this argument, so there is a bounded
linear operator U ′ from H′ into H such that p = U ′p′ and ‖U ′‖ = 1. Since

U ′Up(x1, x2) = U ′p′(x1, x2) = p(x1, x2), ∀x1 ∈ H1, x2 ∈ H2, (2.2.60)

while

[p(H1 ×H2)] = H (2.2.61)

it follows that U ′U is the identity operator on H; and similarly UU ′ is the identity
operator on H′. Finally,

‖x‖ = ‖U ′Ux‖ ≤ ‖Ux‖ ≤ ‖x‖, ∀x ∈ H (2.2.62)

so ‖Ux‖ = ‖x‖, and U is an isomorphism from H onto H′.

From part (ii) of the Theorem above, the Hilbert space H and the multilinear
mapping p is uniquely determined by the universal property in part (i). From our
definition of a tensor productH is the tensor product ofH1⊗H2 and p is the canonical
mapping from the cartesian product of H1×H2 into H1⊗H2. We denote the vector
given by p(x1, x2) ∈ H1⊗H2 as x1⊗x2. Finite linear combinations of these elementary
tensors x1⊗x2 constitute an everywhere-dense subspace of the tensor productH1⊗H2.
If we let Ym be an orthonormal basis of Hm for m = 1, 2 then the set

{y1 ⊗ y2|y1 ∈ Y1, y2 ∈ Y2} (2.2.63)

31



is an orthonormal basis of H1 ⊗H2. It is then easily seen that the dimension of the
tensor product is the product of the dimensions of each individual Hilbert space

dim(H1 ⊗H2) = dim(H1)dim(H2). (2.2.64)

The vector, or tensor, as a result of the Theorem, acts in a similar fashion to a
formal product of x1, x2:

x1 ⊗ ax2 = ax1 ⊗ x2 = a(x1 ⊗ x2) (2.2.65a)

x1 ⊗ (x′2 + x′′2) = x1 ⊗ x′2 + x1 ⊗ x′′2 (2.2.65b)

〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉〈x2, y2〉 (2.2.65c)

‖x1 ⊗ x2‖ = ‖x1‖‖x2‖ (2.2.65d)

3 Operator Spaces

The study of the tensor product of Hilbert spaces resulting in a Hilbert space asks
the question as what operators can act on these tensors. Prior the tensor product, we
would use the bounded operators on each Hilbert space, however this cannot be the
case for the tensor product. We will consider the tensor product of two operator spaces
and show that it is an operator space. This new operator space will be the bounded
operators on the tensor product of two Hilbert Spaces. My methodology follows the
description given by Pisier’s Introduction to Operators Space Theory and Stinespring’s
Dilation theorem is given by Vern Paulsen’s textbook Completely Bounded Maps and
Operator Algebras. My contribution to this section is showing the details of the
proofs.[5] [6]

3.1 Completely Bounded Maps

To discuss operator spaces we must first define a few terms.

Definition 11. A C∗ - algebra is a Banach ∗-algebra satisfying the identity

‖x∗x‖ = ‖x‖2 (3.1.1)

for any element x in the algebra.

We can consider the space of all bounded operators B(H) on a Hilbert space H
equipped with the operator norm to be a C∗-algebra. We may also consider an closed
subspace

S ⊂ B(H) (3.1.2)

a C∗-algebra if it is stable under product and involution. Now let us define an operator
space.

32



Definition 12. An operator space is a closed subspace of B(H).

In other words we can think of operator spaces as closed subspace of the C∗-
algebras. To further understand what an operator space is we can consider them to
be Banach spaces X equipped with an extra structure in the form of an isometric
embedding into the space of all bounded operators on a Hilbert space B(H)

X ⊂ B(H). (3.1.3)

Nevertheless, because of the isometric embedding into the space of bounded oper-
ators on a Hilbert space, the morphisms from one operator space to another requires
them to be completely bounded maps. Concretely, suppose we have E,F as Banach
spaces then we can view them as operator spaces through the embedding

E ⊂ C(BE∗), F ⊂ C(BF ∗). (3.1.4)

Let us now define completely bounded maps.

Definition 13. Let E ⊂ B(H) and F ⊂ B(H) be operator spaces and consider a
map u : E → F . For any n ≥ 1, let

Mn(E) = {(xij)ij≤n|xij ∈ E} (3.1.5)

be the space of n × n matrices with entries in E. In particular we have a natural
identification

Mn(B(H)) ' B(`n2 (H)), (3.1.6)

where `n2 (H) means H⊕H⊕ · · · ⊕ H︸ ︷︷ ︸
n times

. Thus, we may equip Mn(B(H)) and a fortiori

its subspace
Mn(E) ⊂Mn(B(H)) (3.1.7)

with the norm induced by
B(`n2 (H)). (3.1.8)

Then, for any n ≥ 1, the linear map u : E → F allows us to define a linear map

un : Mn(E)→Mn(F ) (3.1.9)

defined by

un


...

· · · xij · · ·
...

 =


...

· · · u(xij) · · ·
...

 . (3.1.10)
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Definition 14. A map u : E → F is called completely bounded if

sup
n≥1
‖un‖Mn(E)→Mn(F ) <∞. (3.1.11)

We define
‖u‖cb = sup

n≥1
‖un‖Mn(E)→Mn(F ). (3.1.12)

and we denote by CB(E,F ) the Banach space of all completely bounded maps from
E to F equipped with the completely bounded norm ‖.‖cb.

We defined CB(E,F ) because we will use this to replace B(E,F ) of all bounded
operators from E to F as we stated before that we need to use completely bounded
maps from one operator space to another.

The composition of two completely bounded maps is also completely bounded.
Let G ⊂ B(L) and let v : F → G be a completely bounded map. The composition
given as uv : E → G is completely bounded and

‖uv‖cb ≤ ‖v‖cb‖u‖cb. (3.1.13)

Take note that clearly the space of completely bounded maps from E to F ,
CB(E,F ), is a subspace of all bounded operators from E to F , B(E,F ).

When we have ‖u‖cb ≤ 1 then u is called “completely contractive” or a “com-
plete contraction.” Then we replace the notion of isometry with that of a “complete
isometry.”

Definition 15. A map u : E → F is called a complete isometry if

un : Mn(E)→Mn(F ) (3.1.14)

is an isometry for all n ≥ 1.

Similarly to the definition of completely isometric, a map u : E → F is called
completely positive if un : Mn(E) → Mn(F ) is positive for all n. Now let us define
completely isomorphic operator spaces.

Definition 16. Two operator spaces E,F are called completely isomorphic if
there is al near isomorphism u : E → F such that u and u−1 are completely bounded.

To give a more concrete understanding of operator spaces we will look at specif-
ically Hilbert spaces. Let H1,H2 be two Hilbert spaces and let H = H1 ⊕ H2. The
mapping

x→
(

0 0
x 0

)
(3.1.15)

is an isometric embedding of B(H1,H2) into B(H). Therefore we can view B(H1,H2)
as an operator space. The norm induced on the operator space is the norm of the
space B(`n2 (H1), `n2 (H2)).

Finally, let us consider the tensor product of two operator spaces.
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Theorem 3.1. The tensor product of two operator spaces exists.

Proof. The proof of this theorem is analogous to our previous theorem that the tensor
product of vector and Hilbert spaces exist. However, we will use completely bounded
bilinear functions from the Cartesian product of two operator spaces, V ×W , to an
operator space denoted as V ⊗ W and a completely bounded linear function from
V ⊗W to the space X.

The algebraic tensor product of two operator spaces is just a vector space, how-
ever the norms on the vector space make it an operator space. There is a natural
identification of tensor products of bounded linear operators on Hilbert spaces as
bounded operators on the tensor product of those Hilbert spaces. Let the algebraic
tensor product of two Hilbert spaces H,K, H⊗K complete with respect to the norm
induced by the inner product on the elementary tensors be denoted as H⊗2K. Then
the natural identification between B(H)⊗B(K) ⊆ B(H⊗2 K) is given by

(T ⊗ S)(x⊗ y) = T (x)⊗ S(y), T ∈ B(H), S ∈ B(K). (3.1.16)

3.2 Minimal Tensor Product

We will now define the minimal tensor product. Pisier defines it by considering two
operator spaces E ⊂ B(H) and F ⊂ B(K). Their minimal tensor products is the
completion of the algebraic tensor product of E and F denoted as E⊗F with respect
to the norm given by B(H⊗2 K) due to the embedding

E ⊗ F ⊂ B(H⊗2 K), (3.2.1)

where the subscript 2 indicates the norm on the Hilbert space H ⊗2 K. The linear
space is then denoted as E ⊗min F and ‖ ‖min is the norm.

The inner product on the minimal tensor product is given to be

〈x1 ⊗ y1, x2 ⊗ y2〉 ≡ 〈x1, x2〉〈y1, y2〉. (3.2.2)

There it is also easy to see that the norm of the elementary tensor e⊗ f is then

‖e⊗ f‖ = ‖e‖‖f‖. (3.2.3)

Our goal is to show a generalization of the Cauchy-Schwarz inequality but for
operators. To begin we must define a few terms and prove a theorem and a few
lemmas.
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Definition 17. A C∗ - algebra, A, is unital if it admits a multiplicative identity 1
such that

1∗a = (a∗1)∗ = a (3.2.4a)

a1∗ = a (3.2.4b)

‖1‖ = ‖1∗1| = ‖1‖2 (3.2.4c)

Definition 18. A linear algebra homomorphism between C∗ - algebras π : A → B
which is self-adjoint. ie. π(a∗) = π(a)∗ is called a ∗-homomorphism. A unital ∗-
homomorphism is such that π(1A) = π(1B).

Definition 19. If B is a C∗ -algebra and φ : S → B is a linear map, where S is an
operator system, then we define φn : Mn(S) → Mn(B) by φn((ai,j)) = (φ(ai,j)). We
call φ completely positive if φ is n-positive for all n.

Then with these definitions we are now able to prove Stinespring’s Dilation The-
orem.

Theorem 3.2. Let A be a unital C∗- algebra, and let φ : A → B(H) be a completely
positive map. Then there exists a Hilbert space K, a unital ∗-homomorphism π : A →
B(K), and a bounded operator V : H → K with ‖φ(1)‖ = ‖V ‖2 such that

φ(a) = V ∗π(a)V (3.2.5)

Proof. Consider the algebraic tensor product A ⊗ H, of the unital C∗-algebra and
the Hilbert Space H, and define a symmetric bilinear function 〈·, ·〉 on this space by
setting

〈a⊗ x, b⊗ y〉 = 〈φ(b∗a)x, y〉H, (3.2.6)

and extending linearly, where 〈, 〉H is the inner product on H. From the definition, φ
is completely positive thereby ensuring that 〈·, ·〉 is positive semidefinite since

〈 n∑
j=1

aj ⊗ xj,
n∑
i=1

ai ⊗ xi
〉

=

〈
φn(a∗a)

x1
...
xn

 ,

x1
...
xn

〉
H(n)

≥ 0, (3.2.7)

where 〈·, ·〉H(n) denotes the inner product not the direct sum H(n) of n copies of H,
given by

〈x1
...
xn

 ,

y1
...
yn

〉
H(n)

= 〈x1, y1〉H + · · ·+ 〈xn, yn〉H (3.2.8)
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A result of positive semidefinite bilinear forms is that they satisfy the Cauchy-
Schwarz inequality,

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉 (3.2.9)

Therefore we have that

{u ∈ A⊗H|〈u, u〉 = 0} = {u ∈ A⊗H|〈u, v〉 = 0 ∀v ∈ A⊗H} (3.2.10)

is a subspace, N , of A ⊗ H. The induced bilinear form on the quotient space
A⊗H/N defined by

〈u+N , v +N〉 = 〈u, v〉 (3.2.11)

will be an inner product. We let K denote the Hilbert space that is the completion
of the inner product space A⊗H/N .

If a ∈ A, define a linear map π(a) : A⊗H → A⊗H by

π(a)

(∑
ai ⊗ xi

)
=
∑

(aai)⊗ xi (3.2.12)

A matrix factorization shows that the following inequality in Mn(A)+ is satisfied:

(a∗i a
∗aaj) ≤ ‖a∗a‖ · (a∗i aj), (3.2.13)

and consequently,

〈
π(a)

(∑
aj ⊗ xj

)
, π(a)

(∑
ai ⊗ xi

)〉
=
∑
i,j

〈φ(a∗i a
∗aaj)xj, xi〉H ≤ ‖a∗a‖ ·

∑
i,j

〈φ(a∗i aj)xj, xi〉H

= ‖a‖2 ·
〈∑

aj ⊗ xj,
∑

ai ⊗ xi
〉
. (3.2.14)

Therefore, π(a) leaveN invariant and consequently induces a quotient linear trans-
formation on A⊗H/N , which we will still denote by π(a). The above inequality also
shows that π(a) is bounded with ‖π(a)‖ ≤ ‖a‖. Thus, π(a) extends to a bounded
linear operator on K, which we will still denote by π(a). It is straightforward to verify
that the map π : A → B(K) is a unital ∗ - homomorphism.

Now define V : H → K via

V (x) = 1⊗ x+N (3.2.15)

Then V is bounded, since

37



‖V x‖2 = 〈1⊗ x, 1⊗ x〉 = 〈φ(1)x, x〉H ≤ ‖φ(1)‖ · ‖x‖2. (3.2.16)

Indeed, it is clear that ‖V ‖2 = sup{〈φ(1)x, x〉H : ‖x‖ ≤ 1} = ‖φ(1)‖.
To complete the proof, we only need to observe that

〈V ∗π(a)V x, y〉H = 〈π(a)1⊗ x, 1⊗ y〉K = 〈φ(a)x, y〉H, ∀x, y ∈ H, (3.2.17)

and so V ∗π(a)V = φ(a).

Let us look at a lemma that utilizes this theorem and gives us the minimal norm
of the tensor.

Lemma 3.3. Let H,K be Hilbert spaces. We denote S2(K,H) the space of all Hilbert-
Schmidt operators x : K → H and we denotes its Hilbert-Schmidt norm by ‖x‖HS.
Consider finite sequences (a1) in B(H) and (bi) in B(K). Then we have

‖
∑

ai ⊗ b̄i‖B(H)⊗minB(K) = sup{‖
∑

aixb
∗
i ‖HS|x ∈ S2(K,H), ‖x‖HS ≤ 1}. (3.2.18)

Proof. Remember that there is a natural identification between B(H)⊗minB(K) and
B(H⊗2 K̄). Then the norm on B(H)⊗min B(K) is the norm induced by B(H⊗2 K̄).
Now if we identify H ⊗2 K̄ with S2(H,H) the norm induced is the Hilbert-Schmidt
norm. Using Stinespring’s dilation theorem we can identify the operator

∑
ai ⊗ b̄i

with x→
∑
aixb

∗
i and the norm of then tensor is

‖
∑

ai ⊗ b̄i‖B(H)⊗minB(K) = sup{‖
∑

aixb
∗
i ‖HS|x ∈ S2(K,H), ‖x‖HS ≤ 1}. (3.2.19)

We will prove one more lemma before we prove the inequality for operators.
The goal of the thesis was to understand the mathematical reasoning and logic

behind the “raising” of scalars to operators in quantum mechanics. In the following
theorem we will finally see the justification behind this action.

Theorem 3.4. Let xi, yi be elements of B(`2), the bounded operators on `2 and let
S2(`2, `2) be the Hilbert-Schmidt operators from `2 to `2. Then the minimal norm of∑
xi ⊗ ȳi is ∥∥∑xi ⊗ ȳi

∥∥
min
≤
∥∥∑xi ⊗ x̄i

∥∥ 1
2

min

∥∥∑ yi ⊗ ȳi
∥∥ 1

2

min
. (3.2.20)
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Proof. Using Stinespring’s Dilation theorem we are able to rewrite the tensor as an
operator from `2 to `2 and by definition the norm becomes∥∥∑xi ⊗ ȳi

∥∥
min
≤ sup

{∣∣∑〈xiay∗i , b〉∣∣}, (3.2.21)

where the supremum runs over all a, b in the unit ball of S2(`2, `2). Because the
Hilbert-Schmidt operators are of the S2 class of Schatten operators we know that the
operator a can be written as a = a1a2, with tr|a1|4 ≤ 1 and tr|a2|4 ≤ 1, similarly with
the operator b; a1, a2, b1, and b2 are of the S4 Schatten class operators. Furthermore
the Hilbert-Schmidt inner product is equivalent to the trace of the operators 〈A,B〉 =
tr(AB∗) and therefore we have

〈xiay∗i , b〉 = tr(xiay
∗
i b
∗)

= tr(xia1a2y
∗
i b
∗
2b
∗
1)

= tr(b∗1xia1a2y
∗
i b
∗
2)

= 〈b∗1xia1, b2yia
∗
2〉. (3.2.22)

Therefore using the Cauchy-Schwarz inequality we obtain

∣∣∑〈xiay∗i , b〉∣∣ =
∣∣∑〈b∗1xia1, b2yia

∗
2〉
∣∣ ≤ (∑ ‖b∗1xia1‖2

HS

) 1
2
(∑

‖b2yia
∗
2‖2

HS

) 1
2

.

(3.2.23)
Let us now look individually at each term inside the bracket.

∑
‖b∗1xia1‖2

HS =
∑
〈b∗1xia1, b

∗
1xia1〉

=
∑

tr(b∗1xia1a
∗
1x
∗
i b1)

=
∑

tr(xia1a
∗
1x
∗
i b1b

∗
1)

≤
∥∥xi ⊗ x̄i‖min. (3.2.24)

The last line follows from out first step and the inequality originates from the
definition of the norm. Similarly we can do this for the other term and therefore we
attain ∥∥∑xi ⊗ ȳi

∥∥
min
≤
∥∥∑xi ⊗ x̄i

∥∥ 1
2

min

∥∥∑ yi ⊗ ȳi
∥∥ 1

2

min
. (3.2.25)

The idea of quantization usually refers to the idea in quantum mechanics to replace
the scalars, real or complex, with operators and then apply commutation relations.
Our inequality for operators is really the generalization of the Cauchy-Schwarz in-
equality for complex numbers. The field scalars are then replaced by elements of
B(`2) and the product is therefore replaced by the tensor product.
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Conclusion

The goal of this thesis was to understand the mathematical formalism behind quanti-
zation in quantum theory. In order to accomplish my aim I studied the tensor product
of Hilbert spaces and operator spaces. In doing so, I was able to prove the existence
and uniqueness of the tensor product. Furthermore, I was able to complete the ten-
sor product space of operators and complete it with respect to the norm induced by
its isometric embedding into the bounded operators on the tensor product of two
Hilbert spaces. Finally, using Stinespring’s Dilation theorem I was able to prove the
inequality for operators.
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