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Abstract 

Circadian rhythms are found in plants, animals, fungi, and bacteria and are responsible for 
the regulation of many biological, physiological, behavioral, and metabolic activities. In 
mammals, the “master” clock is embedded in the suprachiasmatic nuclei (SCN) of the 
anterior hypothalamus. It is composed of thousands of cells signaling each other to 
synchronize and produce a unified rhythm. It is hypothesized that this communication 
enables the clock to rescue rhythms in gene knockout experiments that destroy oscillations 
at the single cell level. Henry Mirsky developed a model of this gene regulatory network 
within a single cell in 2009, but the published model is unable to accurately predict some 
knockout phenotypes in tissue. We determined that binary ‘arrhythmic’ and ‘rhythmic’ 
classifications were unsuitable for describing cellular behavior, so we utilized a novel 
‘damped’ classification to describe cellular phenotype. We then used a genetic algorithm 
optimization technique to fit the model’s parameters to better mimic damped Cry1 single-
cell knockout behavior. This optimization produced a parameter set that is able to 
correctly predict all single-cell knockout phenotypes as well as accurately predict the 
oscillatory phenotypes for two additional SCN tissue knockouts not previously 
demonstrated. The rescue of oscillations was confirmed by simulating SCN tissue—a 
process that involves reproduction of intercellular signaling and normal variation of unique 
cellular parameter sets. Further work seeks to explain the causes for the ability of this new 
parameter set to rescue oscillations in tissue simulations where the published parameter set 
was unsuccessful. 
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I .  Introduction 

Circadian rhythms are found in plants, animals, fungi, and bacteria (Goldbeter 

2002, Wager-Smith 2000). In mammals, these rhythms are controlled by the auto-

regulatory gene network endogenous to the cells of the suprachiasmatic nuclei (SCN) in the 

anterior hypothalamus called the “master clock” (Weaver 1998). Indeed, the master clock 

controls peripheral clocks throughout the body that are genetically and functionally similar. 

The specific biology and chemistry of this gene regulatory network is not yet fully 

understood, however the clock is generally thought to consist of a negative primary feed-

back loop and a positive ancillary loop. The negative loop consists primarily of 

Period/Cryptochrome (PER/CRY) dimers that are controlled through auto-inhibitory gene 

regulation. This negative feedback regulation induces an oscillatory protein concentration 

with a stable period caused by the time delay of transcription, translation, and dimerization; 

in this model, we do not include gene product localization. The positive loop helps to fine-

tune the clock and is not required for periodicity—indeed, simpler models leave out the 

positive loop entirely; here, it consists of positive regulation of the core loop by Rorc, Clock 

(Clk), and Bmal1, and of negative regulation by Rev-erb!. (Liu 2008) 

Computer modeling allows for powerful approximations of the true system through 

which it is possible to quickly and cheaply study the “what-ifs.” Our group has been 

working with a model published in 2009 by Henry Mirsky, et al, (Mirsky 2009) that 

describes the network with 21 biological states—including mRNA and protein 



 7!

concentrations—and 135 descriptive parameters—including Michaelis and Hill constants, 

rate constants, and other rate parameters. The model is implemented by a series of 

ordinary differential equations (ODEs) in MATLAB (MathWorks, Inc.) that are solved by 

built-in ODE-solving functions in the programming language.  

When first published, the Mirsky model had been optimized to reproduce the 

behavior of single-cell explants of cells from the SCN, both in wild type and in gene 

knockouts1. However, it was unable to predict the tissue knockout phenotypes of the 

primary loop genes: Per1, Per2, and Cry1. Through unpublished work in bifurcation and 

rank-ordered sensitivity analysis, we determined that the published parameter set was not 

similar to a parameter set that would be able to predict tissue behavior. We therefore 

decided to perform an additional round of parameter optimization to discover a parameter 

set that had more predictive power. We determined that we should include some other 

piece of information that had not been previously included in the training or testing data 

sets, so we incorporated a new metric for measuring and classifying the behavior of a cell in 

single-cell simulations as “damped,” adding a finer description to the biological data. We 

applied this technique to the Cry1 single-cell knockout and trained the model to this 

behavior.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 A more detailed description of the methods used to collect the biological data can be found in the 
paper by Liu, et al. (Liu 2007). Briefly, a luciferase knock-in system was used to allow the 
measurement of the bioluminescence of cells, which would be an indicator of protein 
concentrations (Yoo 2004, Yamazaki 2005). This luciferase gene was co-expressed with Per2, 
meaning that the bioluminescence patterns were a measurement only of that protein concentration, 
in monomer and dimer forms. Next, knockouts of Mus musculus variants were created with a 
single gene of the regulatory network knocked out. Two types of cells were analyzed: neurons from 
the SCN and fibroblast cells that had an endogenous clock. The data we base our analysis on are 
the neuronal data. 
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This thesis is designed to explain the process of model optimization and analysis. 

As such, it will focus on methods used and attempt to explain the thought processes of my 

advisor and myself. While I discuss our results, particularly in light of how they were able 

to improve the model, the major role of this piece is to allow future research students to 

learn from my experiences and to make immediate use of what we have learned thus far, 

without repeating work that gave us negative results. I assume that the reader is conversant 

in general principles of biochemistry, chemistry, biology, and computer modeling. Where 

feasible, I add brief descriptions of appropriate terms for those who are not adept in all 

aspects of systems biology. 

i .  Systems Biology: An Overview 

 The field of systems biology is diverse in both its scope and definitions. It is the 

intersection of computer science and biology, chemistry, mathematics, statistics, and 

myriad other fields, depending on the type of problem being tackled. Researchers in this 

field work in collaborative groups that bring scientists who are experts in these fields 

together, as the Taylor Group does with researchers from UCSB, Washington University-

St. Louis, and elsewhere. Loosely, systems biology can be described as the study of system 

structures, dynamics, control mechanisms, and design methods (Kitano 2002). The goal of 

such an approach is to bring the predictive and analytical power of computer science and 

mathematics to help broaden the understanding of biological data; indeed, recent 

developments in high-throughput wet-lab2 processing technologies have resulted in an 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Wet-lab techniques can be described as any laboratory technique that might generally be 
encountered in a biology or chemistry course. More broadly, it describes the lab techniques of the 
physical sciences. 
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enormous amount of data. These data particularly challenge computer scientists to utilize 

cluster analysis and other large-scale data analysis techniques to try to automate discovery of 

biological function (Kitano 2002). Practically, wet-lab technology has surpassed the ability 

of individual scientists to interpret the data. 

 However, understanding a system, such as the endogenous circadian clock or the 

metabolic pathways of E. coli, requires iterative refinement of a model that estimates the 

system. One simply does not know where to look to see the larger picture. The iterative 

process begins with the construction of a simple model that is an approximation of the 

current understanding. This model is then used to predict the behavior of the system under 

novel conditions. Such predictions help to show where the scientific community’s 

understanding is lacking or where further research should be conducted. Investigation in 

these areas leads to the development of a more complicated model that describes the 

system more completely. In this way, computer modeling is able to assist in the discovery 

of novel gene pathways and foster deeper understanding of the biological and chemical 

bases of life.  

 As illustrated by Kitano (2002), the Taylor lab focuses on a subset of a larger 

framework that is the iterative refinement of a model of the mammalian circadian clock. 

Our work in concerned with analyzing the biological data to construct a better 

mathematical model, analyzing the model, and probing its predictive power. This project 

has spanned that entire spectrum, and future work seeks to continue in the cycle to 

discover how the model can explain the biology. As discussed in the Future Works section, 

we have several hypotheses as to why this might occur. However, more work needs to be 

performed in order to educe its potential. 
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II.  Optimization 

We look at our model as a set of constants (e.g. rates associated with certain 

biological processes) and state variables (e.g. the concentration of a certain protein, which 

changes over time). Because we are able to quantify parameters and states, we are able to 

develop metrics to compare one parameter set to another. By doing so, we can determine 

which of several parameter sets is “best” according to this metric. If we can do this while 

simultaneously creating new, (hopefully) better parameter sets, then we can optimize the 

model to fit a desired functionality. This process is called optimization. The metric that we 

developed to compare parameter sets is called the cost function. There are many 

techniques utilized that optimize a parameter set using the cost function as a basis, however 

the one chosen for this project is an implementation of a genetic algorithm. 

i .  Genetic Algorithms3 

 In systems biology, a widely used and well-regarded method of parameter 

optimization is a genetic algorithm (Goldberg 1989, Lee 1998). Each implementation and 

variation offers its own benefits and demerits, including time to convergence on a good 

solution and maintenance of a diverse population from which to choose parents. Indeed, 

the distinction between various methods can be vague, as they are based on ideas from 

natural selection and can be modified to be more similar than distinct. The goal is three-

part: first, to represent individuals as a set of parameters; then, to start with random 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
%!For a more detailed discussion of terminology and how it relates to a computer science 
application of genetic algorithms, see Appendix B.!
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individuals that evenly sample all possible diversity; and finally to mate the individuals 

according to some selection criteria to, in the end, get a fitter solution. Genetic algorithms 

are designed with two principles in mind: selection and mutation. From a set of individuals 

in generation n, two parents are chosen by some method, and parameters are uniformly 

sampled from the two parents to produce a single child in generation n+1. This child may 

then be subjected to some sort of minute mutation (e.g., +/- 1% in each parameter), 

ensuring greater diversity within the total population, which can be particularly sensitive to a 

phenomenon similar to genetic drift. The cost associated with that child’s parameter set 

(i.e., the specific model described by that child) is then evaluated and stored with the child 

object, which is then placed in the set for generation n+1. In this way, children can be 

efficiently generated and evaluated in parallel. 

We decided on a genetic algorithm that used proportional selection to choose 

parents to “reproduce” at each generation. Proportional selection was chosen over the 

several other approaches to genetic algorithm implementations because it showed faster 

convergence to a good answer while still maintaining adequate diversity of the parent 

population, in preliminary testing. These were both important aspects to consider because 

we wanted to ensure that our optimization did not exclude a portion of parameter space 

where it should not have; we were not able to estimate the topology of the parameter space. 

However, we also did not want the optimization to continue searching a space that could 

safely be excluded. In the end, we assumed that the exact method used was not paramount 

because any correct solution that was within the continuum of working solutions would be 

appropriate. However, the methodology used is interesting from the perspective of 

implementation of future algorithms despite its apparent lack of impact on our final result.  
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Our final algorithm was implemented with 100 parents and 110 children, the best 

100 of which were passed on to the next generation; this ensured that all parents described 

a valid model. We added in a small element of another strategy that maintained an elite 

count of 5 individuals that automatically cloned themselves into the next generation, from 

the perspective of biological genetics. We also included a mutation coefficient of +5% in 

random parameters, adding to the general diversity of the population. In effect, we 

combined the best components of each strategy to ensure that we did not lose a good 

candidate solution and that we maintained sufficient diversity in the population without 

compromising the algorithm’s ability to discover a good solution.  

 

i i .  The Cost Function 

 The cost function originally tested a model against the wild type and against Rorc 

and Rev-erb! knockouts. The cost function used for the published model was designed to 

favor models that matched period and relative state amplitudes per biological data. In our 

revised cost function, we added a term to include a measure of the damped behavior of a 

Cry1 knockout. To do this, we relied on the unpublished work of Alexis Webb, which had 

determined an appropriate measure of dampedness for the Mirsky model. In a binary (i.e., 

rhythmic or arrhythmic) world, the Cry1 knockout was classified as arrhythmic because its 

oscillations eventually fell below the detection limit of the luciferase system used. However, 

we realized that not all arrhythmic systems are created equal; some fall quickly to 

undetectable levels and some progress more slowly to the same steady state. We 

determined that including this new measure of Cry1 knockout damped behavior in the cost 
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function might allow the model to synchronize in tissue simulations. It was our hypothesis 

that this seemingly minor discrepancy belied a larger incongruence in the parameter set. It 

is important to note that we did not simulate the tissue directly in our optimization cost 

function because that calculation can take hours to complete whereas a single-cell 

simulation would take seconds; the time to compute the cost function had to be minimized 

because it is called several hundred times throughout the optimization process.  

 This damped measure could easily be incorporated directly from the code 

provided by Webb that computed the peak concentration of the first complete cycle and 

then computed the number of cycles before the peak concentration of a cycle fell below 

20% of the nominal. If the number of cycles was between 4 and 12, then the oscillator was 

classified as damped. The “ideal” number of cycles was assumed to be 8, a seemingly 

arbitrary value, in order to ease the calculation of the cost. We determined that we could 

easily use this damping number in a bounded cosine function to smoothly modulate the 

cost: 

 

! 

Cdamp = "
cos #

4
$ (numAmp % 4) +1

& 

' ( 
) 

* + 

2
 

 
where " is the scaling factor for the cost of damping. We then bounded this by a simple 

code: 

 
if numAmp > 12, 
  numAmp = 12; 
elseif numAmp < 4, 
  numAmp = 4; 
end; 
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This allowed us easily to select for parameter sets that exhibited the “ideal” damping 

behavior. However, we quickly realized that there existed more than one way to follow this 

mathematically damped behavior. The sought oscillatory behavior (Figure 1A) could be 

passed over for a behavior contradictory to the biological data (Figure 1B). Thus, the 

second task was to figure out how to ensure that the mean concentration was decreasing.  

 

Figure 1. Two types of damped oscil lat ions. A: Example plot of an increasing mean 
average of the concentration of a biological state with a decreasing (or damped) 
amplitude. B: Example plot of a decreasing mean average of the same.  

 It was important to account for the actual concentration of the states instead of 

accounting only for their relative behavior because of the difference illustrated in Figure 1. 

Although the oscillator described technically is damped, the biological data show that there 

is no detectable level of PER2 protein in this case. We therefore wanted to force the 

optimization algorithm to find a model that also satisfied this condition. Essentially, we 

wanted to ensure that the average amplitude for the newly optimized parameter sets was 

lower than the average amplitude of the wild type. We accomplished this by ensuring that 
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the mean average of PER2 total protein for the entire run was lower in the knockout 

simulation than in the wild type simulation:  

wtavg = mean(sum(yTot(:,[10 19 20]))); 
koavg = mean(sum(yTot(:,[10 19 20]))); 
 

where yTot is the field that holds the state variable trajectories and the indices into yTot 

represent the states containing PER2 in monomer (10) and dimer (19 and 20) forms. We 

then ensured that the cost associated with the difference would be modulated as an inverse 

function such that the mean average in the knockout should be minimized: 

! 

Camp =
koavg

koavg+ wtavg
 

Trial and error showed us that the optimization was easily tricked into falling prey 

to a simple trick: the model could easily show damped behavior by favoring systems that 

forced an artificially high amplitude initially, which would then stabilize to a lower stable 

amplitude within a few periods. We determined that this was unrealistic because, although 

the concentration units are arbitrary (and the model is not directly relatable to the biology 

in terms of numbers or scale), the difference in relative order of magnitude was not 

reflective of biological plausibility. As described, we implemented our cost function to take 

this into account. I then evaluated the cost of the initial parents and was set to begin the 

optimization itself.  

i i i .  Parallel  Implementation and MATLAB Quirks 

 There were several snags that we encountered on our journey to optimization. We 

made use of the parallel tools built in to MATLAB to speed the optimization process. We 

were able to do this because the method for generating children was implemented such 
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that there was no parametric interdependence within a generation. First, I randomly chose 

a set of initial parents from sampled parameter space that we knew produced a working 

model based on unpublished work by Hannah Coulson (’10). In order to determine the 

appropriate weight that should be given to the new Cry1 knockout criterion that we added 

to the cost function, I first evaluated the published parameter set using the unmodified cost 

function, which yielded a cost of approximately 12. Some may ask what this number 

signifies. Put simply, this number is a unitless and almost arbitrary measure, while 

nonetheless being representative of the fitness of a parameter set. The next step was to 

determine the appropriate cost associated with the newly defined terms of the Cry1 

knockout. 

 Arguably, one of the most useful advancements in modern computing is parallelism 

and distributed computing. We were able to take advantage of the built-in parallel 

computing toolbox in MATLAB in order to reduce the time of computation. Our biggest 

hurdle in this implementation was seeding a random number generator, which seemed to 

be reseeding the same number upon instantiation of a parallel thread. For obvious reasons, 

this proved problematic as our stochastic optimization algorithm relies on pseudo-

randomness to provide semi-uniform sampling of parameter space. We were able to avoid 

this problem by seeding the random number generator, a globally accessible object in 

MATLAB, within each function call instead before instantiation of all threads (see 

appendix A for coding example). 

 The final decision to make in the optimization endeavor was to decide when an 

answer that was “good enough” was obtained. Because the parameter space of this 

optimization problem is so large, it is difficult to prove that any solution is optimal; indeed, 
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it is unknown how to define “optimal” or if there exists a single solution for such an 

evaluation. I determined that a good solution was reached when the optimization algorithm 

was unable to reach a better solution within about 70 generations. This determination was 

based on two rationales: 1. the diversity of the population decreases with each subsequent 

generation, so it becomes increasingly unlikely that population is capable of reaching a 

better solution; and 2. by the time the optimization algorithm reaches a point where the 

same solution is optimal over 70 generations, it has been running for several days with a 

trend of exponential time to optimize the solution further (Figure 2). 

!
Figure 2. Plot of the lowest,  highest,  and mean average cost of individuals in each 
generation of the optimization. Note that the lowest cost decreases in steps because 
of the el i te individuals passed on in each generation. 
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III.  Optimization Results 

Recall that, in systems biology, the model is always being revised, revisited, and 

further refined. It is not enough to have written a cost function that we believe optimizes 

the parameter set to behave in any particular fashion. Indeed, we must verify that the 

model behaves in the way that we expect, and, more importantly, we must confirm that the 

new parameter set does not destroy some other good aspect of the model. We therefore 

test the new parameter set in single-cell and tissue simulations to confirm its ability to 

accurately predict the behaviors previously predicted by the published parameter set and to 

test its ability to further predict known behavior. If it succeeds in these tests, then we can 

use the new parameter set to predict behavior under conditions for which data do not exist 

and have faith that the model demonstrates a close approximation of the biology. 

i .  Single-cell  Comparisons 

Table 1. Summary of Single-cell  Data. The newSet parameters performs the same approximations of 
the experimental data as the pubSet parameters.  

Knockout Type Experimental Class newSet class pubSet class 
Cry1 damped damped arrhythmic 
Cry1Cry2 arrhythmic arrhythmic arrhythmic 
Cry2 rhythmic rhythmic rhythmic 
Per1 arrhythmic arrhythmic arrhythmic 
Per1Per2 arrhythmic arrhythmic arrhythmic 
Per2 arrhythmic arrhythmic arrhythmic 
Rev-erb! rhythmic rhythmic rhythmic 
Rorc rhythmic rhythmic rhythmic 
Bmal1 arrhythmic arrhythmic arrhythmic 

 

Our analysis of the resulting parameter sets helped us to iteratively refine our 

model. First, we wanted to compare the new parameter set against all of the single-cell 
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knockout data. Table 1 describes the behavior of the model under the given gene 

knockout conditions with the classifications of the biological data and the simulation data 

with the original published parameter set. Importantly, the newly discovered parameter set 

does not change the ability of the model to predict the behavior of single-cell knockouts.  

There are two major distinctions that stand out between the newly discovered set 

and the published set. First, the period of the simulation with new parameter set is slightly 

longer in the wild type; second, the state amplitudes peak at higher concentrations. 

However, neither of these differences is paramount. We can convert our time scale into 

what is known as “circadian time,” which by definition translates the model into 24 even 

“circadian hours.” In addition, we recall that the state concentrations are of arbitrary units 

and are indeed of arbitrary real value (their relative values are important). This disconnect 

arises because we have no chemical means of measuring exact concentrations over time in 

vivo or in vitro, so we can not connect the simulated concentrations back to the direct 

biology. 
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!
Figure 3. Single-cell  simulations with the newSet parameters.  Note the biological 
state concentration amplitudes as being higher in al l  s imlations as compared to the 
pubSet simuations. 

!
Figure 4. Single-cell  simulations with the pubSet parameters.  
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Although we are unable to connect our simulations quantitatively to the biology, 

there are still aspects of the state trajectories that remain important to recognize. For 

example, in the single-cell simulation of the Cry1 knockout, the new parameter set shows 

that the system is a damped oscillator that falls into a low, stable oscillation. We can assume 

that this oscillation is acceptable because we presume that the peak amplitude is well below 

the detection limit of the method used in the wet lab. We also note that the simulations of 

Rev-erb! and Rorc show very little distinction between themselves and the wild type, for 

both of the parameter sets, as is illustrated in Figures 3 and 4.  

i i .  Multi -cel l  Comparisons 

 Much of the interesting data come from the multi-cell, or tissue, analysis. As we 

recall, the training data were from single cell explants of the SCN, but our goal was to 

create a model of the tissue.  

a.  A l i t t le bit  of background 

This tissue model was accomplished by modifying the ODEs from the single-cell 

model to include intercellular signaling in a connected graph of n nodes, where n is the 

number of cells and is input at runtime; this is called coupling. Coupling has been shown to 

rescue oscillations in systems that are arrhythmic with individual cells (Liu 2007, Vasalou 

2009, To 2007). We simulated graphs for intervals ranging from 50-250 cells. Intercellular 

signaling acts through a VIP pathway (Aton 2005) that is pegged linearly to the total 

concentration of per1 and per2 mRNA. This signal activates transcription of CREB, which 

activates transcription of per1 and per2 in the target cell; CREB is also auto-inhibitory, so 

there is no infinitely increasing feed-forward loop but rather an overall effect of the phase 
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of the clock (Pulivarthy 2007, Lim 2007). The rest of the model remains unchanged. The 

code is added through an additional 19 parameters (adding the CREB parameters and the 

signal parameters to the per ODEs) and a single extra biological state equation (describing 

CREB). 

The same algorithms for solving ordinary differential equations that were used 

previously are still able to solve these networked ODEs, however the solution takes much 

longer to compute because all of the ODEs for every cell in the network must be 

computed simultaneously. We specified the non-zero pattern of the system's Jacobian 

matrix. This allowed the ODE solver to work much more efficiently and led to a significant 

speed-up in computation. The Mirsky group previously optimized the 19 additional 

parameters that had been added to enable intercellular communication, and we did not 

think it necessary to re-optimize the parameters because our goal was to select only for the 

single cell behavior and to be able to predict the tissue behavior.  

In addition, we introduced some randomness to the network of cells by perturbing 

the values of a set of random parameters by 1-10%. This set was randomized for each cell 

such that all parameters in the network were equally varied between all cells. We 

hypothesized that the cells in the SCN were slightly dissimilar from each other because not 

all cells respond in the same way to the same stimuli (Aton 2005, Herzog 2004, To 2007). 

Because of this, some cells could be arrhythmic and some could be rhythmic or damped 

rhythmic, but that intercellular communication would “rescue” oscillations in the entire 

network. Thus, this variation in parameters would help to better mimic this rescue by 

heterogeneity.  
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b. The results 

!
Figure 5. Per1 gene knockout simulation using the two parameter sets.  Note the 
major dist inction in the newSet that the average per2  mRNA concentrations with a 
3% standard deviation in the cells’  parameter sets.  Signall ing is disabled unti l  t ime 
t=150. (ncells=100) 

The additional ability of the model to predict two other known tissue phenotypes 

shows that the newly discovered parameter set captures the relative biology better than the 

published set (Table 2). One of the major differences between the two models is that the 

new parameter set creates a model with much higher concentrations of the biological states. 

This can be seen Figures 5 and 6, which show the behavior using the two parameter sets in 

the two gene knockouts that the new model is able to correctly predict. Here, we see the 

Per1 gene knockout unable to synchronize in the published set (Figure 5, bottom). The 

new set (Figure 5, top) synchronizes for about 6 days before settling into its own steady 

state. In the Cry1 knockout, the published set is unable to produce stable oscillators with 
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intercellular communication (Figure 6, bottom). The new parameter set, however, rescues 

the oscillations with a high amplitude in perfect synchrony (Figure 6, top).  

!
!

Figure 6. Cry1 knockout simulations using the two parameter sets.  Again, note the 
difference in the abil i ty of the two models to syncronize. This simulation is without 
any variat ion in the parameters ( i .e.  al l  cells are identical) .  Signaling is disabled 
unti l  t ime t=150. (ncells=100) 

The iterative refinement that was described earlier has now reached the point 

where we can begin to ask new questions. Namely, we can begin to investigate how the new 

parameter set is able to predict the additional tissue phenotypes. This comparison is the 

focus of future work in the Taylor Group. More specifically, we first notice that the period 

of both models is longer when coupled compared to its single-cell equivalent. Our second 

observation is that the state peaks in the new parameter set simulation are much higher 

than that of the published parameter set. 
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Table 2. Summary of Tissue Data. The newSet parameters are able to predict the biological data in 
the Cry1 and Per1 gene knockout simulations. Biological Bmal1 gene knockout data is not available. 
1. The biological Per2 gene knockout data are for a circadian clock for fibroblasts, which are not necessarily similar the SCN cells. 2. 
The pubSet Per1Per2 gene knockout data was unable to complete in simulation after several months of continuous computation, 
leading us to postulate that it is arrhythmic. 

Knockout Type Experimental Class newSet class pubSet class 
Cry1 rhythmic rhythmic arrhythmic 
Cry1Cry2 arrhythmic arrhythmic arrhythmic 
Cry2 rhythmic arrhythmic arrhythmic 
Per1 rhythmic rhythmic arrhythmic 
Per1Per2 arrhythmic arrhythmic --2 
Per2 rhythmic1 arrhythmic arrhythmic 
Rev-erb! rhythmic rhythmic rhythmic 
Rorc rhythmic rhythmic rhythmic 
Bmal1 -- rhythmic rhythmic 
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IV. Future Work 

In the future, we hope to explain why the new parameter set is able to predict 

model behavior that was not previously captured. In particular, we want to look at how 

changes in the gene network structure (through gene knockouts) affect the signaling effects 

of CREB on per1 and per2. These effects are described by two parameters that are part of 

the 19 added parameters that were specific to the intercellular signaling. Initially, we 

hypothesized that these two parameters had different sensitivities with the different 

parameter sets that were exacerbated in the knockout settings. However, initial work shows 

that the response of the model to the parameters is not significantly different. Indeed, our 

work strongly suggests that the predictive ability of the new parameter set may be due to the 

fact that the concentrations of PER1 and PER2 protein are so high that they create a strong 

CREB signal by which cells in a tissue network can couple effectively.  

However, this phenomenon needs to be investigated further. For example, one 

reason to question this conclusion is that the tissue simulations are able to reproduce a 

coupled-uncoupled-coupled paradigm, whereby intercellular signaling is interrupted and 

then resumed. This behavior is not reproducible by any previously published model of the 

biology, but I believe that it may indicate that a more complex system is at play. In 

addition, there are still several aspects of the intercellular signaling model that the group is 

currently exploring. Specifically, To et al (2007) used a different method cell network 

structure to simulate inter- and intra-cellular signaling. This method, and others, might 

affect the synchronization potential of the model as a whole. 
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V. Conclusion and Summary 

 We were able to redesign the cost function associated with a genetic algorithm to 

discover a new parameter set selected to specific single cell simulation conditions. In order 

to do this, we utilized a novel classification of oscillator behavior (“damped”) to add a finer 

resolution to the biological data. This parameter set is able to accurately predict some 

aspects of the true biological tissue. Thus, the parameter set provides a new avenue through 

which to explore the model structure and dynamics.  

 One important characterization of the parameter set with respect to the rest of 

parameter space is the local “pointy” shape of the space. This structure describes how 

stably fit the discovered parameter set is. The biological data suggest, through their 

robustness and ability to remain nearly constant under varying conditions (indeed, many of 

us have experienced the phenomenon of jetlag), that the parameter space surround any 

appropriate parameter set would be broad, such that cells that sample the local parameter 

space would not be prone to exceedingly unique behavior. The tissue data suggest that this 

is the case for this parameter set. In addition, a brief analysis of the parameter sets that fell 

into the elite count at the last generation shows that their behaviors are similar with regard 

to single-cell wild type simulations, but are distinct in the specifics of the model simulation. 

Indeed, these two pieces of data suggest that local parameter space surrounding the new 

parameter set is (at least close to) ideal.  

Although the newly discovered parameter set is unable to predict all of the desired 

traits, it is certainly a closer approximation of the true biology. Our future work seeks to 

explain how the new parameter set accomplishes this more attuned simulation. Preliminary 

work suggests that it may be as simple as the absolute concentration of specific biological 
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states within the simulation that surpass thresholds for effective intercellular signaling, 

however we are unable to confirm or reject this hypothesis. Despite this, we are able to 

continue exploring the model dynamics through adaptations of Stephanie’s doctoral work, 

and we continue to re-evaluate and refine the model and our understanding of it. 
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Appendix A – Optimization Implementation Code 

 
% Loop over the generations 
for g = 1 : settings.numGenerations, 
     
    % disp(['calculating generation ' int2str(g)]); 
    fn = ['Optimization' int2str(settings.filenum) 'generation' int2str(g) '.mat']; % l6 
    if ~exist(fn,'file') % l7 
        G     = zeros(settings.numChildren, length(lb)); 
        Gcost = zeros(settings.numChildren,1); 
        G(1:settings.eliteCount,:) = P(1:settings.eliteCount,:); 
        Gcost(1:settings.eliteCount) = Pcost(1:settings.eliteCount); 
        parfor c = settings.eliteCount+1 : settings.numChildren 
            % Create a child from the previous generation 
            [G(c,:) Gcost(c)] = generateChild(cost_fcn, P, Pcost, lb, ub, settings, c); 
        end; 
        % Sort the children by cost from least to greatest 
        [Gcost idx] = sort(Gcost(find(Gcost>-1))); 
        G           = G(idx,:); 
         
        % save the current state of this generation 
        save(fn,'G','Gcost','P','Pcost'); 
    end; % l9 
    load(fn); % l10 
    disp(['Generation ' int2str(g) ' has ' int2str(length(Gcost)) ' children and ' ... 
        int2str(length(Pcost)) ' parents.']); 
    % Determine the parents of the next generation 
    numParents = settings.numParents; 
    % first ensure that there are enough children 
    if numParents > length(G), 
        numParents = length(G); 
    end; 
    P     = G(1:numParents,:); 
    Pcost = Gcost(1:numParents); 
end; 

 
Note that the nested parfor loop calls generateChild(). It is within this function that 
the random number generator is seeded: 
 
function [params, cost] = generateChild(cost_fcn, P, Pcost, lb, ub, settings, Cnum) 
 
% Seed the random number generator so that it will generate 
% a new pseudo-random number sequence each time the algorithm 
% is run. 
rand('state',sum(Cnum*100*clock)); 
 
% additional code for actually generating the child is not included in this appendix 
end; 
 

This random generator is guaranteed to be uniquely seeded for each child and each 
parallel thread. 
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Appendix B – Terminology Overview 

Population: A population is simply a set of individuals. A population can be a subset of 

another population, as long as it is clearly genetically separable (e.g. two populations of the 

same species of fish in two different lakes), or it can describe the entire set of known 

individuals (the set of all individuals of Mormotomyia hirsuta, the African “terrible hairy 

fly”).  

 

Individual within a population: An individual of a given population fits the basic description 

of the encompassing characteristics of the population. For example, all individuals in a 

given population of wolves would bear similar physical appearance, and more importantly, 

any two individuals would be genetically compatible to produce a viable offspring. This last 

characteristic is what is important for creating the genetic algorithm: if we can describe a 

pseudo-genome through definite parameters, then we can create a set of “genetically” 

similar individuals that can produce offspring. 

 

Parent/child: intuitively, the definition of a parent and a child makes sense. However, in 

reference to a genetic algorithm optimization, it’s important to take a closer look at what 

they are.  A parent is any individual chosen from a given population. A child is a new 

individual created from the “genetic” information contained within one or more parents; a 

generic genetic algorithm does not require a two-parent system, though our specific 

implementation does assume that.  

 

Diversity within a population: Diversity describes the “genetic” variation within a 

population and is related to the similarity (or rather dissimilarity) of the genetic information 

of the individuals within the population. In life, genetic diversity is important for a species 

to be able to adapt to an evolutionary pressure (e.g. global warming or an invading 

predator). In the genetic algorithm optimization, diversity helps to ensure that the algorithm 

does not get caught in a local optimum of the parameter space. If diversity decreases too 
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much in the optimization process, the algorithm will stop prematurely without finding a 

solution near the global optimum.  

 

Convergence: convergence of an optimization algorithm describes the phenomenon of 

having several individuals within the population nearing the same solution, weighing the 

population closer to that solution. It is not necessary that this solution be globally optimal, 

but it is usually true that the solution will be locally optimal. This tendency is particularly 

pronounced when the population is composed of few individuals because the population is 

sensitive to genetic drift, a common phenomenon in restricted populations. 

 

Proportional selection: Parents produce children. Darwin’s theory of natural selection tells 

us that the parents that are successful at reproducing are those that have a better fitness for 

a given environment. This is the basis for the genetic algorithm that we implemented, and 

the key question to ask is how likely is any given parent to reproduce. Proportional 

selection essentially assumes that the probability 

! 

piof an individual being selected as a 

parent for the next generation is related to the individual’s fitness 

! 

fi  as 

! 

pi =
fi

"
j=1

n
f j

. This is 

in contrast to methods such as uniform selection (every individual is equally likely), 

tournament selection (a subset of individuals is randomly selected to compete to be a 

parent), or linear ranking (the probability is linearly related to the fitness). 

 

Elite count: The elite count is an element of the evolutionary strategy that clones 

individuals from one generation to the next. Essentially, genetically identical individuals are 

allowed to be parents in two or more subsequent generations. This helps to ensure that a 

good solution is not lost during the optimization. In a large enough population size with 

enough time to run the optimization for thousands of generations, this would probably not 

be needed; however, in the conditions with a restricted population size and a limited 

computational time, we chose to add this element to the genetic algorithm. Generally, this 

number remains small compared to the total population size (in our case, 5 out of 100 

individuals).  
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Mutation: In life, mutation is the key biological error that allows for evolution to occur. It 

occurs when the enzymatic machinery that clones the genome makes an error and changes 

one or more key genes. However, our genome is much less restricted than that of DNA 

(recall that DNA uses four amino acids as its basis whereas we use floating point numbers). 

Therefore, we have to allow for mutation in a different way that will allow for the same 

benefits to come about. We implemented this by selecting parameters randomly and with a 

normal distribution and then adding a 5% mutation onto each of them. We were able to  
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