
Colby College Colby College

Digital Commons @ Colby Digital Commons @ Colby

Honors Theses Student Research

2005

JeSS – a Java Security Scanner for Eclipse JeSS – a Java Security Scanner for Eclipse

Russell Spitler
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses

 Part of the Databases and Information Systems Commons, Other Computer Engineering Commons,

Programming Languages and Compilers Commons, and the Systems Architecture Commons

Colby College theses are protected by copyright. They may be viewed or downloaded from this

site for the purposes of research and scholarship. Reproduction or distribution for commercial

purposes is prohibited without written permission of the author.

Recommended Citation Recommended Citation

Spitler, Russell, "JeSS – a Java Security Scanner for Eclipse" (2005). Honors Theses. Paper 567.

https://digitalcommons.colby.edu/honorstheses/567

This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital
Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital
Commons @ Colby.

http://www.colby.edu/
http://www.colby.edu/
https://digitalcommons.colby.edu/
https://digitalcommons.colby.edu/honorstheses
https://digitalcommons.colby.edu/student_research
https://digitalcommons.colby.edu/honorstheses?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.colby.edu%2Fhonorstheses%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages

JeSS – a Java Security Scanner for Eclipse
Russell Spitler

Senior Honors Thesis
Spring 2005

Colby College

Department of Computer Science
Advisor: Dale Skrien

Contents
Chapter 1 Introduction 1
Chapter 2 Secure Coding and Java Security
 2.1 – Secure Coding 3
 2.2 – Java Security 7
Chapter 3 Java Security Holes
 3.1 – Don’t depend on initialization 13
 3.2 – Make everything final 14

3.3 – Make your code unserializable and undeserializable 16
 3.4 – Make your class non-Cloneable 19

3.5 – Don’t rely on protected or package scope 20
 3.6 – Don’t use inner classes 23

3.7 – Make everything as private as possible 25
3.8 – Sign as little of your code as possible 26

 3.9 – Encrypt XML generation 28
 3.10 – Check execution of JNI code 30
 3.11 – Catch all Exceptions 31
 3.12 – What We Can Do 33
Chapter 4 Tools and Methodologies behind JeSS
 4.1 – Evolution of JeSS 35
 4.2 – Source Code Analysis 36
 4.3 – User Interface 39
 4.4 – The Eclipse IDE 41
Chapter 5 JeSS Details
 5.1 – Goals of JeSS 43
 5.2 – Layout of the Eclipse IDE 44
 5.3 – User Interaction with JeSS 45
 5.4 – Source Code Auditor 48
 5.5 – Current JeSS Scans 50
 5.6 – Extending the JeSS Scans 51
 5.7 – Extending the JeSS Plug-in 52
Chapter 6 Results of the JeSS Project
 6.1 – Goals Met 55
 6.2 – Deployment of JeSS 56
 6.3 – Future Work on JeSS 57
Chapter 7 References 59

Appendix A JeSS Users Manual 63
Appendix B JeSS README 73
Appendix C JeSS JavaDoc 75

 1

1. Introduction

As we expand the application of computer technology in our society, security

becomes more and more of a concern. We enter sensitive information into computers

daily and assume that it is handled in an appropriate manner. This assumption is largely

unfounded. Many of the applications that are in use today can be compromised and

exploited. The development of secure software is necessary for the continued expansion

of computer use. The process of developing this secure software has to be done on many

levels. Security needs to be kept in mind when deploying and using software, but even

more importantly during the development process. If software is developed with security

in mind then it is far less likely to be compromised when it is deployed. These concerns

apply to all software, not just applications that deal with sensitive information. Any

exploitable program is a threat to a systems security. A completely innocuous program

could be used to escalate user privileges and provide access to a machine. Just as a chain

is only as strong as its weakest link, a computer is only as secure as its weakest program.

Secure software is the responsibility of every developer.1

In order to help a developer with this responsibility there are many automated

source code security auditors. These tools perform a variety of functions, from finding

calls to insecure functions to poorly generated random numbers. 2 These programs have

existed for years and perform the security audit with varying degrees of success. Largely

missing in the world of programming is such a security auditor for the Java programming

language. Currently, Fortify Software produces the only Java source code security

auditor; this is a commercially available package. This void is what inspired JeSS, Java

1Gary McGraw “Software Security” [9]
2 Tech FAQ [27]

 2

Security Scanner for eclipse. JeSS is an open source, extensible program that statically

analyzes source code for possible security bugs.

To tightly couple JeSS with the software development process, JeSS was

developed as a plug-in for the Eclipse Integrated Development Environment. Eclipse is

an open source Integrated Development Environment (IDE) developed by IBM. Eclipse

is widely used by developers in both educational and commercial settings.3 The Eclipse

IDE was picked for JeSS because of this widespread use, its publicly available source

code, and easy extensibility. JeSS plugs into the eclipse user interface, using the standard

widgets found in the development environment. The integration with the IDE and use of

standard conventions within the environment makes JeSS a tool that is easy to use

throughout the development process.

3 Eclipse Foundation [33]

 3

2. Secure Coding and Java Security

2.1 Secure Coding

Software can be compromised in two general ways: by gaining access to

proprietary code or stored data, and by using the application to escalate local privileges.

Software packages are often distributed with highly specialized code. If the package is

poorly designed it could be possible for an end user to gain access to the specialized

code, revealing the way that it works. If a program stores sensitive information then it is

important to protect the data structures used to store this information, so it is not

compromised. This can happen through undocumented or improperly protected access

points. A user can escalate local privileges when they “hijack” the execution of an

application in order to gain the security privileges currently held by the application. In

such cases the user can abuse the application’s privileges to run code they would

otherwise not be able to run.

If software becomes compromised in any of these ways, it can cause serious

repercussions. If the software is commercially distributed, the process of patching and

updating distributed software must be undertaken to rectify the security holes. In

addition, any competitive edge gained by proprietary code is likely lost. Worse, a

software vendor’s reputation could be undermined if there is a major loss of sensitive

data. If software is used in a privilege escalation attack then any machine that runs the

software is insecure, and vulnerable to hackers. Any end user of the software will have

justified concerns about running it on their machines. Developers must make efforts to

develop secure software in order to prevent such problems.

 4

An important but subtle distinction needs to be made between secure software and

security software. The latter is software that is designed as a reactive solution, it is made

to try and “plug” the security holes that are present in existing software. Security

software identifies and prevents malicious attacks on computer systems. Virus scanners,

firewalls, and input filters are examples of this type of software.4 Security software is

made necessary because there is a lack of secure software. Secure software is designed

from the ground up with the security of the application in mind. Reactive solutions to

security problems are less necessary if applications are more secure in general. If the

software is designed and coded with security in mind then the distribution and use of the

software will be much less worrisome from a security standpoint.

 The factors that need to be considered in the development of secure software are

present throughout the development process. Secure software starts with the general

architecture of the application. Security must also be a consideration when deciding

implementation details, such as the approach and philosophy of the programming team.

There must also be third party analysis of the software’s security and close observation of

the software when it is “in the wild.” All of these steps can be affected by corporate

policy, design requirements, compatibility requirements, and implementation constraints.

A more detailed look at this process can be found in Gary McGraw’s paper “Software

Security” [9].

 JeSS is a tool to be used during the implementation phase of secure software

development. In the implementation phase developers make a few important decisions

right off the bat, such as the language and development environment for the application.

4 Gary McGraw “Software Security” [9]

 5

While it is not necessary to restrict either of these choices, a single language, or IDE can

help a development team retain a single, thorough security policy throughout the coding

process.5 These choices can be determined by corporate policy. It is typical for a

corporation to mandate a language or IDE to be used in development.6

These choices also affect the secure software development process. For example,

an IDE that supports integrated refactoring can be a great asset. It is far easier to fix an

identified security hole if refactoring does not have to be done by hand. Additionally, a

well-designed IDE makes it easier to refactor buggy code.

The other decision in this phase of the development process concerns the actual

language used to code the application. Every language has its problems when it comes to

security. Some languages have more severe problems than others. The designers of a

language have different goals in mind, and security is not always one of them.

Regardless of the language choice, the actual coding process should be done with the

security faults of the chosen language in mind.7 These faults embody themselves in many

ways. A fault can be as simple as a call to an insecure function (such as strcpy in C)8 or

as apparently innocuous as the use of certain coding structures (such as inner classes in

Java).9 Programmers should be versed in the basic strategies for avoiding problematic

code. However, it is not thorough enough to rely on the programmer, who may introduce

many security bugs through oversights and omissions, despite the best of intentions. An

automated tool should be used to ensure that the code is free of any security problems

5 Gutschmidt “Securing Java Code” [4]
6 Susan Kohler GE Medical Systems (Personal Conversation)
7 Gary McGraw “Software Security” [9]
8 John Viega “its4: A Static Vulnerability Scanner for C and C++” [13]
9 Gary McGraw “Twelve rules for developing more secure Java code” [2]

 6

that can be statically detected. This is the essence of JeSS. It is an automated tool to find

statically detectable security bugs in Java. There are many such tools for C and C++10,

but there is currently only one available security auditor for Java.11

In C and C++ there are many security problems that are statically detectable.

There are quite a few built in functions that can lead to buffer overflow errors and others

that lead to race conditions.12 There are many publicly available scanners that will

analyze your source code to find these dangerous calls; a very thorough C and C++

scanner is detailed in [13].

Currently Fortify Software is the only company that makes a security auditor for

Java source code. Fortify supplies complete security analysis of applications. Their

services are available on a subscription basis, and they consist of two parts: source

analysis and attack simulation. In the source analysis Fortify provides tools that ensures

your code adheres to the guidelines of secure coding and identifies problematic sections

of your code. 13 The lack of security auditors made for Java can possibly be attributed to

a few reasons. First of all, Java is a relatively young language, and its widespread use in

industrial software development is only beginning. Without a history of industrial use,

tools that ensure industrial strength code are largely missing. Another consideration is

the lack of education in the security concerns associated with Java. As Java has been

hyped as a secure language without the highly publicized shortcomings of C or C++, it is

assumed that no special precautions need to be taken to ensure the security of the code.

10 Tech FAQ [27]
11 Fortify Software [28]
12 John Viega “its4: A Static Vulnerability Scanner for C and C++” [13]
13 Fortify Software [28]

 7

The following sections provide an extensive look at the Java security architecture and the

coding structures that can lead to security holes.

2.2 Java Security

 The Java programming language is designed to be the ultimate portable language.

Sun developed the language to live up to the ideal “write once, run anywhere.”14 To

accomplish this task Java was developed as an interpreted language. The byte code of a

compiled Java program cannot be run natively on most machines; rather the code is

interpreted and run by a Java Virtual Machine (JVM). The JVM is a program developed

to Sun’s specifications by commercial and open-source developers. The different JVM

programs available are developed to run on a certain type of machine. This allows the

JVM to interpret the Java byte code and execute the appropriate native machine code. 15

This system allows the execution of any Java program on any machine for which there is

a JVM available.

 This portability has promoted Java as an embedded language in web content, and

has promoted its use in many distributed applications. Foreseeing this use, Sun has built

many security features into Java. These security precautions center on the concerns

produced by anonymously distributed code. With embedded web content it is possible,

by simply accessing a web page, for a user to download and execute Java code without

ever knowing of its existence. The anonymous distribution of executables is a huge

concern because the true purpose and effects of such a program are completely unknown.

14 Steven Fritzinger “Java Security” [5]
15 Steven Fritzinger “Java Security” [5]

 8

To solve this problem Java uses what is known as the “Sandbox” model.16 The Sandbox

model separates code run on the JVM into two general categories, trusted and un-trusted

(in actual practice there are varying degrees of these two categories). This separation is

done through the JVM’s Security Manager. This system limits access and privileges to

untrusted code. Untrusted code is executed with different restrictions, and, as the name

implies, it is not trusted to perform many basic system calls. The privileges to write to

the disk, access the disk, or connect to a server are restricted in Java applications unless

the JVM, via the local Security Manager, grants explicit permission for the application to

perform the specific task.17 This system of security allows the user to execute

anonymously distributed applications without having to worry about malicious side

effects. This allows users of Java to take full advantage of the language’s portability.

 Even with the use of the Sandbox model and the relative safety of running a Java

program there are still security concerns in the Java language. The system of

differentiating between trusted and untrusted code is a safeguard for the user, protecting

them from harmful side effects, maliciously introduced or accidental. However, another

real concern is the security of the application. It is a concern for any developer to ensure

that their code is not accessed in an unintended way by an end-user.

For some, this concern is as basic as protecting secure information. Applications

that deal with personal information such as social security numbers, health records, or

even bank accounts need to make sure that an unauthorized user does not access this

information. Other applications may have proprietary code that performs a task in a

unique way. Preventing a competitor from accessing this is a basic business concern.

16 Steven Fritzinger “Java Security” [5]
17 Steven Fritzinger “Java Security” [5]

 9

Another concern is the “hijacking” of an application. Even if an application secures no

private information nor holds any critical code, it is necessary to secure the program. If

the program is granted trusted privileges on a local machine it may be possible for

someone to introduce additional code to escalate their own privileges on that machine

using that program. In addition, concerns about the developer’s integrity come into play.

It is possible, if the application is not secure, for someone to introduce malicious code

into a program and then redistribute it. With this done, the application will still appear to

be the original developer’s work, but will now have malicious side effects.

A brief overview of the general nature of Java’s security holes follows. Some of

the holes are related to object-oriented language features in general, such as inheritance,

and polymorphism. Other security holes can be attributed to features specific to the Java

language.18 A later section discusses specific examples and preventative measures for

these security holes.

One security concern is the existence of an object in an insecure state. Many

programmers make false assumptions about what can and cannot be done in Java. This

leads to incorrect assumptions about the infallibility of class invariants. This can

ultimately lead to objects in states never intended by the programmer, subsequently

allowing a user to gain access to the program. The existence of an object in an

unanticipated state can lead to serious security breaches and even, in some instances, to

unrestricted remote access to the system.19

Malicious extension is a very real concern in Java. The Java language is designed

so classes can be easily extended and reused. In the local scope of an application this is a

18 Gary McGraw. Securing Java [3]
19 Gary McGraw. Securing Java [3]

 10

concern. The extension of classes could compromise the behavior of the application. By

using a mix and match attack,20 the end user can introduce subclasses of their design into

an application. These subclasses are completely unregulated and can include malicious

code.

A program’s public interface is defined by the methods and variables that are

publicly available. Many programmers fail to consider the implications of the modifier

they use to designate their methods. The end user can use any method designated as

public. All of these methods are access points, and possible points from which a program

can be compromised. Typically these access points are more numerous than the

programmer originally intends. Through a variety of means even some private and

protected methods can become used as a public method would.

While it is virtually impossible to make any program completely secure, certain

steps can be made to limit the possible ways in which a program could be compromised.

While the idea of secure software development is a relatively new topic21 there is some

decent documentation. A comprehensive look at building secure Java software can be

found in Gary McGraw’s book “Securing Java: Getting Down to Business with Mobile

Code” [3]. In this book Gary McGraw briefly presents twelve guidelines for producing

secure Java code. The following section closely examines Gary McGraw’s specific

security guidelines as well others not included in his original work. This discussion

includes specific exploits and then precautions that can be taken to prevent their use. All

of these security holes can be classified in the general categories we saw above:

20 Gary McGraw. Securing Java [3]
21 Gary McGraw. “Software Security” [9]

 11

malicious extension, public interface abuse or extension, and producing objects in an

illegal state.

 13

3. Java Security Holes

3.1 Don’t depend on initialization

 To set up class invariants in Java it is common practice to do so in the constructor.

Every variable that is needed for the program to run properly should be initialized in this

process. Code written in the other public methods often relies upon the conditions

initialized in the constructor. In particular, it is often assumed that these methods will

never be called before the constructor is fully executed. If it is possible to run methods

without the constructor setting up the crucial invariants, it opens up a possible means of

attack for someone trying to access your code. As a result it is necessary to make sure

that the object has been properly initialized before any method in the class is executed.

This may seem like a moot point, but in Java there are a few ways to allocate objects

without calling a constructor of that object.

 For example, it is possible to generate a byte array that can be deserialized into a

java object.22 Also, by calling an object’s clone method you can possibly create a new

object without calling a constructor. Furthermore with XML it is possible to

“demarshall” a XML file in order to create a new instance of an object.23 All of these

methods bypass the constructor and subsequently bypass any security measures or class

invariants that are set up by the constructor. As a result, the class invariants may not be

set up properly and the value of any field in the object is at the discretion of the person

creating the serialized byte array, the clone, or the XML file. All of the ways in which

this can be done will be covered in more detail in subsequent sections of this paper.

22 Kalinovsky. Covert Java [7]
23 Kalinovsky. Covert Java [7]

 14

3.2 Make everything final

 Method polymorphism and dynamic method invocation are building blocks of the

Object-Oriented approach. Polymorphism is the system that dynamically determines the

objects’ type and which version of a particular method should be called depending upon

how the method is overridden in the inheritance tree. For example, if a variable is

declared to have the type of a certain superclass and then is initialized to refer to an

object of a subclass of that superclass and if the method foo() is defined in both classes,

then it is polymorphism that will dynamically determine at run time that the sub-classes’

version of foo() should be called. This is a dynamic system in that the executed method

is completely determined at runtime, and there is no way for a programmer to specify the

class in which the method is to be found. A method in a superclass can be overridden in

a subclass if that method is not declared final.

 Overriding is a system that can change the behavior of a superclass’ method. To

do this in Java it is necessary to create a method in the subclass that has the exact same

signature as the method in the superclass. The parameters, name and return type must be

identical to the method in the superclass. When this method is called on an instance of

the subclass the method as defined in the subclass is called. Herein lies the vulnerability.

The only requirement of the overriding method is that it has an identical signature. The

additional code executed is completely defined by the author of the subclass. While the

signatures remain the same, the author of the subclass could modify the behavior of the

method and compromise the security of the class.24

24 John Viega. “Statically Scanning Java Code: Finding Security Vulnerabilities” [6]

 15

To prevent this from happening it is possible to use the modifier “final” when

defining variables or methods. This tags the variable so that its value cannot be changed

and tags the method so it cannot be overridden in a subclass. Use of this modifier

eliminates many possible applications of an extended class or even the extension of the

class itself. Even though future programmers are restricted to your implementation, this

is a very important precaution to take. When a method is not marked final then it can be

overridden and the behavior and actions of the overridden method are completely out of

your hands. It is possible to that the new method could execute code that compromises

the security of your application.

 An example of such a security bug is as follows. Let us say a method of a class is

set up to check whether the passed username and password is a valid match.

Class PassCheck {
 HashMap users; // key = username, value = password

…
public boolean passwordCheck(String username, String

password){

 return password.equals(users.get(username));
}

}
Exploiting the fact that neither the class nor the method is final, a subclass could be
defined as follows:

Class BadPassCheck extends PassCheck {

HashMap stolenUsernames;
…
public boolean passwordCheck(String username, String

password) {
boolean isValid = super.passwordCheck(username,

password);
 if(isValid)
 stolenUsernames.put(username, password);
 return isValid;

}
}

 16

In this example the subclass behaves just as its superclass implementation would, except

that it also stores the passed values in a new HashMap that the author of the subclass

could access in any number of ways. This is an overly simplified example; hopefully

more security precautions would be taken to secure usernames and passwords. The

purpose is to highlight the fact that a method can be overridden to include malicious code

without making any behavioral changes. Another example might include getter and

setter methods that are not finalized; similar to this example, the values passed in may be

stored and later analyzed by the author of the subclass.

Extensibility is one of the powerful features of a language with inheritance; with

as many approaches as there are programmers, classes can be extended in infinitely many

novel ways. This is a plus except when dealing with applications where security is a

concern. Any un-finalized class or method can be extended in unforeseen ways and

executed in other parts of your code through polymorphism. It is far easier to approach

the reciprocal to this problem and finalize everything except for the few cases where it is

necessary not to do so.

3.3 Make your code unserializable and undeserializable

Serializing is an outdated way of storing the state of an object. The current Java

documentation encourages the use of XML as a replacement.25 However, since

serialization may still be implemented as a way to retain backwards compatibility it is a

valid issue to discuss. Serializing breaks your code into an external byte array that stores

25 Sun MicroSystems. Java Architecture for XML Binding. [24]

 17

the state of the variables in the class. This byte array stores only the necessary

information for reconstructing an instance of the object in the same state.26

Security problems arise because the object is stored in an unprotected byte array.

This byte array can then be examined by anyone who has access to the disk space that is

being used to store it in. In the case where an application is being distributed, this is the

hard disk of the end user. Even if the storage space of the array is inaccessible it is

possible for the output stream of the serialization to be monitored.27 With access to the

serialized object in its byte array form, it is possible to ascertain the values of any of the

variables. All public and private variables can be examined. If one of these variables is a

reference to another object that is serializable, all of that objects’ fields are also stored in

the byte array.

To prevent this problem, the class must be designated as unserializable. The

solution of not implementing the serializable interface is not sufficient, as a subclass

could implement it. To properly prevent the serialization of your code you must

implement the serializable interface and have the requisite writeObject() method throw a

class nonserializable exception.28 Code for this follows:

public final void writeObject(ObjectOutputStream out)
 throws java.io.IOException {

 throw new java.io.IOException("Object cannot be
serialized");

 }

In a related problem it is important for a class to be undeserializable as well. One

deserializes an object, by calling the readObject() method as defined in the serializable

26 Sun MicroSystems. Serialization Specification. [18]
27 Sun MicroSystems. Security in Object Serialization. [17]
28 Gary McGraw. Securing Java. [3]

 18

interface. This takes a byte array as generated by the writeObject() method and translates

it back into an object of the stored state. This is necessary if your class is serializable in

that it must be possible to return from the byte array for serialization to be a useful

feature.

 This process also causes some security concerns. There is no way to ensure that

the byte array that you are deserializing contains a copy of an object that was previously

instantiated. It is possible for someone to generate a byte array that is a valid

serialization of an object of your class, that contains any values that the creator wishes for

any of the variables. This gives the creator of the byte array complete control of the state

of the object, making it possible for them to create an object in an insecure state. In

addition it is possible to use this method to create as many instances of a particular class

as desired. This is a security problem if the class is used in a way where its uniqueness is

assumed. Such an example would be a duplicate security manager or multiple

username/password databases.

 This problem can be solved in a nature similar to the serialization problem. It is

inadequate simply not to implement the Serializable interface and assume the problem is

solved. You must also throw an exception when deserialization is attempted.29 Code for

this follows:

private final void readObject(ObjectInputStream in)
 throws java.io.IOException {

throw new java.io.IOException("Object cannot be
deserialized");

 }

29 Gary McGraw. Securing Java. [3]

 19

3.4 Make your class non-Cloneable

 Cloning is a way to obtain an object that is in the same state as the source. To

initialize an object using the clone() method the result should be an object with instance

variable values identical to the values of the source’s instance variable values. This is a

quick and easy way to duplicate objects without having to manually replicate the values

of the class’s variables. This method can be very useful in a variety of applications. 30

 The problem with cloning is that a typical clone method will produce a shallow

clone, one that simply has references to the variables in the original object. This is a

problem from a design standpoint because changes in one object could affect the values

of the other. Even if the clone method is set up to create a deep clone by cloning all the

internal variables and using those to create the new object, there is a problem. The

problem is that it is creating a new object of a class without calling one of its

constructors. This sidesteps any security measures that you have built into the original

constructors. Any security precautions that you may have set up or restrictions on the

number of objects of a certain class are completely irrelevant. While the class will have a

valid internal state it is possible that the existence of a new object will violate security

measures that have been set up at the application level.31

 This problem is solved in a way similar to the way the serialization problem was

solved. Since it is possible to extend your class and add previously unimplemented

interfaces it is possible that a clone method could be defined even if you don’t do it

yourself. To prevent this possibility from happening the clone interface must be

30 Sun MicroSystems. Cloning Objects. [26]
31 Sun MicroSystems. Cloning Objects. [26]

 20

implemented and the clone() method must explicitly throw an exception. The following

code will do such a thing:32

public void final clone() throws
java.lang.CloneNotSupportedException {
 throw new java.lang.CloneNotSupportedException();
 }

3.5 Don’t rely on protected or package scope

 It is important not to rely on package protection to secure your code. It is a

common misconception to think that only classes in your package, as you define your

package, can access package or protected methods and variables. There are a number of

very simple ways to work around this protection. This is a security hole that may be

caused by a lapse in attention in that any variables or methods that are not designated

with either public or private are automatically designated as package visible at compile

time.33 A variable or method designated as having package scope means that any class

within the package can access it and so can execute or modify it. This seems like a

reasonable option because it allows the classes of your application to call methods and

manipulate variables, but prevents classes that are not within your application from

getting such access. It is a feature created for internal communication within an

application.

 This feature, however, is a security shortcoming of Java. It is impossible to

absolutely define which classes are members of your package, in that there is no way to

seal your package without the possibility of another class being added to it. If another

32 Gary McGraw. Securing Java. [3]
33 Kalinovsky. Covert Java. [7]

 21

class were to be added then the new class would have access to all of the package

protected variables and methods in the package. Because of this, it is essential to make

sure that all package protected variables and methods are not ones that could compromise

the security of your application. It is especially important to scan for this security hole

because of Java’s default designation of package visible to untagged variables and

methods. If the programmer forgets to designate a variable, the program will run

normally and the missing designation will not be caught at compile time. This missing

designation could cause a serious vulnerability in the application.34

 An example of such flawed code is as follows:

public class Course {
 Vector students = new Vector();

…
public addStudent(Student o) {

 students.addElement(o);
 }
}

In this class the students in a particular course are stored in a vector labeled

“students.” This variable is designated to have package since it is not explicitly

designated as protected, public or private. With its package designation the vector is

available to any class in the package, or any class later added to the package. This

unrestricted access would allow any other class to access or modify the vector. Whether

this is due to the implementation of the class or because the author simply forgot to

specify it, it makes the variable “students” accessible to all other classes with the same

package heading. As we have seen before having the same package heading does not

ensure that it is a trusted class.

34 Kalinovsky. Covert Java. [7]

 22

There are two easy ways to access package protected members of a class. Which

option you use depends upon the precautions the authors of the code take. If they simply

distribute the code in a JAR file without sealing it, it is simply a matter of defining a new

class with an identical package declaration to the package you wish to gain access to. For

example if you are trying to gain access to edu.colby.JeSS you simply need to declare a

new class with the header “package edu.colby.JeSS;” you then must modify the

CLASSPATH so it includes the directory where your additional class is stored before it

loads the original JAR file. 35

 If the package is distributed as a sealed JAR, then the process involves one more

trivial step. A sealed package sets the precedent that all classes that are loaded must

come from the same JAR file, making the technique previously described ineffective.

However, unsealing a file is easier than adding a new class. To unseal the file you simply

have to modify the JAR’s manifest file and change the Boolean value of the Sealed

attribute, or extract the JAR and recompile it with the new class in the same directory as

the other classes.

3.6 Don’t use inner classes

The use of inner classes is a convenient way to implement many features of Java.

Inner classes have the benefits of unrestricted access to the enclosing class, including

access to all variables and methods, public or private. It is also beneficial from a design

point of view in order to decrease the number of classes in the developer’s perspective, in

that it allows you to avoid cluttering your package with classes that are only a few lines

35 Kalinovsky. Covert Java. [7]

 23

long. One common use of inner classes is in the implementation of ActionListeners.

These are small classes that typically have only one method. It is beneficial to make the

listener an inner class so you can access the variables of the containing class without

restriction. This unrestrictive access can greatly enhance the utility of the listener. There

are many other cases were an inner class is used. Whether for simplicity’s sake or for

design purposes inner classes are a commonly used feature in Java.

However, the implementation of inner classes in the Java byte code causes a large

problem. In Java 1.0 there were no inner classes; all classes had to be defined separately.

Therefore all classes were compiled independently of one another and stored as such in

their compiled form. In order to preserve backwards compatibility Java compilers have

to compile inner classes into separate class files, effectively making inner classes no

different from any other class in the package. This causes two major problems. First, the

inner class has to be able to access the enclosing class’s methods and variables. This

includes any private methods and variables in the enclosing class, so special precautions

need to be made to protect this right. In addition the inner class is now a high level class

so any other class in the package can access it, not just the enclosing type. Because the

compiler has separated the inner class from its enclosing type during compilation, any

class in the package can now access the public and protected methods and variables in the

inner class. This now places the inner class under the protection of the package scope,

which is problematic due to a mix and match attack as discussed earlier. In addition,

since the inner class is now separate from the enclosing class, the special access to the

variables and methods of the enclosing class needs to be accounted for. In order to

preserve this access the compiler uses a dangerous trick: it modifies the declared

 24

protection of the methods and variables in the enclosing class. No matter whether a

variable or method was declared private, the compiler designates it as package visible, so

the former inner class still has access to the variable.36 37

This vulnerability is especially dangerous because of its dual implications.

Simply having an inner class, in any context, compromises all of the code in both the

inner class and the enclosing class. All variables and methods, no matter their

designation, are made to be package accessible. Due to the shortcomings of the package

scope these variables are essentially publicly available. In addition, all of the methods in

the inner class are also package accessible, available to all classes in the package, not just

the enclosing class. An example of a security hole that can arise because of these

shortcomings is as follows:

Class BankAccount {
private Integer accountNumber;
private AccountHolder personalInfo;
private AccountManager observer;
…
public BankAccount(Integer accountNumber,

AccountHolder person){
 this.accountNumber = accountNumber;
 this.personalInfo = person;

personalInfo.addPropertyChangeListener(new
PropertyChangeListener() {

 public void propertyChange(
PropertyChangeEvent e) {

 String prop = e.getPropertyName();
observer.accountAction(prop,

accountNumber);
 }
 });
 }
}

36 Kalinovsky. Covert Java. [7]
37 Gary McGraw. “Privileged Code in Java” [8]

 25

This example would be compiled into two separate classes, making all of the variables of

the class BankAccount accessible to any class in the package. In addition a class added

to the package could call the propertyChange method, pass in their own

PropertyChangeEvent and maliciously change the class invariant.

3.7 Make everything as private as possible

 All variables, methods and classes should be designated as private unless there is

a very good reason for them not to be. A variable, method or class that is designated as

public can be executed or accessed by any class at any time. Every public variable, class

or method is another way for someone to access your code. Closing these doors is

essential to securing your code. These access points are essential for a functional

application but they should be severely limited. Only methods, and classes that are

essential for the codes’ public interface should be designated as public.38 All variables,

except in rare circumstances, should be designated as private and should be accessed

through getter and setter methods. This will prevent access to variables that should not

be accessed externally. If properly written these methods can also prevent unauthorized

classes from accessing the variables. Another advantage of a setter method is that the

author of the class can ensure the variable is in a valid state by screening the passed value

before the variable is set.39

38 Gary McGraw. Securing Java. [3]
39 Skrien. Intro to OOD. [12]

 26

3.8 Sign as little of your code as possible

 Java introduced digital signatures as a way to verify the authenticity of publicly

distributed code. Through a few different methods, a digital signature attached to an

archive or JAR is supposed to authenticate the code it is attached to. The signature is

then compared to a database of signatures to ensure that the code was originally

distributed by a source that you trust. This system of authentication is necessary for

mobile code. Most programs will have to execute some privileged operations in order to

accomplish their designed task. These privileged operations are as simple as reading or

writing to disk or creating new network connections. To grant these privileges there must

be a formal mechanism to authenticate the source of the code. Signed code is Java’s

answer. When Java executes code that is signed it first verifies the signature against a

personal, or public database (VeriSign for example). After verification the Java VM will

then grant the privileges the end user has set for that signature source.40

 Code that is signed will then have all privileges that the user believes the source is

entitled to. By using a digital signature as a “stamp of approval” a code developer is

vouching for all the code within that JAR. Hopefully there will not be any security holes

anywhere in that JAR that will allow access to outside users. However, if there are

compromising holes, all of the privileges granted by using the digital signature will then

be available to that outside user.41

 It is extremely likely that some code in any application will have to use privileged

operations at some point in order to do its job. These privileges must be granted in a

reasonable, secure manner. A digital signature is such a reasonable process. The

40 Sun MicroSystems. Security and the Java Platform. [16]
41 Gary McGraw. Privileged Code in Java. [8]

 27

privileges granted should be restricted as much as possible. Only the blocks of code that

are executing privileged operations should be tagged as privileged. This is possible using

the doPrivileged API. This allows the programmer to grant privileges only to certain

sections of their code, revoking those privileges when the block is complete. One note on

this matter is that Java encourages the use of inner classes to implement this code. As

explained earlier this should be avoided. It is possible to implement the doPrivileged API

without inner classes and this should be done to ensure security. An example of a

privileged code block without using anonymous classes is as follows:42

class MyClass{
Public void foo() {

 …
//create a new object with the secure action
//detailed inside

 SecureAction secure = new SecureAction();
//execute the secure action as defined in the
//run() method of

 //SecureAction
AccessController.doPrivileged(secure);

 …
}

}
class SecureAction implements PrivilegedAction {
 public SecureAction{};
 public Object run() {
 //this is the privileged code
 return System.getSecurityManager();
 }
}
In this example MyClass does not have the privileges to access the security manager. To

do so, privileged code is called to gain access. This set-up limits the privileges of

accessing the security manager to precisely where that privilege is needed. This prevents

any code in the class from abusing this privilege, specifically, methods that may have

been compromised due to other security holes.

42 Gary McGraw. Privileged Code in Java. [8]

 28

3.9 Encrypt XML generation

Extensible Markup Language (XML) is the preferred means of Java object

storage. It has replaced the deprecated Serialization and Deserialization API’s and is

currently the supported method of storing instances of objects. XML is a markup

language that uses tags of the form <…>, </…> to open and close information fields

within an XML document. The Java Architecture for XML Binding (JAXB)43 presents

the standard method for storing instances of objects (“marshalling”) in XML and creating

instances of objects (“demarshalling”) from an XML document. The classes that perform

the Marshalling and Demarshalling can be automatically generated from an XML schema

document. An XML schema document dictates the form of the tags and how the

information in a given object is to be stored in XML. With the classes that are generated

from this document one can archive an instance of a class into an XML document. The

reverse of this process is also possible. Given an XML document in the proper form an

instance of a class can be created as dictated by the values of the XML fields.

This system generates the same security problems as serialization. However, the

simplicity of the XML language and range of its use lead to even easier abuse. In

serialization the information was stored in a binary array. The information was very

accessible but it still had to be translated from binary into usable form. In XML

information about an object is stored in a very easy to read markup language. The nature

of the language dictates the presence of tags that define what the enclosed data refers to.

43 Sun MicroSystems. Java Architecture for XML Binding [24]

 29

There is no longer the extra step of decoding the byte array generated by serialization; the

information is stored in plain text.

The parallel problem with deserialization also exists. By the nature of XML,

generating documents in XML form is very simple. It is only a matter of generating the

proper tags in the right order. Once this format has been discovered (or simply obtained

from an XML schema document) it is very easy to generate an “archived” version of an

object with the stored variable values of your choosing. This XML document can then be

used to introduce an object in an insecure state back into an application through the

demarshalling process. It would also be possible to introduce multiple instances of an

object whose uniqueness is essential to the integrity or security of the application. Such

an example would be a duplicate security manager or multiple username/password

databases.44

The solution to this problem is not a trivial one if one wants to use XML as a way

to archive files. If this is to be done, then the output stream of the XML generation must

be stored in an encrypted format. This is done by creating another XML document that

specifies the encryption type and then stores the encrypted data, without reference to

what type of information is stored within the document. The process of encrypting and

decrypting data will slow down the processing time for both the archiving of objects and

the subsequent retrieval, making it a costly option. 45

44 Kalinovsky. Covert Java. [7]
45 Sun MicroSystems. Java Architecture for XML Binding. [24]

 30

3.10 Check execution of JNI code

 One of the main objectives of object-oriented programming is the idea of code

reuse. One should never have to write the same code twice.46 When all the code is

written in Java it is a trivial matter to incorporate these blocks of code. However, if the

existing code is written in another language there is an impasse. This is where the Java

Native Interface comes into play. The JNI allows the programmer to run libraries or

applications written in another language. This interface creates a seamless integration of

the code into an application. Both the Java code and the native code can call each other’s

methods, utilize the other’s objects, and the native code can even perform Java-specific

functions such as throwing exceptions. This integration is a tool designed to allow code

reuse and to improve performance of the application through execution of assembly code,

or using features of a language that are not available in Java.47

 This feature of Java is a very powerful tool for a developer to use. However, the

security measures built into Java are not always present in the native languages. The

security precautions implemented in Java do not extend to the embedded native code. As

a result the Security Manager will typically restrict the execution of native code. 48 If a

program relies upon native code for successful completion then the user will have to

allow the execution of the native code embedded in the program. To ensure that this

code is not the source of any security holes it is essential that a properly focused security

scanner be used on the native code. A number of such scanners for C and C++ can be

found at [25].

46 Skrien. Intro to OOD. [12]
47 Sun MicroSystems. Overview of the JNI. [25]
48 Sun MicroSystems. Java Security Architecture 1.5 [19]

 31

3.11 Catch all Exceptions

 In Java error handling is implemented with the use of throwing and catching

exceptions. Exceptions are thrown when illegal events occur or unstable states of objects

are formed. These exceptions are either thrown by the system or by code written into the

application. The exceptions store information about the error and return through the call

stack until they are caught in a try-catch block. If these exceptions are not caught then

they will cause the JRE to shutdown, terminating the execution of the application. When

exceptions are thrown, the normal execution of code is disrupted, and the exception is

returned up the call stack. By utilizing this system the programmer can handle errors,

such as improper array access, inability to access a certain file, or improper privileges.

with a predetermined block of code. With a properly placed catch block, whenever an

exception is thrown in the subsequent call stack the catch block can handle that

exception. 49

Exception handling is a powerful tool that allows the programmer to handle errors

in a predetermined way. However this can also be a problem. If an exception is caught

and is not acted upon then the events that led up to the illegal action or object state will

remain unreported and unresolved. This can result in one of the objects in the application

existing in an illegal or insecure state. By not acting on the error messages passed on by

the exception, a program has the possibility of having objects exist in a state that was

never intended by the original programmer, this state possibly being insecure. Another

problem that can arise is if the catch statement is too general. If the catch statement is set

up to catch all classes that are subclasses of type “Exception” then it is very possible, and

49 Sun MicroSystems. Handling Errors with Exceptions. [21]

 32

likely, that the catch block will catch and handle exceptions that weren’t originally

intended to be caught. The overly general catch statement will catch any exception

thrown by the subsequent call stack.50 This includes system exceptions such as an

ArrayOutOfBoundsException and any exceptions thrown by the security manager. These

will all be handled in an identical manner, which is defined by the body of the catch

block. If these exceptions are system-thrown exceptions they should not be caught and

should rightly terminate the execution of the application. Improperly catching these

exceptions may cause serious side effects if the program continues to run.

One particular problem of failing to catch exceptions occurs when an exception is

thrown in a constructor. Since exceptions interrupt the normal flow of code any

subsequent code after the exception is thrown will be left unexecuted. This is a problem

if the constructor has passed a reference to itself to another object. An example of this is

found in [11].

public class CSaver {
public C c;

}
public class C extends ASuper {

public C(CSaver s) throws SomeException {
super();

 s.c =��� C.this;
 ...
 throw new SomeException();
 … //more code setting up class invariants

and security measures
}

}
In this example the class C leaked its this variable. The object s of the class CSaver

has a reference to this variable. If the new SomeException is caught and not properly

dealt with then it is possible for CSaver to use its reference to the malformed instance of

50 Sun MicroSystems. Handling Errors with Exceptions. [21]

 33

the C class. Since the exception was thrown before the final lines of the constructor were

executed, the class invariants and security precautions were not executed. This means

that the instance of C as stored in the CSaver class is possibly in an insecure state.

Failing to properly deal with a thrown exception has introduced an insecure object into

the application.

3.12 What We Can Do

 John Viega, Gary McGraw, Tom Murtsdoch, and Edward Felten first introduced

the idea of a static Java scanner in their paper “Statically Scanning Java Code: Finding

Security Vulnerabilities.”51 In this paper they explore the idea of creating a security

auditor to statically detect the security holes as detailed by Gary McGraw and Edward

Felten in their book “Securing Java: Getting down to business with mobile code.”52 The

proposed scanner used the visitor pattern to traverse an AST and detect the security holes.

However, this software was never fully developed or distributed. The program that was

created did scan for the security holes detailed in the book. However it was a standalone

program that was proclaimed a “hack” by the authors. 53 JeSS was created to finish the

work first proposed in this paper. JeSS was created to be an extensible, easy to use,

publicly available security auditor that can be easily integrated into the development

process. JeSS was created to provide an alternative to the services sold by Fortify

Software.

51 Gary McGraw. “Statically Scanning Java Code”[6]
52 Gary McGraw. Securing Java[3]
53 Gary McGraw (Personal Correspondance)

 35

4. Tools and Methodologies behind JeSS

4.1 Evolution of JeSS

 JeSS has two major parts to it, each one requiring different decisions and tools

when it came to its implementation. JeSS can be split into its users interface and the

backend, the actual security auditor. The original idea behind JeSS was for it to be

developed as both a standalone application and as a plug-in for Eclipse. The standalone

application was to be developed using the Java Swing package. This would allow a

graphical user interface that could be created from pre-defined widgets. The

development of the Eclipse plug-in was originally seen as simply being able to launch the

standalone application from within Eclipse, without integrating the JeSS functionality

into the Eclipse platform. In this standalone application the security auditing was going

to be done using the publicly licensed tools javaCC and jjTree. These tools can produce

a parse tree of a Java compilation unit and inject the visitor pattern into it. Eventually

this original design was scrapped and JeSS evolved into its current form; as a fully

integrated Eclipse plug-in. JeSS fully integrates itself into the user interface native to

Eclipse. All input and feedback is done through the standard conventions used in

Eclipse. The back end also uses Eclipse packages. AST’s and visitors are made using

the org.eclipse.jdt.core.dom package. The following sections take a closer look at the two

parts of JeSS and the tools used in their implementation.

 36

4.2 Source Code Analysis

 To perform a static analysis of source code, JeSS uses Abstract Syntax Trees54

and the Visitor pattern.55 The program generates an AST for the given source code and

then traverses the tree using the Visitor pattern.

An Abstract Syntax Tree (AST) is a representation of a compilation unit. Using a

programming language grammar as the rules for construction, an AST is a hierarchical

tree that represents the given code. An AST represents code in a standard way as defined

by the grammar. The rules that make up a grammar also determine the children of a

node. This creates a hierarchical tree; sub-statements are grouped underneath their

parents. For example, in an AST representing a Java “for” loop, the children of the “for”

node would be the loop conditions and the block statement to be executed. There are two

major advantages to representing source code in such a structure. First of all, by

definition identical code is stored in an identical AST. There is only one way to construct

an AST for any given Java source code. This allows a survey of the source without

having to worry about particular coding styles or formatting. Also, the hierarchical tree

structure of the AST allows for easy, predictable traversal.

 One method of traversing an AST is use of the Visitor pattern.56 The Visitor

pattern is a depth-first system of traversing a tree. In the Visitor pattern there are two

parts, the tree that it is visiting and a class that “visits” the tree, this being the visitor. All

of the nodes of a tree all implement a common interface that requires a method that

54 Deryck Brown. Programming Language Processors in Java. [15]
55 Skrien. Intro to OOD [12]
56 Erich Gamma. Design Patterns [14]

 37

“accepts” the visitor. The first thing the accept method does is to call the designated

method particular to that type of node in the passed visitor class. In the visitor class there

is a separate visit method for all the types of nodes that implement the visitor

interface. In these visit methods, the code specific to that visitor and that type of node

is executed including calls to the accept methods of the children of that node, thus

visiting the entire tree. By using this system, the type of node that is being visited can

take care of calling the appropriate function within the visitor. By using this system the

traversal of a tree can occur and all code that needs to be executed during the traversal is

encapsulated in a single class. This class can perform whatever function that it is

designed to do without having to inject code specialized to that function in the AST. The

Visitor can perform its function without having to modify the elements it is traversing.

The basic structure of the AST does not change; the same types of nodes are used to

represent the different parts of the code. Therefore a visitor is a useful tool, in that the

functions used to examine the structure of the AST are encapsulated and interchangeable.

It is this property of the Visitor pattern that makes it of value in the implementation of

JeSS. It is capable of traversing the code structure of a source file in a hierarchical way

with interchangeable classes each performing an independent function.

 There are also drawbacks to using the Visitor pattern in conjunction with an AST,

in that there is a lot of overhead in creating an AST. The structure of an AST is very

complex and depends upon the proper parsing of the source code and so the program

responsible for the AST must be extensively checked and verified. To create a program

that generates an AST is a very serious undertaking all in itself. Rather than trying to do

this from scratch it is preferable to use tools to do this automatically. Once the

 38

construction of the AST is complete it is necessary to have an AST that uses the Visitor

pattern. This includes having the “accept” method in each of the nodes that makes up the

tree as well as a visitor class that has all of the “visit” methods. So the tool used to

generate the AST must have some sort of support for the Visitor pattern. The last

concern is the structure and documentation of the classes that make up the AST. This

concern rises out of the need for the simple creation of visitor classes. It is necessary for

the nodes of the AST to have appropriate methods that can be used to discover the

properties associated with the node. If this is an undocumented or difficult process then it

is much harder task. It is these concerns that focused the implementation choices during

the development of the JeSS source code analyzer.

 The first tool that was considered was JavaCC.57 This tool is a open source

project that takes a grammar for a language and automatically generates a parser for it.

This can then be used in conjunction with the tool JJTree, which is included in the

JavaCC distribution. Together these tools can accept a grammar as input, generate a

program that will parse that grammar (JavaCC) and then create a parse tree for it

(JJTree). The tools include built-in support for the Visitor pattern. They inject the

appropriate accept methods into the nodes and produce a skeleton visitor class that

include all the needed visit methods. However, this package has its shortcomings.

First of all the tree that is produced is a concrete parse tree instead of an AST. This

means that the nodes that are included on the tree are not all needed when analyzing the

source code. For example, a variable name could be stored as a field in the variable

declaration node in an AST but in a parse tree the name would be stored in its own

57 Java.net. JavaCC Home [29]

 39

branch consisting of the super types of name that the parser uses to define the name

(Qualified name, simple name, etc.). In addition to this akward tree the node classes that

are generated by JavaCC are not particularly user friendly. A program generates these

classes and as a result they completely lacked documentation. They also lacked methods

that could be easily used to determine a node’s properties. The use of JavaCC would

require writing a program that would prune the parse tree to generate an abstract syntax

tree. It also would require extensive work with the generated nodes and visitors to make

them user-friendly and easy to understand. As a result, JeSS uses the

org.eclipse.jdt.core.dom package to generate the AST used in source code analysis.

 The org.eclipse.jdt.core.dom package is built into the Eclipse IDE distribution. It

is used in the eclipse runtime compiler. This package supplies several very attractive

features. The generation of the AST is done with a few simple lines of code using the

ASTParser class found in the package. The generated AST has built in visitor support

and included in the package is the ASTVisitor class, which is intended to be the

superclass for any implemented visitors. Additionally all of the generated classes are

well documented in the users manual supplied with Eclipse. This solves all of the

problems that arose with the use of the JavaCC tool. As a result this package is what is

used in JeSS.

4.3 User Interface

 The user interface of JeSS can be split into two parts, the user input and the

feedback of the program.

 40

The user input to JeSS should consist of a Java element to be scanned. Ideally the

user should be able to select as the element a class, package, or project. This presents the

problem of creating a user interface that allows easy selection of elements, but properly

restricts them to appropriate types. The feedback that JeSS provides needed to have three

major features to be of real use to the user: error-specific messages, dynamic error

linking, and a means for correcting errors. An error found by the source code analysis

should be shown in a summary panel. This panel should include specific information

detailing the type of error and where it occurred. The panel should also dynamically link

the summary to the section of the source code corresponding to the error. The source

code should be displayed in an editor that allowed for the correction of the error. This

editor should, ideally, be a Java editor so that revisions can be made easily.

 The first package that was considered for use in creating the UI was the Swing

package distributed with Java. This package provides numerous classes for the creation

of GUIs. This package was considered because of its ease of use, reliability across

platforms and extensive code base. What was soon found is that Swing does not provide

tools for what was needed in the JeSS UI. While the Swing package includes very basic

tools, it would have required extensive reworking to provide the specific behavior that

was desired for JeSS. For example, creating a file chooser that can only select a “.java”

file is simple, but creating one that can also choose a directory that only contains “.java”

files is not. Also, creating text editors is not a challenging task, but to have dynamic links

to sources in the text requires extensive additional code. As this work was not the focus

of the JeSS project, other options were explored.

 41

 Just as the solution to the problems with the source code analyzer lay in Eclipse,

the solution for the UI did as well. During standard use, the Eclipse platform performs

all of the functions desired for JeSS. There is built in-error reporting, dynamic error

highlighting, and Java editors for the standard use of Eclipse for Java programming.

Further investigation revealed that all of these features could be tapped into using the

built in plug-in extension points. This realization caused a major change in the project

goals for JeSS. It was apparent that the development of JeSS as a standalone application

would require the recreation of many features already built into Eclipse. With these

considerations in mind the decision was made to develop JeSS solely as a plug-in for

Eclipse.

4.4 The Eclipse IDE

 The Eclipse IDE is an open source project with the goal of providing “a robust,

full-featured, commercial-quality, industry platform for the development of highly

integrated tools.”58 The platform is designed to be fully extensible. The IDE is set up so

that its functionality can be dynamically reconfigured using plug-in modules. From the

basic functions of the IDE to any number of highly specialized plug-ins, the platform

treats them the same. The plug-ins are dynamically discovered and loaded on startup.

The default Eclipse package includes a basic set of plug-ins in the Software Development

Kit (SDK). This set provides the basic functionality of the platform including java

development, and plug-in development. This system allows the seamless integration of

“aftermarket” tools. The same systems in which the built-in features interact with each

58 Eclipse Foundation. Eclipse.org [33]

 42

other are available to the developers of plug-ins. This basic set-up is what makes Eclipse

an attractive IDE to develop plug-ins for. In addition, its widespread use in the US and

abroad in both educational and commercial setting make it ideal for JeSS.59

59 Eclipse Foundation. Eclipse.org [33]

 43

5. JeSS Details

5.1 Goals of JeSS

 The chances that a coding tool will be used are greatly diminished if the tool is

hard to use. With this in mind JeSS was designed to integrate tightly into the secure code

development process. To seamlessly integrate, JeSS was designed in such a way that its

use would not be inconvenient or require extensive preparatory work. In addition it was

designed to contain a few key features that would promote user acceptance. These

requirements were laid out as the design goals for JeSS. JeSS needed to be robust,

customizable, extensible, and include dynamic error reporting. Detailed error messages

needed to be displayed if a user tries to use JeSS inappropriately. The scans that JeSS

performed needed to be customizable. If a bug of a particular type needed to be found

the user would not be distracted by error messages referring to other security bugs. The

user needed to have a detailed error report explaining each security hole. In addition the

error needed to be highlighted in the code. These two parts of the feedback need to be

linked so that the possibility of the user confusing one error for another does not come

up. Finally the security audit that JeSS performs needs to be able to handle security

concerns that may be identified in the future. That is, the end user should be able to scan

for security holes that they identify. The functionality of JeSS should not be limited by

the knowledge of the original author. These goals guided JeSS’ design.

 44

5.2 Layout of the Eclipse IDE

Eclipse consists of a main window that is separated in to individual views, and an

overhead menu bar. Within the main window the area is separated into two major parts,

there is the taskbar and perspective selector and then the individual view windows. The

layout within this main window is determined by the “perspective” that is currently in

use. The perspective determines what individual views are present and how they are laid

out with respect to one another. A general example of this is the Java browsing

perspective.

Figure 1: Eclipse showing the Java Browsing Perspective

 In this perspective, in the top portion of the main window, there is a view for the

available projects, one for the available packages within the selected project and then a

 45

view for the classes within the selected package, and finally a view for the methods of the

selected class. In the middle of the main window there is a space in which Java editors

are stacked when a class is being edited. At the bottom of the window there are a number

of stacked views, the notable ones being a console output, an error log, a problems task

list, and a TODO task list. The Java browsing perspective is a typical Eclipse

perspective. Other perspectives follow a similar layout, but tailored to accommodate the

task of the perspective.

5.3 User Interaction with JeSS

 As discussed earlier JeSS’ user interface consists of two main parts: the input and

the feedback that comes as a result of the input.

 In JeSS the user input can be separated into two parts: setting the parameters for

the scan and selecting the elements to be scanned. The scan in JeSS is fully customizable

by the user. The overhead menu bar contains a menu dedicated to JeSS. In the JeSS

menu there is a shortcut to the JeSS preferences (these preferences can also be accessed

through the standard path in Eclipse).

 46

Figure 2: JeSS Preferences

 In the JeSS preference menu the user can use a boolean checklist to select the types of

scans to be performed. The user can also determine whether they would like JeSS to use

their own user-defined visitors in the security audit (there is more information on this in

the following section). JeSS searches for the user-defined visitors in the “plugins”

directory in the JeSS folder by default. This location can be changed in the preferences

dialog. Once the type of scan is set then the user needs to set the input for the scan.

In JeSS the items selected in the views present in the current perspective

determine the input of the scan. JeSS is not dependent on the perspective that is currently

being displayed in Eclipse. The scan can be run so long as there are views that show a

Java element. A Java element consists of a class, package, or project. Depending on the

view, these elements can possibly be displayed as a folder representing the underlying

file structure of a project or package. Also a class can be displayed as a Java file. JeSS

can scan any selection of these types; it doesn’t matter if the current view is displaying

the element as the underlying file. Every view that displays a Java element can be used

 47

to select the element for the scan. When selecting elements for a scan it is possible to

select more than one at a time. For example it is possible to scan all of the projects

currently in the workspace by selecting all of these elements in the “Projects” view. If an

element of a type that cannot be scanned is selected, then an error message will be

displayed that indicates the problem element and will also suggest an appropriate type.

Once the user selects all files that are to be scanned they simply need to run the scan

using either the JeSS taskbar action or the “Scan Current Selection” option in the JeSS

menu (see Figure 3). At this point the source code analyzer is run and then the feedback

is displayed.

Figure 3: JeSS User Interaction

JeSS provides feedback in three major ways, consisting of a summary in the

problems view, highlighted lines in the java editor, and floating icons over the class files.

 48

JeSS also provides the user with rudimentary automated corrections. After the JeSS scan

is run, a dialog box appears displaying a short message indicating the number of

problems found in all of the classes that were scanned. The “problems” view is also

brought to the front of the perspective. In this problems view there is a summary of all

the security bugs found by JeSS. The summary includes the files that the bugs were

found in, the types of errors, and the line numbers where the bugs can be found in the

files. By double clicking any of these summaries the section of the code where the bug is

found is automatically opened and highlighted in a java editor. In addition to accessing

the bugs in this manner there is also an indicator displayed on the class file. If a security

bug is found within the file, then an icon floats over the display of the file. If these files

are opened for editing, the security errors are underlined with a squiggly pattern and also

marked along the right edge of the editor. Directly to the left of the underlined section of

code is an icon that can be right clicked. When the icon is right clicked a list of

automated resolutions appears. The current implementation allows the user to ignore the

one bug, ignore all bugs in the file, or to ignore all bugs in the project.

5.4 Source Code Auditor

 The responsibilities of the source code auditor starts when the user starts the scan.

The auditor determines the type of the elements to be scanned, extracts any nested

elements (such as a class from a package), produces an AST, determines the scans to be

performed, passes all corresponding visitors to the AST, and then reports the results of

the scan. In true object oriented style all of these tasks are a performed by a separate

class that could be reused, or replaced with minimal refactoring.

 49

 To determine the type of element that is to be scanned JeSS uses the

JeSSClearingHouse class. The JeSSClearingHouse class has a very simple responsibility,

to determine the type of the element, and then pass it along to the SecurityScanner class

for nested element extraction and AST generation. The JeSSClearinghouse class contains

a series of tests to determine that the selected element is of a Java type. Once this is

determined, it identifies the particular type (whether it is a project, package, or class or

folder or file representing a project, package, or class) and calls the appropriate method in

the SecurityScanner class for the given type.

 The SecurityScanner class has two responsibilities: extracting the nested java

elements and producing the AST for each base compilation unit (“.java” file). There are

three entry points in the SecurityScanner class: scanProject, scanPackage, and

scanCompilationUnit. These methods allow the JeSSClearingHouse class to pass any

type of Java element along without having to scan all other associated elements. For

example one class can be scanned without having to scan all classes in the package, or

project. The three main methods in SecurityScanner are arranged in a hierarchical way,

As elements are extracted the next method is called. The scanProject method extracts the

packages from the project and then iterates through them and calls the scanPackage

method on each one. The scanPackage method does essentially the same thing, in that it

extracts all the compilation units from a package and then calls scanCompilationUnit on

each one. The scanCompilationUnit method produces an AST and then passes it along to

the VisitorManager class.

The VisitorManager class manages all of the visitors that perform the actual

security audit. This class performs three main functions; it sets up the nature of the scan

 50

according to the current preferences, it takes an AST and performs the scan on it, and it is

the class responsible for all of the manipulation of the markers used to indicate the results

of the scan. A new instance of this class is generated every time a scan is performed.

This is to ensure that the current values set in the JeSS preferences reflect the scan that is

performed. In the constructor of this class the preferences are loaded. The values of

these preferences then determine what visitors to initialize. It is at this point that JeSS

loads user-defined visitors if it is so instructed. Once the visitors have been initialized the

scan can commence. The AST is passed to the VisitorManager through a method called

“scan.” This method takes the collection of Visitors and passes each of them to the AST.

All of these visitors are subclasses of JeSSVisitor. This is for support of user-defined

classes (to be detailed in the following section). The JeSSVisitor class contains methods

for reporting the errors found. These methods in turn call the reportProblem method in

VisitorManager. The actual creation of the problem marker is done in the

VisitorManager class, where the particular error is associated with the file that is the root

of the AST. Once the VisitorManager has completed the scan of the AST it returns the

number of problems that have been found and the job of the source code analyzer is

complete.

5.5 Current JeSS Scans

 JeSS currently has limited scanning capabilities. The utility of these scans is in

reference to the corresponding security hole as detailed in Chapter 3. JeSS is capable of

determining the public interface of a project. This scan can be performed at a few

different levels. It is possible to find all public methods, classes, and fields. It is also

 51

possible to restrict this scan to solely methods and fields. This can also be done to

determine the classes, methods and fields that rely on the package scope. JeSS can

identify all methods, fields and classes that are not declared final. The use of inner

classes can be automatically detected and exceptions that are improperly handled can also

be found. Security holes that are not currently scanned for by JeSS include relying upon

initialization, execution of JNI code, proper use of the Cloneable and Serializable

interfaces, properly signed code, and encrypted XML generation.

5.6 Extending the JeSS Scans

 JeSS supports the use of user-defined visitors in the security audit. After meeting

a few structural requirements it is possible for a user to define their own visitor and use it

in the JeSS scan. This feature can be enabled in the JeSS preferences.

 The implementation of user-defined visitors has been simplified as much as

possible. To create such a visitor a user must identify a security hole and the

corresponding AST structure for the hole. They must then create the visitor class that can

automatically identify this structure. This visitor must be a subclass of JeSSVisitor.

JeSSVisitor is, itself, a subclass of the ASTVisitor class found in

org.eclipse.jdt.core.dom. The ASTVisitor class is the type required by the AST’s used in

JeSS. Past this, the JeSSVisitor provides a few helper methods for the implemented

subclasses. There is reportProblem method that takes a node and an error string. This

method formats the error and passes it to the VisitorManager for error reporting. This

ensures that the problems found by the user-defined visitors are reported in the same way

as other JeSS problems. It also removes from the user the responsibility of creating the

 52

problem marker. There are also a few helper methods that parse the name of the class or

method from a corresponding node. In addition to being a subclass of JeSSVisitor the

visitor must have a constructor that takes the type VisitorManager as a parameter. This

constructor must then, in turn, call the constructor in the super class taking the same

parameter. A more detailed explanation of creating a JeSSVisitor can be found in the

JeSS users manual.60

 In the JeSS preferences dialog the user can enable the use of external visitors. In

this dialog the user also has to specify the location of the “.class” file of the visitor. Once

this has been done JeSS dynamically loads the visitors when the VisitorManager class is

initialized. To dynamically load these visitors VisitorManager creates an instance of the

JeSS class PluginLoader. PluginLoader uses the directory path found in the preferences

to locate visitor class files. It loads all “.class” files found in this directory. This is done

through a private delegate of the local class loader. Then through reflection, the

PluginLoader ensures that these files are a subtype of JeSSVisitor and have a constructor

that takes the type VisitorManager as a parameter. Once the visitors have been

confirmed to have the proper type, reflection is used again to instantiate the classes. The

instantiated classes are then returned to the VisitorManager for use in the security audit.

5.7 Extending the JeSS Plug-in

 Throughout the design and implementation of JeSS extensibility has been a

consideration. As a result there are no constructs that limit the future uses of JeSS. To

extend the current scanning functionality of JeSS it is as simple as creating a new visitor

60 Appendix A

 53

(as explained in the previous section). To include this new visitor as a built-in scan

requires modification of two classes; the VisitorManager and the JeSSPreferences.

Changing the user interface only requires changed the points in which JeSS plugs into the

Eclipse platform. To create a separate view in which JeSS reports its problems would

only require creating the new view and changing the way VisitorManager creates the

markers. The future uses of JeSS are only limited by the imagination of its users. The

highly customizable nature of the Eclipse IDE allows JeSS to be incorporated in

whatever way is deemed necessary. In addition to this, the org.eclipse.jdt.core.dom

package is being updated continuously to accommodate new versions of Java.61 The

AST’s generated will reflect the newest version of Java supported by the Eclipse

platform. As this project was developed as open-source, the source code will be

distributed along with the plug-in. This will allow the end users to customize their

versions of the plug-in and improve upon its source.

 The mobility of JeSS is a harder issue to address. JeSS’ user interface is tightly

integrated with the Eclipse platform. To migrate this plug-in to another IDE would

require the refactoring of the classes dealing with Eclipse specific elements. However,

the basic function of all these classes would remain the same in another platform. So the

refactoring would likely just be the replacement of Eclipse specific packages with the

corresponding foreign packages. The backend of JeSS is also dependent on Eclipse

packages, however it is not as tightly integrated. The AST and the visitors are derived

from the org.eclipse.jdt.core.dom package. It would not be a difficult undertaking to

refactor the backend so that it uses another tool for AST generation. As with the user

61 Eclipse Foundation. Eclipse.org [33]

 54

interface the Eclipse DOM specific classes would have to be replaced with the

corresponding foreign classes. This is actually a simple process, as it was done when the

transition from JavaCC to org.eclipse.jdt.core.dom first took place. All other classes

dealing with the actual source auditing would be reusable. The VisitorManager and

PluginLoader are not largely dependant on Eclipse.

 55

6. Results of the JeSS Project

6.1 Goals Met

 The JeSS project was largely a success. The current implementation of the JeSS

scanner has met all but one of the original goals of the project. It is a fully customizable

scanner. The user can use the JeSS preferences to determine the types of scan that they

need. It is possible to perform scans due to programmer or design oversights, such as

missing modifiers and catch blacks without any actions. JeSS can be used as a final

auditing tool to discover the entire user interface (all public variables, methods and

classes), as well as protected or non-final ones. It is also capable of highlighting

problematic structures in the code, such as anonymous inner classes.

However, the functionality of JeSS is not what was originally envisioned, as all of

the guidelines set out in Gary McGraw’s paper are not scanned for. The missing

functionality includes relying upon initialization, properly signing code, the proper use of

the Cloneable and Serializable interfaces. The additional security holes that were

identified but not yet implemented are the encryption of XML generation, and the

execution of JNI code. This shortcoming is somewhat accommodated by the support of

external security auditors. The creation of external security auditors is far easier than it

was originally thought to be. Through subclassing the user does not have to know any

eclipse specific knowledge, they can simply find their problem and then report with the

built-in method reportProblem. Knowledge of the creation of the problem markers is not

needed, nor is any other low level details of the JeSS implementation. JeSS is truly

versatile as a result of this feature. There are no real restrictions on the external visitors.

The end user can define a visitor that performs any sort of function on the source code

 56

not just security auditing. JeSS provides an automated tool for deploying the visitor on a

large scale. Through thorough testing and extensive error catching code, JeSS is capable

of dealing with any input that the user provides. This input is screened and the user is

notified through detailed error messages on whether it is an acceptable type. This makes

JeSS a robust tool; it is capable of performing under any condition that eclipse can

produce.

6.2 Deployment of JeSS

 JeSS will be distributed on a maintained website dedicated to the tool. It is

deployed as a plug-in for Eclipse 3.0. The plug-in includes an extensive users manual,62

the source code63, and a “readme” file64 that details the first time use of the plug-in. The

JavaDoc for the plug-in is also included.65 The current plan is for the website to provide

periodic updates as well as a system for users to post the code for their security visitors.

62 Appendix A
63 Included on CD
64 Appendix B
65 Appendix C

 57

6.3 Future Work on JeSS

 The first step is to make JeSS a fully functional security scanner. This would

include implementing visitors for all of the security holes that were researched. These

visitors would then be built into JeSS and the preferences would include the options of

performing those scans. Another feature that would greatly add to the utility of JeSS is a

separate view for the reporting of JeSS problems. With some types of scans, such as the

public interface discovery, the scanner can flood the problems view. To separate out

these scans would allow the user to use JeSS while still being able to refer to any other

problems that are displayed in that view. The automated resolutions also need to be fully

implemented. Currently there is only support for removing the markers. There needs to

be suggested resolutions for the particular security holes. Creating a system in which

users can provide resolutions for their own security visitors could further extend this

aspect of JeSS. The class supplying the resolution would be incorporated into the visitor

that the user provides. With the current implementation of JeSS this work can be easily

done. There is no major hurdle to incorporating any these features other than the

commitment of time to make them wo

 59

7. References

Java and Software Security

Books and Articles:

1. Chris Hawblitzel, C.-C. C., Grzegorz Czajkowski, Deyu Hu, and Thorsten von
Eicken (1998). Implementing Multiple Protection Domains in Java. USENIX
Annual Technical Conference, New Orleans.
An example of extending Java’s sandbox model to enhance the security of applets

2. Gary McGraw, E. F. Twelve rules for developing more secure Java code. 2004.
The basis of my project, a brief article detailing the basic java security problems

 http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html

3. Gary McGraw, E. F. (1999). Securing Java: Getting Down to Business with
Mobile Code, Wiley.
An extensive look at all aspects of Java security, from both the users and
programmers P.O.V.
http://www.securingjava.com/

4. Gutschmidt, T. Securing Java Code: Part 1. 2004.

Outline of a corporate policy to promote secure java programming
http://www.developer.com/java/article.php/741921

5. J. Steven Fritzinger, M. M. (1996). Java Security, Sun Microsystems, Inc.

The basic outline of the java security model

6. John Viega, G. M., Tom Mutdosch, Edward Felten (2000). "Statically Scanning
Java Code: Finding Security Vulnerabilities." IEEE Software: 68-74.
An expanded version of [2] with information on static analysis

7. Kalinovsky, A. (2004). Covert Java, Sams.
A detailed look at the system of decompiling Java byte code and other methods to
compromise java programs

8. McGraw, G. (1998). Priviledged code in Java.
Explanation of the Priviledged code API and its use in Java programming

 http://www.developer.com/java/other/article.php/604131

9. McGraw, G. (2004). "Software Security." IEEE Security & Privacy.
A look at the design process for developing secure software

 60

10. Nolan, G. (2004). Decompiling Java, APress.

A good source for information on decompiling Java byte code and other methods
of compromising Java programs

11. S. Doyon, M. D. (2000). "On object initialization in the Java bytecode." Computer
Communications(23): 1594-1605.
A look at the process of object initialization from a low level perspective
containing possible problematic constructor code

12. Skrien, D. Intro to OOD. Work In Progress

An introduction to programming with an Object Oriented approach with a
detailed look at many OO design principles.

13. John Viega, J.T. Bloch, G.M., Tadayoshi Kohno (2000) “its4: A Static

Vulnerability Scanner for C and C++.” ACSAC Technical Conference.
A look at static scanning of C and C++ code. An overview of security problems
and implementation of a scanner

14. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. (1995) Design
Patterns, Addison Wesley.
The definitive guide to design patterns including a detailed description of the
Visitor pattern.

15. Deryck Brown, David Watt. (2000) Programming Language Processors in Java,
Prentice Hall.
A look at compiler construction in Java, contains information on production of
AST

Websites:

16. Sun MicroSystems. Security and the Java Platform. 2004.
The up-to-date outline of Java security procedures
http://java.sun.com/security/index.jsp

17. Sun MicroSystems. Security in Object Serialization. 2004.
Security concerns when using the serialization API
http://java.sun.com/j2se/1.3/docs/guide/serialization/spec/security.doc3.html

18. Sun MicroSystems. Serialization Specification. 2004.
The outline of the serialization API
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/serialTOC.html

19. Sun MicroSystems. Java Security Architecture 1.5. 2004.

The security architecture in Java 1.5
http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-specTOC.fm.html

 61

20. Sun MicroSystems. Applet Security. 2004.

FAQ on applet security and privileges
http://java.sun.com/sfaq/

21. Sun MicroSystems. Handling Errors with Exceptions. 2004.
A general look at the proper use of exceptions to deal with errors generated in
java code
http://java.sun.com/docs/books/tutorial/essential/exceptions/

22. Sun MicroSystems. Reflection. 2004
Overview of the Reflection API
http://java.sun.com/j2se/1.3/docs/guide/reflection/

23. Sun MicroSystems. Working with XML. 2004.
A general look at the use of the JAXP XML package in Java
http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/index.html

24. Sun MicroSystems. Java Architecture for XML Binding (JAXB). 2004.
The overview of the JAXB XML package in Java
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/index.html

25. Sun MicroSystems. Overview of the JNI. 2004.
A look at use of the Java Native Interface API
http://java.sun.com/docs/books/tutorial/native1.1/concepts/index.html

26. Sun MicroSystems. Cloning Objects. 2004.

A look at the Cloneable API
 http://java.sun.com/developer/JDCTechTips/2001/tt0306.html

27. Tech FAQ. How can I find security vulnerabilities in my source code? 2004.
A list of security scanners for C/C++ code
http://corky.net/2600/computers/source-code-security-vulnerabilities.shtml

28. Fortify Software. Fortify. 2004.
The home site for the sole Java Security Auditor currently available
http://www.fortifysoftware.com/products/sca/

29. Java.net. JavaCC Home. 2004
The home site for the parser generator software JavaCC and the tree generator
jjTree.
https://javacc.dev.java.net/

Eclipse & Plug-in Development

Books and Articles:

 62

30. John Arthorne, C.L. (2004). Official Eclipse 3.0 FAQs, Addison Wesley.

A comprehensive FAQ supplying short answers to questions about many aspects
of Eclipse and Eclipse Plug-in development

31. Eric Clayberg, D.R. (2004). Eclipse: Building Commercial-Quality Plug-ins,
Addison Wesley.
A step by step guide to producing a fully featured functional plug-in

32. Dejan Glozic, J.M. (2001). Mark My Words, IBM.

A detailed look at implementing markers in eclipse

Websites:

33. Eclipse Foundation. Eclipse. 2005.
The eclipse website. Source code, JDE and developer support.
www.eclipse.org

34. Eclipse Plug-in Central Alliance. Eclipse Plug-in Central. 2005.
A central database of eclipse plug-ins giving short descriptions and links to plug-
in homepages
http://www.eclipseplugincentral.com/

35. Eclipse Wiki. 2005.
A limited resource for information on various aspects of eclipse development
http://eclipsewiki.editme.com/

 63

Appendix A – JeSS Users Manual

The users manual is implemented as a simple plug-in that is accessed along with the
standard Eclipse help. The table of contents is displayed along with the other help topics
found in the Eclipse manual.
Contents:

Introduction
 Getting Started 61
 Simple Use 61
 Advanced Options 64

Concepts
 Java Security 66

Extending JeSS
 JeSS Basics 66
 Implementing a JeSSVisitor 67
 JeSSVisitor 69
 Example JeSSVisitor 71

Introduction

JeSS is an automated tool to detect static security flaws. Resources will be scanned for
code structures that could be used to compromise proprietary code, or to escalate local
privileges. The details of these code structures are explained in the Concepts section of
this user’s guide.

Getting Started

Before you can use JeSS, you will need to start up Eclipse with the JeSS plugin and open
the project containing the Java source code you want scanned.
See appendix B for the readme explaining how to do this.

Simple Use

Selecting Objects
To start a security scan, select one or more Java elements in one of the Eclipse navigator
windows. A Java element includes any Java project, package, or “,java” file. In different
Eclipse views these are represented as files, class objects, and folders. JeSS works with

 64

items selected in the Navigator view, Package Explorer, and all views in the Java
Browsing perspective. If an element that is of a type that cannot be scanned by JeSS an
error message will appear when the scan is initiated.

Example Error Message: if an invalid selection is made an error will occur

This can be confusing in Eclipse as elements can be highlighted without having the actual
focus of the workspace. Make sure that the element that is to be scanned is both
highlighted and has the focus of the workspace.

Example Selection: in this view the Java Project “Test” is selected

Performing a Scan
The next step is to use either the JeSS scan button () in the task bar at the top of the
workspace or to select the “Scan Current Selection” item from the JeSS menu.

 65

Example Menu: Use the “Scan Current Selection” action

This starts the JeSS scan. The progress bar at the bottom of the workspace will show the
progress of the JeSS scan. If more than one project is being scanned then this may take a
few seconds.

Dealing with the Results
After the JeSS scan is completed a dialog will appear saying how many problems were
found during the scan. In addition to this the “Problems” view will be brought to the
front of the workspace. In this view, the problems discovered by the JeSS scan will be
displayed.

Example problem: Unhandled Exception

IMPORTANT: if JeSS has found problems but they do not show up in the “Problems”
dialog then make sure that the filter on the problems view is not excluding JeSS problems
from the view

 66

Example Problem View Filter: make sure the “Security Marker” is checked

 The problems found by JeSS and listed in the Problems view can be treated like any
other problem in that view. For example, to jump to a problematic section of your code,
simply double click on the problem in the view and an appropriate editor will appear with
the code highlighted. JeSS does not supply any true resolutions to these problems, but
you can choose to ignore the particular warning, ignore all warnings in that file, or ignore
all warnings on the project. A better solution would be to modify your code to eliminate
these problematic sections as outlined in the Concepts section of this users guide.

Advanced Options

Scan Types
With JeSS you can customize the set of security bugs that will be scanned for. As default
JeSS will only scan for Anonymous Inner Classes, Unhandled Exceptions, and Missing
Modifiers (details of these security bugs can be found in Concepts section). JeSS can
also determine the methods, fields and classes of a project that are declared public. A
similar scan can also be used to find all protected methods, and to find all classes,
methods and fields that are not declared final. These types of scans should be done
individually as they typically produce a large number of results. The utility of these
types of scans is described in detail in the Concepts section.

Selecting Scan Types
It is a simple process to customize the scan that JeSS performs. This can be done on the
JeSS Preference page. To access the JeSS Preference you can either select the “Show
JeSS Preferences” from the JeSS menu or access them through “Window-->Preferences”
and then select “JeSS Preferences” from the menu on the left hand side of the dialog.

 67

Select “Show JeSS Preferences”

 This dialog shows a simple list of available scanners with a Boolean checkbox next to
them. To enable or disable a particular type of scan simply select or deselect the
checkbox that corresponds to the desired scanner. The last two elements on this
preference page are to be used to extend the functionality of JeSS.

JeSS Preferences: use the checkboxes to customize the security scan

Using Your Own Scanners
Greater detail on this subject can be found in the Extending JeSS section of this users
guide.

 68

Concepts of JeSS

Java Security
Java is a language that has been designed from the beginning with security in mind. [5] It
is implemented with the Sandbox model in order to limit the privileges of running code.
The language has been designed to prevent major security errors such as buffer
overflows. Numerous precautions have been made to ensure that java is a truly mobile
secure language. A detailed description of the java security model can be found at [13] &
[16]. With this in mind there are still many steps that a programmer can take in order to
further secure their own code. This is done to protect proprietary code and to prevent
their application from being used in an attack to escalate privileges. The process of
producing secure java code is examined in [3]. This is further reduced to a paper on
twelve basic rules for more secure java code [2]. In the following section a more detailed
look at these twelve principals as well as a few additional ones is provided. While JeSS
does not currently scan for all of these security bugs, external visitors can be
implemented to do so.

The 11 security hole explanations, as found in the main paper, are found in this section of
the Users manual

Extending JeSS

When JeSS scans a file it first produces an abstract syntax tree (AST). JeSS then
searches this AST for problematic code structures using the Visitor pattern. A visitor is
passed to the root of the AST and it searches for the signature of security bugs. Each
security bug is scanned for using a separate visitor. This structure allows JeSS to be
easily extended. To scan for new security bugs simply introduce a new visitor of the
appropriate type.

JeSS Basics

AST Production
JeSS produces an AST using the built in org.eclipse.jdt.core.dom package. The class
ASTParser is used to accept the compilation unit and produce an AST. Manipulation and
use of this AST requires the use of the classes in the org.eclipse.jdt.core.dom package.
Visitors that are passed to this tree must be of type ASTVisitor.

 69

Visitors and JeSS
The visitors used in JeSS are a sub-type of ASTVisitor. They are of type JeSSVisitor.
JeSSVisitor is further sub-classed to create the individual visitors that are used to scan for
the security bugs. JeSSVisitor provides three helper methods for the security scans.
There are methods to report a problem, to parse a class name out of a node, and to parse a
method or field name out of a node. Greater detail on this class can be found in the
section JeSSVisitor.

Reporting Problems
In JeSS problems found are displayed in the “Problems” view. These markers are a sub-
type of org.eclipse.resources.problemmarker. The standard format for reporting a
problem in JeSS is a general message conveying the nature of the security bug and then a
specific reference associated with the particular problem.

For example a field that is missing a modifier would be reported as follows
 “Modifier missing on Field: String none.”
This convention should be used in all implementations of JeSSVisitor.

Implementing a JeSSVisitor

Plugging into JeSS
It is possible to design and use your own visitors with the JeSS plug-in. In order to do so
a visitor of the appropriate form is required. There is a more detailed description of the
requirements is in the following sections. In order to plug in your visitor you must
enable the use of external visitors in the preferences page. To do so open up the JeSS
Preferences page, this can be done through the JeSS menu or
WindowPreferencesJeSS Preferences. Once in the preference page select the
Boolean checkbox corresponding to the “Use external visitors found in the JeSS plug-in
folder” option.

 70

JeSS Preferences: Enable the use of external visitors and select

 the directory where they are to be found

This causes JeSS to search for visitors in the specified directory. The next field allows
the user to specify the directory that JeSS searches for the visitors in. The default
directory is a folder labeled “plugins” in the local JeSS plug-in directory. For example
from the eclipse folder the plugins would be found on the path:

~/eclipse/plugins/edu.colby.JESS_1.0/plugins
If another directory is desired then it can be specified in the Preference page.

Requirements
Once the use of external visitors has been enabled there are a few requirements for an
external visitor. JeSS requires the following of an external visitor:

- The visitor must be a “.class” file. JeSS will not compile the visitor for you
- The visitor must extend JeSSVisitor.
- The visitor must have a constructor that takes type

edu.colby.JeSS.scanner.VisitorManager as a parameter and call the
constructor in JeSSVisitor that takes this parameter.

- The visitor “.class” file must be in the directory specified in the preference
page

Design
 In order to uncover security bugs a JeSSVisitor must be designed to recognize and flag
certain code structures that signify the security bug. The signature that the Visitor
searches for is specific for each security bug, but the process of reporting this problem is
built into the JeSSVisitor class. Implementing your own JeSSVisitor can be done very
easily. The basic process can be broken down into the following steps:

• Identify a security bug and determine what the signature looks like in the AST
• Create a visitor class that can recognize this signature

 71

• Make the visitor a subclass of JeSSVisitor and use the reportProblem()
method to mark the problematic sections of the code

The hardest part of creating your own visitor is the automated recognition of the
problematic AST structure. It may be helpful to examine the documentation for the AST
nodes that the visitor will traverse. This can found in the org.eclipse.jdt.core.dom API.
An example of a visitor that identifies unhandled exceptions can be found in the
following section. However, once your visitor knows how to find the security bug it is a
simple matter to report a problem using the reportProblem() method.

JeSSVisitor

package edu.colby.JeSS.util;
import org.eclipse.jdt.core.dom.*;
import edu.colby.JeSS.scanner.VisitorManager;

/**
 * This is the super class for all Visitors in the JeSS scanner.
 * This is created to allow easy extensibility to the JeSS plugin.
 * Simply create a sub-type of JeSSVisitor to find patterns in an
 * AST and then use the reportProblem() method of JeSSVisitor to
 * create a security marker.
 * @author Russell Spitler
 * Mar 24, 2005
 */
public class JeSSVisitor extends ASTVisitor {

 private VisitorManager vManager;
 //store a reference to the Visitor manager for error reporting
 public JESSVisitor(VisitorManager vManager){
 this.vManager = vManager;
 }
 /**
 * Used to report a problem and create a security
 * marker for the security bug. This method uses
 * the reportProblem() method of the VisitorManager.
 * @param node - the root of the problem
 * @param errorMessage - the message associated with the error
 */
 public void reportProblem(ASTNode node, String errorMessage){

 Location loc = new Location();

 CompilationUnit compUnit = (CompilationUnit) node.getRoot();

 72

 loc.setLineNumber(compUnit.lineNumber(node.getStartPosition()));
 loc.setCharEnd(node.getStartPosition()+node.getLength());
 loc.setCharStart(node.getStartPosition());
 loc.setFile(vManager.getResource());

 vManager.reportProblem(errorMessage, loc, true);
 }
 /**
 * This helper method parses a class name from the output of
 * the standard toString() method in the TypeDeclaration
 * AST node. This method relies upon the standard format of
 * TypeDeclaration[class CLASSNAME DECLARATIONS]. The name
 * is converted to user readable form "class CLASSNAME"
 * @param string - toString() from a TypeDeclaration AST node
 * @return the name in user readable form
 */
 protected String parseClassName(String string){

 //start after the first [
 int startIndex = string.indexOf("[")+1;

 //end after the first space following "class "
 int endIndex = string.indexOf(" ", startIndex+7);
 string = string.substring(startIndex, endIndex);
 return string;
 }
 /**
 * This method parses a user readable name from the
 * toString() output of FieldDeclaration and MethodDeclaration.

 *This method relies on the standard format of
 * ***Declaration[***NAME] where *** is either Type or

 * Method
 * @param string – toString() from a MethodDeclaration or Field

Declaration * node

 * @return the name in user readable form
 */
 protected String parseStandardName(String string){

 string = string.substring(string.indexOf(" "), (string.length()-1));
 return string;
 }

}

 73

Example JeSSVisitor – Unhandled Exception Finder
/*
 * @author Russell Spitler
 * Created on Dec 26, 2004
 * ExceptionFinder.java
 *
 */
package edu.colby.JeSS.visitors;

import java.util.List;
import org.eclipse.jdt.core.dom.*;
import edu.colby.JeSS.scanner.*;
import edu.colby.JeSS.util.JESSVisitor;

public class ExceptionFinder extends JeSSVisitor {

 private String errorMessage = "Unhandled Exception Found";

 public ExceptionFinder(VisitorManager vManager){
 super(vManager);
 }

 public boolean visit(CatchClause node) {
 //retrieve the block contained in this catch clause
 Block body = node.getBody();
 //retrieve the statements contained in this block
 List l = body.statements();
 //if there are no statements in the block report error
 if(l.isEmpty()){

 reportProblem(node, errorMessage);
 }
 return true;
 }
}

In the Reference section of the Users Manual the References as found in section 7 of the
main paper are found. As well as the javaDoc for the project, which is found in Appendix
C.

 74

 75

Appendix B – JeSS README

Installing JSS:

Drag the edu.colby.cs.JeSS plugin directory and the edu.colby.cs.JeSS.help directory

(found with this file) into the plugin directory found in the Eclipse directory. Start

Eclipse. It is possible that you will need to start Eclipse with a clean build in order to

register the plugin.

Once Installed:

Make sure that the "Problems" view is not filtering out the JSS markers. This can be

done by clicking the filter icon in the upper left hand corner of the Problems view. Then

scroll down to the bottom of the list of markers and select the boolean checkbox next to

the JeSS Security Marker. More information on this can be found in the JSS User

manual, which can be accessed through standard eclipse help (Help--> Help Contents).

 76

 77

Appendix C - JavaDoc

JeSSPlugin file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 3 11/7/2008 10:14 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS
Class JeSSPlugin
java.lang.Object
 extended byorg.eclipse.core.runtime.Plugin
 extended byorg.eclipse.ui.plugin.AbstractUIPlugin
 extended byedu.colby.cs.JeSS.JeSSPlugin

All Implemented Interfaces:
org.osgi.framework.BundleActivator

public class JeSSPlugin
extends org.eclipse.ui.plugin.AbstractUIPlugin

The main plugin class to be used in the desktop. This class is geenerated by Eclipse.

Nested Class Summary

Nested classes inherited from class org.eclipse.ui.plugin.AbstractUIPlugin

Field Summary
private static JeSSPlugin plugin

private

 java.util.ResourceBundle
resourceBundle

Fields inherited from class org.eclipse.ui.plugin.AbstractUIPlugin

Fields inherited from class org.eclipse.core.runtime.Plugin
PLUGIN_PREFERENCE_SCOPE, PREFERENCES_DEFAULT_OVERRIDE_BASE_NAME,
PREFERENCES_DEFAULT_OVERRIDE_FILE_NAME

Constructor Summary
JeSSPlugin(org.eclipse.core.runtime.IPluginDescriptor descriptor)
 The constructor.

JeSSPlugin file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 3 11/7/2008 10:14 AM

Method Summary
static JeSSPlugin getDefault()

 Returns the shared instance.
 java.util.ResourceBundle getResourceBundle()

 Returns the plugin's resource bundle,
static java.lang.String getResourceString(java.lang.String key)

 Returns the string from the plugin's resource bundle,
or 'key' if not found.

static org.eclipse.core.resources.IWorkspace getWorkspace()
 Returns the workspace instance.

Methods inherited from class org.eclipse.ui.plugin.AbstractUIPlugin
createImageRegistry, getDialogSettings, getImageRegistry, getPreferenceStore,
getWorkbench, imageDescriptorFromPlugin, initializeDefaultPluginPreferences,
initializeDefaultPreferences, initializeImageRegistry, loadDialogSettings,
loadPreferenceStore, refreshPluginActions, saveDialogSettings, savePreferenceStore,
shutdown, start, startup, stop

Methods inherited from class org.eclipse.core.runtime.Plugin
find, find, getBundle, getDescriptor, getLog, getPluginPreferences, getStateLocation,
internalInitializeDefaultPluginPreferences, isDebugging, openStream, openStream,
savePluginPreferences, setDebugging, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

plugin

private static JeSSPlugin plugin

resourceBundle

private java.util.ResourceBundle resourceBundle

Constructor Detail

JeSSPlugin

public JeSSPlugin(org.eclipse.core.runtime.IPluginDescriptor descriptor)

The constructor.

JeSSPlugin file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 3 11/7/2008 10:14 AM

Method Detail

getDefault

public static JeSSPlugin getDefault()

Returns the shared instance.

getWorkspace

public static org.eclipse.core.resources.IWorkspace getWorkspace()

Returns the workspace instance.

getResourceString

public static java.lang.String getResourceString(java.lang.String key)

Returns the string from the plugin's resource bundle, or 'key' if not found.

getResourceBundle

public java.util.ResourceBundle getResourceBundle()

Returns the plugin's resource bundle,

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ExceptionFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:42 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.visitors
Class ExceptionFinder
java.lang.Object
 extended byorg.eclipse.jdt.core.dom.ASTVisitor
 extended byedu.colby.cs.JeSS.util.JeSSVisitor
 extended byedu.colby.cs.JeSS.visitors.ExceptionFinder

public class ExceptionFinder
extends JeSSVisitor

The Visitor that finds unhandled exceptions

Field Summary
private

 java.lang.String
errorMessage

Fields inherited from class edu.colby.cs.JeSS.util.JeSSVisitor

Fields inherited from class org.eclipse.jdt.core.dom.ASTVisitor

Constructor Summary
ExceptionFinder(VisitorManager vManager)

Method Summary
 boolean visit(org.eclipse.jdt.core.dom.CatchClause node)

 Check to see if the catch clause has a block that has no statements

Methods inherited from class edu.colby.cs.JeSS.util.JeSSVisitor
parseClassName, parseStandardName, reportProblem

Methods inherited from class org.eclipse.jdt.core.dom.ASTVisitor
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,

ExceptionFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:42 AM

endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, postVisit, preVisit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

errorMessage

private java.lang.String errorMessage

Constructor Detail

ExceptionFinder

public ExceptionFinder(VisitorManager vManager)

Method Detail

visit

public boolean visit(org.eclipse.jdt.core.dom.CatchClause node)

Check to see if the catch clause has a block that has no statements

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

FinalFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:16 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.visitors
Class FinalFinder
java.lang.Object
 extended byorg.eclipse.jdt.core.dom.ASTVisitor
 extended byedu.colby.cs.JeSS.util.JeSSVisitor
 extended byedu.colby.cs.JeSS.visitors.FinalFinder

public class FinalFinder
extends JeSSVisitor

The visitor to find non-Final methods and fields

Field Summary

Fields inherited from class edu.colby.cs.JeSS.util.JeSSVisitor

Fields inherited from class org.eclipse.jdt.core.dom.ASTVisitor

Constructor Summary
FinalFinder(VisitorManager vManager)

Method Summary
 boolean visit(org.eclipse.jdt.core.dom.FieldDeclaration node)

 Check the modifiers on the field as it is declared
 boolean visit(org.eclipse.jdt.core.dom.MethodDeclaration node)

 Check the modifiers on the method as it is declared

Methods inherited from class edu.colby.cs.JeSS.util.JeSSVisitor
parseClassName, parseStandardName, reportProblem

Methods inherited from class org.eclipse.jdt.core.dom.ASTVisitor
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,

FinalFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:16 AM

endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, postVisit, preVisit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

FinalFinder

public FinalFinder(VisitorManager vManager)

Method Detail

visit

public boolean visit(org.eclipse.jdt.core.dom.FieldDeclaration node)

Check the modifiers on the field as it is declared

visit

public boolean visit(org.eclipse.jdt.core.dom.MethodDeclaration node)

Check the modifiers on the method as it is declared

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

InnerClassFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:16 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.visitors
Class InnerClassFinder
java.lang.Object
 extended byorg.eclipse.jdt.core.dom.ASTVisitor
 extended byedu.colby.cs.JeSS.util.JeSSVisitor
 extended byedu.colby.cs.JeSS.visitors.InnerClassFinder

public class InnerClassFinder
extends JeSSVisitor

The visitor to find inner classes

Field Summary
private

 java.lang.String
errorMessage

Fields inherited from class edu.colby.cs.JeSS.util.JeSSVisitor

Fields inherited from class org.eclipse.jdt.core.dom.ASTVisitor

Constructor Summary
InnerClassFinder(VisitorManager vManager)

Method Summary
 boolean visit(org.eclipse.jdt.core.dom.AnonymousClassDeclaration node)

 Report problem when a Declaration of this type is found

Methods inherited from class edu.colby.cs.JeSS.util.JeSSVisitor
parseClassName, parseStandardName, reportProblem

Methods inherited from class org.eclipse.jdt.core.dom.ASTVisitor
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,

InnerClassFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:16 AM

endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, postVisit, preVisit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

errorMessage

private java.lang.String errorMessage

Constructor Detail

InnerClassFinder

public InnerClassFinder(VisitorManager vManager)

Method Detail

visit

public boolean visit(org.eclipse.jdt.core.dom.AnonymousClassDeclaration node)

Report problem when a Declaration of this type is found

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

JeSScanAction file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 4 11/7/2008 10:17 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.actions
Class JeSScanAction
java.lang.Object
 extended byedu.colby.cs.JeSS.actions.JeSScanAction

All Implemented Interfaces:
org.eclipse.ui.IActionDelegate, org.eclipse.ui.IWorkbenchWindowActionDelegate

public class JeSScanAction
extends java.lang.Object
implements org.eclipse.ui.IWorkbenchWindowActionDelegate

This class tracks the selection of the current user environment and sends the selected items along to the
JeSSClearingHouse to determine their type and proper processing path for a Security Audit

See Also:
IWorkbenchWindowActionDelegate

Nested Class Summary
private
 class

JeSScanAction.JeSSRunnable

Field Summary
private

 org.eclipse.ui.IWorkbenchWindow
window

private
 org.eclipse.ui.IWorkbenchPart

workbenchPart

Constructor Summary
JeSScanAction()
 The constructor - does Nothing

Method Summary
 void dispose()

 Eclipse Generated Code - Does Nothing
private

 org.eclipse.jface.viewers.StructuredSelection
getStructuredSelection()
 Uses the current active workbench part to determine the

JeSScanAction file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 4 11/7/2008 10:17 AM

selected objects.
private org.eclipse.ui.IWorkbenchPart getWorkbenchPart()

 void init(org.eclipse.ui.IWorkbenchWindow window)

 Caches window object and calls refreshActivePart() to s
currently active workbench part

private void refreshActivePart()
 Stores the currently active workbench part in the local v
workbenchPart

 void run(org.eclipse.jface.action.IAction action)
 Sets up a runnable action so all resource changes are gro
together when the scan is run and show the progress of the sca
the status bar on the workbench window

private void runJeSS(org.eclipse.core.runtime.IProgressMonitor m
 The current selection is then determined and the objects
comprise that selection are passed along to the JeSSClearingH
one at at time to determine their type and proper processing pa

 void selectionChanged(org.eclipse.jface.action.IAction a
org.eclipse.jface.viewers.ISelection selection)
 Eclipse Generated Code - Does Nothing

private void showMessage(java.lang.String message)
 A helper method to display a "JeSS Plug-in" titled mess

dialog with the passed string as the message

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

window

private org.eclipse.ui.IWorkbenchWindow window

workbenchPart

private org.eclipse.ui.IWorkbenchPart workbenchPart

Constructor Detail

JeSScanAction

public JeSScanAction()

The constructor - does Nothing

JeSScanAction file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 4 11/7/2008 10:17 AM

Method Detail

run

public void run(org.eclipse.jface.action.IAction action)

Sets up a runnable action so all resource changes are grouped together when the scan is run and show the
progress of the scan using the status bar on the workbench window

Specified by:
run in interface org.eclipse.ui.IActionDelegate

See Also:
IActionDelegate.run(org.eclipse.jface.action.IAction)

runJeSS

private void runJeSS(org.eclipse.core.runtime.IProgressMonitor monitor)

The current selection is then determined and the objects that comprise that selection are passed along to
the JeSSClearingHouse one at at time to determine their type and proper processing path. Error messages
are returned if there is an invalid selection

Parameters:
monitor - - the progress monitor to be used to display the progress of the scan

showMessage

private void showMessage(java.lang.String message)

A helper method to display a "JeSS Plug-in" titled message dialog with the passed string as the message

Parameters:
message - - the string to be displayed

getWorkbenchPart

private org.eclipse.ui.IWorkbenchPart getWorkbenchPart()

Returns:
workbenchPart - current active IWorkbenchPart

getStructuredSelection

private org.eclipse.jface.viewers.StructuredSelection getStructuredSelection()

Uses the current active workbench part to determine the current selected objects. If nothing is currently
selected or a text editor is currently open (and text is selected) then null is returned.

Returns:

JeSScanAction file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

4 of 4 11/7/2008 10:17 AM

StructuredSelection - see org.eclipse.jface.viewers.StructuredSelection

init

public void init(org.eclipse.ui.IWorkbenchWindow window)

Caches window object and calls refreshActivePart() to store the currently active workbench part

Specified by:
init in interface org.eclipse.ui.IWorkbenchWindowActionDelegate

See Also:
IWorkbenchWindowActionDelegate.init(org.eclipse.ui.IWorkbenchWindow)

refreshActivePart

private void refreshActivePart()

Stores the currently active workbench part in the local variable workbenchPart

selectionChanged

public void selectionChanged(org.eclipse.jface.action.IAction action,
 org.eclipse.jface.viewers.ISelection selection)

Eclipse Generated Code - Does Nothing

Specified by:
selectionChanged in interface org.eclipse.ui.IActionDelegate

See Also:
IActionDelegate.selectionChanged(org.eclipse.jface.action.IAction,
org.eclipse.jface.viewers.ISelection)

dispose

public void dispose()

Eclipse Generated Code - Does Nothing

Specified by:
dispose in interface org.eclipse.ui.IWorkbenchWindowActionDelegate

See Also:
IWorkbenchWindowActionDelegate.dispose()

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

JeSSClearingHouse file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 3 11/7/2008 10:43 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.actions
Class JeSSClearingHouse
java.lang.Object
 extended byedu.colby.cs.JeSS.actions.JeSSClearingHouse

public class JeSSClearingHouse
extends java.lang.Object

This class acts as a clearing house to determine the type of the selected object and then pass it along the proper path
to be processed. Each "process" method strips all previous JeSS markers off of the element and then creates a new
instance of SecurityScanner to perform the scan

Author:
rspitler

Constructor Summary
JeSSClearingHouse()

Method Summary
private

static int
processCompilationUnit(org.eclipse.jdt.core.ICompilationUnit unit,
org.eclipse.jface.preference.IPreferenceStore store)
 Process a CompilationUnit to be scanned

private
static int

processJavaProject(org.eclipse.jdt.core.IJavaProject project,
org.eclipse.jface.preference.IPreferenceStore store)
 Process a javaProject to be scanned

static int processObject(java.lang.Object obj,
org.eclipse.jface.preference.IPreferenceStore store)
 The initial screening that determines the type of the selected object

private
static int

processPackageFragment(org.eclipse.jdt.core.IPackageFragment fragment,
org.eclipse.jface.preference.IPreferenceStore store)
 Process a PackageFragment to be scanned

private
static int

processPackageFragmentRoot(org.eclipse.jdt.core.IPackageFragmentRoot root,
org.eclipse.jface.preference.IPreferenceStore store)
 Process a package fragment root

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

JeSSClearingHouse file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 3 11/7/2008 10:43 AM

JeSSClearingHouse

public JeSSClearingHouse()

Method Detail

processObject

public static int processObject(java.lang.Object obj,
 org.eclipse.jface.preference.IPreferenceStore store)

The initial screening that determines the type of the selected object

Parameters:
obj - - the selected object to be processed
store - - the preferences that determine the extent of the scan

Returns:
warningsCount - the number of security bugs found

processCompilationUnit

private static int processCompilationUnit(org.eclipse.jdt.core.ICompilationUnit unit,
 org.eclipse.jface.preference.IPreferenceStore store)

Process a CompilationUnit to be scanned

Parameters:
unit - - the CompilationUnit to be scanned
store - - the preferences for the scan

Returns:
warningsCount - the number of bugs found

processPackageFragment

private static int processPackageFragment(org.eclipse.jdt.core.IPackageFragment fragment,
 org.eclipse.jface.preference.IPreferenceStore store)

Process a PackageFragment to be scanned

Parameters:
fragment - - the package fragment to be scanned
store - - the preferences for the scan

Returns:
warningsCount - the number of bugs found

processPackageFragmentRoot

private static int processPackageFragmentRoot(org.eclipse.jdt.core.IPackageFragmentRoot root,
 org.eclipse.jface.preference.IPreferenceStore store)

Process a package fragment root

Parameters:

JeSSClearingHouse file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 3 11/7/2008 10:43 AM

root - - the package root to be processed
store - - the preferences for the scan

Returns:
warningscount - the number of bugs found

processJavaProject

private static int processJavaProject(org.eclipse.jdt.core.IJavaProject project,
 org.eclipse.jface.preference.IPreferenceStore store)

Process a javaProject to be scanned

Parameters:
project - - the project to be scanned
store - - the preferences for the scan

Returns:
warningsCount - the number of bugs found

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

VisitorManager file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 4 11/7/2008 10:19 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.scanner
Class VisitorManager
java.lang.Object
 extended byedu.colby.cs.JeSS.scanner.VisitorManager

public class VisitorManager
extends java.lang.Object

This class is the root of the security analysis. It accepts the IPreference store in its initialization to determine the
types of scans being performed. The scan() method then accepts the root of an AST and the corresponding source
file for error reporting. This is the only class in the JeSS plugin that deals with markers. All markers are created
and deleted from methods in this class. Errors are reported from the visitors through the reportProblem() method of
JeSSVisitor, which in turn calls the reportProblem() method of this class.

Author:
rspitler

Field Summary
static java.lang.String MARKER_ID

private int problems

private

 org.eclipse.core.resources.IFile
source

private JeSSVisitorCollection visitors

Constructor Summary
VisitorManager(org.eclipse.jface.preference.IPreferenceStore store)
 Initialize the class using the IPreferenceStore to determine what scanners are used during the security
analysis

Method Summary
static void deleteMarker(org.eclipse.core.resources.IMarker marker)

 Delete the passed marker.
static boolean deleteSecurityMarkers(org.eclipse.core.resources.IResource source)

 This method deletes all of the security markers in the passed resource
 org.eclipse.core.resources.IFile getResource()

VisitorManager file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 4 11/7/2008 10:19 AM

 void reportProblem(java.lang.String errorMessage, Location loc,
boolean isError, java.lang.String errorType)
 Take the passed values and create a Marker on the resource stored by the
VisitorManager.

 int scan(org.eclipse.jdt.core.dom.CompilationUnit result,
org.eclipse.core.resources.IFile file)
 Accept an AST root node in the form
org.eclipse.jdt.core.dom.CompilationUnit and scan the AST for security bugs.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

problems

private int problems

MARKER_ID

public static java.lang.String MARKER_ID

visitors

private JeSSVisitorCollection visitors

source

private org.eclipse.core.resources.IFile source

Constructor Detail

VisitorManager

public VisitorManager(org.eclipse.jface.preference.IPreferenceStore store)

Initialize the class using the IPreferenceStore to determine what scanners are used during the security
analysis

Parameters:
store - - the plugin preferences

Method Detail

scan

VisitorManager file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 4 11/7/2008 10:19 AM

public int scan(org.eclipse.jdt.core.dom.CompilationUnit result,
 org.eclipse.core.resources.IFile file)

Accept an AST root node in the form org.eclipse.jdt.core.dom.CompilationUnit and scan the AST for
security bugs.

Parameters:
result - - the AST to be scanned
file - - the local resource for the AST

Returns:
warningsCount - the number of warnings generated

getResource

public org.eclipse.core.resources.IFile getResource()

Returns:
source - the underlying file of the current AST

reportProblem

public void reportProblem(java.lang.String errorMessage,
 Location loc,
 boolean isError,
 java.lang.String errorType)

Take the passed values and create a Marker on the resource stored by the VisitorManager. Use
MarkerUtilities to ensure that the marker appears in the source.

Parameters:
errorMessage - - the message related to the security bug
loc - - the Location object storing the placement of the bug
isError - - a boolean to determine if the bug is an error or warning
errorType - - TODO for future implementation of error resolution

deleteMarker

public static void deleteMarker(org.eclipse.core.resources.IMarker marker)

Delete the passed marker. This method is included here as it is the only way a marker is deleted in JeSS. If
future implementations require additional handling when markers are removed then this is where the changes
would be made

Parameters:
marker - - the marker to be removed

deleteSecurityMarkers

public static boolean deleteSecurityMarkers(org.eclipse.core.resources.IResource source)

This method deletes all of the security markers in the passed resource

VisitorManager file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

4 of 4 11/7/2008 10:19 AM

Parameters:
source - - tje source in which to remove the markers

Returns:
boolean - result depending upon success

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

VectorVisitorCollection file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 3 11/7/2008 10:19 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class VectorVisitorCollection
java.lang.Object
 extended byedu.colby.cs.JeSS.util.VectorVisitorCollection

All Implemented Interfaces:
JeSSVisitorCollection

public class VectorVisitorCollection
extends java.lang.Object
implements JeSSVisitorCollection

The current implementation of JeSSVisitorCollection. This is done using a Vector as a delegate.

Field Summary
private

 java.util.Vector
collection

Constructor Summary
VectorVisitorCollection()

Method Summary
 void add(JeSSVisitor visitor)

 Add another visitor to the Collection
 void append(JeSSVisitorCollection otherJeSSVC)

 Add all visitors from another Collection of this type
 JeSSVisitor elementAt(int i)

 Retrieve an element at specified location
 java.util.Collection getCollection()

 A helper method for append.
 int size()

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

VectorVisitorCollection file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 3 11/7/2008 10:19 AM

Field Detail

collection

private java.util.Vector collection

Constructor Detail

VectorVisitorCollection

public VectorVisitorCollection()

Method Detail

elementAt

public JeSSVisitor elementAt(int i)

Description copied from interface: JeSSVisitorCollection
Retrieve an element at specified location

Specified by:
elementAt in interface JeSSVisitorCollection

Parameters:
i - - the location of the desired element

Returns:
JeSSVisitor - the JeSSVisitor at i

add

public void add(JeSSVisitor visitor)

Description copied from interface: JeSSVisitorCollection
Add another visitor to the Collection

Specified by:
add in interface JeSSVisitorCollection

Parameters:
visitor - - the visitor to be added

append

public void append(JeSSVisitorCollection otherJeSSVC)

Description copied from interface: JeSSVisitorCollection
Add all visitors from another Collection of this type

VectorVisitorCollection file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 3 11/7/2008 10:19 AM

Specified by:
append in interface JeSSVisitorCollection

Parameters:
otherJeSSVC - - the collection to be added

getCollection

public java.util.Collection getCollection()

Description copied from interface: JeSSVisitorCollection
A helper method for append. This allows any implementations of this interface to use any type of
delegate so long as it is a collection

Specified by:
getCollection in interface JeSSVisitorCollection

Returns:
Collection - the underlying delegate collection of an implementation of JeSSVisitorCollection

size

public int size()

Specified by:
size in interface JeSSVisitorCollection

Returns:
the number of elements in the collection

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ShowPreferenceAction file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 3 11/7/2008 10:45 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.actions
Class ShowPreferenceAction
java.lang.Object
 extended byedu.colby.cs.JeSS.actions.ShowPreferenceAction

All Implemented Interfaces:
org.eclipse.ui.IActionDelegate, org.eclipse.ui.IWorkbenchWindowActionDelegate

public class ShowPreferenceAction
extends java.lang.Object
implements org.eclipse.ui.IWorkbenchWindowActionDelegate

Field Summary
private

 org.eclipse.ui.IWorkbenchWindow
window

Constructor Summary
ShowPreferenceAction()
 The constructor.

Method Summary
 void dispose()

 Eclipse Generated Code - Does Nothing
private

 org.eclipse.swt.widgets.Shell
getShell()

 void init(org.eclipse.ui.IWorkbenchWindow window)
 Store the Workbench window for later use

 void run(org.eclipse.jface.action.IAction action)
 Create a new Preference Manager showing the JeSSPreferencePage

 void selectionChanged(org.eclipse.jface.action.IAction action,
org.eclipse.jface.viewers.ISelection selection)
 Eclipse Generated Code - Does Nothing

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

ShowPreferenceAction file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 3 11/7/2008 10:45 AM

Field Detail

window

private org.eclipse.ui.IWorkbenchWindow window

Constructor Detail

ShowPreferenceAction

public ShowPreferenceAction()

The constructor.

Method Detail

run

public void run(org.eclipse.jface.action.IAction action)

Create a new Preference Manager showing the JeSSPreferencePage

Specified by:
run in interface org.eclipse.ui.IActionDelegate

See Also:
IActionDelegate.run(org.eclipse.jface.action.IAction)

getShell

private org.eclipse.swt.widgets.Shell getShell()

Returns:
Shell

init

public void init(org.eclipse.ui.IWorkbenchWindow window)

Store the Workbench window for later use

Specified by:
init in interface org.eclipse.ui.IWorkbenchWindowActionDelegate

Parameters:
window - - the current workbench window

See Also:

ShowPreferenceAction file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 3 11/7/2008 10:45 AM

IWorkbenchWindowActionDelegate.init(org.eclipse.ui.IWorkbenchWindow)

selectionChanged

public void selectionChanged(org.eclipse.jface.action.IAction action,
 org.eclipse.jface.viewers.ISelection selection)

Eclipse Generated Code - Does Nothing

Specified by:
selectionChanged in interface org.eclipse.ui.IActionDelegate

See Also:
IActionDelegate.selectionChanged(org.eclipse.jface.action.IAction,
org.eclipse.jface.viewers.ISelection)

dispose

public void dispose()

Eclipse Generated Code - Does Nothing

Specified by:
dispose in interface org.eclipse.ui.IWorkbenchWindowActionDelegate

See Also:
IWorkbenchWindowActionDelegate.dispose()

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

SecurityScanner file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 3 11/7/2008 10:45 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.scanner
Class SecurityScanner
java.lang.Object
 extended byedu.colby.cs.JeSS.scanner.SecurityScanner

public class SecurityScanner
extends java.lang.Object

This class recieves a java Project, Package or Compilation Unit and generates an AST. This AST is then relayed to the VisitorManager
class where it is evaluated for security bugs. This process passes the integer warningsCount to track the number of bugs found.

Author:
rspitler

Field Summary
private

 VisitorManager vManager

Constructor Summary
SecurityScanner(org.eclipse.jface.preference.IPreferenceStore store)

Method Summary
private

 int scanCompilationUnit(org.eclipse.jdt.core.dom.CompilationUnit result, org.eclipse.core.resources.IFile file)
 Processes a org.eclipse.jdt.core.dom.CompilationUnit which is the root of an AST and passes it to the VisitorManager for
security analysis

 int scanCompilationUnit(org.eclipse.jdt.core.ICompilationUnit compUnit)
 WARNING: do not confuse with the private method of the same name! This method accepts type
org.eclipse.jdt.core.ICompilationUnit and then extracts the local resource and generates an AST before it is passed along for
security analysis

 int scanPackage(org.eclipse.jdt.core.IPackageFragment fragment)
 Receive a package fragment and extract the compilation units to be processed indiviually.

 int scanProject(org.eclipse.jdt.core.IJavaProject project)
 This method receives a Java project and the projects immediate Resource.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

vManager

private VisitorManager vManager

Constructor Detail

SecurityScanner

SecurityScanner file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 3 11/7/2008 10:45 AM

public SecurityScanner(org.eclipse.jface.preference.IPreferenceStore store)

Method Detail

scanProject

public int scanProject(org.eclipse.jdt.core.IJavaProject project)
 throws org.eclipse.jdt.core.JavaModelException

This method receives a Java project and the projects immediate Resource. It then extracts the package fragments from the project and
calls a helper method to extract the compilation Units from the packages.

Parameters:
project - - the project to be scanned

Returns:
warningsCount - number of bugs found in the project

Throws:
org.eclipse.jdt.core.JavaModelException

scanPackage

public int scanPackage(org.eclipse.jdt.core.IPackageFragment fragment)
 throws org.eclipse.jdt.core.JavaModelException

Receive a package fragment and extract the compilation units to be processed indiviually.

Parameters:
fragment - - the fragment to be processed

Returns:
warningsCount - the number of bugs found

Throws:
org.eclipse.jdt.core.JavaModelException

scanCompilationUnit

public int scanCompilationUnit(org.eclipse.jdt.core.ICompilationUnit compUnit)

WARNING: do not confuse with the private method of the same name! This method accepts type
org.eclipse.jdt.core.ICompilationUnit and then extracts the local resource and generates an AST before it is passed along for security
analysis

Parameters:
compUnit - - the ICompilationUnit to be analyzed

Returns:
warningsCount - the number of bugs found in this source

scanCompilationUnit

private int scanCompilationUnit(org.eclipse.jdt.core.dom.CompilationUnit result,
 org.eclipse.core.resources.IFile file)

Processes a org.eclipse.jdt.core.dom.CompilationUnit which is the root of an AST and passes it to the VisitorManager for security
analysis

Parameters:
result - the root of the AST to be analyzed
file - the local resource of the CompilationUnit

Returns:
The number of bugs found

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

SecurityScanner file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 3 11/7/2008 10:20 AM

PublicModifierFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:21 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.visitors
Class PublicModifierFinder
java.lang.Object
 extended byorg.eclipse.jdt.core.dom.ASTVisitor
 extended byedu.colby.cs.JeSS.util.JeSSVisitor
 extended byedu.colby.cs.JeSS.visitors.PublicModifierFinder

public class PublicModifierFinder
extends JeSSVisitor

This class finds all publicly declared Fields and Methods

Field Summary

Fields inherited from class edu.colby.cs.JeSS.util.JeSSVisitor

Fields inherited from class org.eclipse.jdt.core.dom.ASTVisitor

Constructor Summary
PublicModifierFinder(VisitorManager vManager)

Method Summary
 boolean visit(org.eclipse.jdt.core.dom.FieldDeclaration node)

 Check the Field declaration to see if it is public
 boolean visit(org.eclipse.jdt.core.dom.MethodDeclaration node)

 Check the Method declaration to see if it is public

Methods inherited from class edu.colby.cs.JeSS.util.JeSSVisitor
parseClassName, parseStandardName, reportProblem

Methods inherited from class org.eclipse.jdt.core.dom.ASTVisitor
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,

PublicModifierFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:21 AM

endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, postVisit, preVisit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

PublicModifierFinder

public PublicModifierFinder(VisitorManager vManager)

Method Detail

visit

public boolean visit(org.eclipse.jdt.core.dom.FieldDeclaration node)

Check the Field declaration to see if it is public

visit

public boolean visit(org.eclipse.jdt.core.dom.MethodDeclaration node)

Check the Method declaration to see if it is public

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

PublicFinalClassFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:21 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.visitors
Class PublicFinalClassFinder
java.lang.Object
 extended byorg.eclipse.jdt.core.dom.ASTVisitor
 extended byedu.colby.cs.JeSS.util.JeSSVisitor
 extended byedu.colby.cs.JeSS.visitors.PublicFinalClassFinder

public class PublicFinalClassFinder
extends JeSSVisitor

This visitor finds Types that are public, or are not final

Field Summary

Fields inherited from class edu.colby.cs.JeSS.util.JeSSVisitor

Fields inherited from class org.eclipse.jdt.core.dom.ASTVisitor

Constructor Summary
PublicFinalClassFinder(VisitorManager vManager)

Method Summary
 boolean visit(org.eclipse.jdt.core.dom.TypeDeclaration node)

 Check the Type declaration to determine if the class is public or not Final

Methods inherited from class edu.colby.cs.JeSS.util.JeSSVisitor
parseClassName, parseStandardName, reportProblem

Methods inherited from class org.eclipse.jdt.core.dom.ASTVisitor
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,

PublicFinalClassFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:21 AM

endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, postVisit, preVisit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

PublicFinalClassFinder

public PublicFinalClassFinder(VisitorManager vManager)

Method Detail

visit

public boolean visit(org.eclipse.jdt.core.dom.TypeDeclaration node)

Check the Type declaration to determine if the class is public or not Final

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ProtectedModifierFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 3 11/7/2008 10:21 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.visitors
Class ProtectedModifierFinder
java.lang.Object
 extended byorg.eclipse.jdt.core.dom.ASTVisitor
 extended byedu.colby.cs.JeSS.util.JeSSVisitor
 extended byedu.colby.cs.JeSS.visitors.ProtectedModifierFinder

public class ProtectedModifierFinder
extends JeSSVisitor

This class finds Fields and Mehtods with the protected modifier

Field Summary

Fields inherited from class edu.colby.cs.JeSS.util.JeSSVisitor

Fields inherited from class org.eclipse.jdt.core.dom.ASTVisitor

Constructor Summary
ProtectedModifierFinder(VisitorManager vManager)

Method Summary
 boolean visit(org.eclipse.jdt.core.dom.FieldDeclaration node)

 Check the Field declaration for a protected modifier
 boolean visit(org.eclipse.jdt.core.dom.MethodDeclaration node)

 Check the method declaration for a protected modifier
 boolean visit(org.eclipse.jdt.core.dom.TypeDeclaration node)

 Check the Type declaration for a protected modifier

Methods inherited from class edu.colby.cs.JeSS.util.JeSSVisitor
parseClassName, parseStandardName, reportProblem

Methods inherited from class org.eclipse.jdt.core.dom.ASTVisitor

ProtectedModifierFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 3 11/7/2008 10:21 AM

endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, postVisit, preVisit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

ProtectedModifierFinder

public ProtectedModifierFinder(VisitorManager vManager)

Method Detail

visit

public boolean visit(org.eclipse.jdt.core.dom.FieldDeclaration node)

Check the Field declaration for a protected modifier

visit

public boolean visit(org.eclipse.jdt.core.dom.MethodDeclaration node)

Check the method declaration for a protected modifier

visit

public boolean visit(org.eclipse.jdt.core.dom.TypeDeclaration node)

Check the Type declaration for a protected modifier

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

ProtectedModifierFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 3 11/7/2008 10:21 AM

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

PluginLoader.JeSSPluginLoader file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:26 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class PluginLoader.JeSSPluginLoader
java.lang.Object
 extended byjava.lang.ClassLoader
 extended byedu.colby.cs.JeSS.util.PluginLoader.JeSSPluginLoader

Enclosing class:
PluginLoader

private class PluginLoader.JeSSPluginLoader
extends java.lang.ClassLoader

This is a private ClassLoader that loads a class from file on disk. This class uses a delegate to perform the
loading operations.

Nested Class Summary

Nested classes inherited from class java.lang.ClassLoader

Field Summary

Fields inherited from class java.lang.ClassLoader

Constructor Summary
PluginLoader.JeSSPluginLoader(java.lang.ClassLoader delegate)
 Create the class loader using the passed delegate

Method Summary
 java.lang.Class defineClass(java.io.File file)

 Create a class object from the passed class file

Methods inherited from class java.lang.ClassLoader
clearAssertionStatus, defineClass, defineClass, defineClass, definePackage, findClass,
findLibrary, findLoadedClass, findResource, findResources, findSystemClass, getPackage,
getPackages, getParent, getResource, getResourceAsStream, getResources,
getSystemClassLoader, getSystemResource, getSystemResourceAsStream, getSystemResources,
loadClass, loadClass, resolveClass, setClassAssertionStatus, setDefaultAssertionStatus,
setPackageAssertionStatus, setSigners

PluginLoader.JeSSPluginLoader file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:26 AM

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

PluginLoader.JeSSPluginLoader

public PluginLoader.JeSSPluginLoader(java.lang.ClassLoader delegate)

Create the class loader using the passed delegate

Parameters:
delegate -

Method Detail

defineClass

public java.lang.Class defineClass(java.io.File file)

Create a class object from the passed class file

Parameters:
file - - the class file to be turned into a Class object

Returns:
Class - the Class object for the file

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

PluginLoader file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:47 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class PluginLoader
java.lang.Object
 extended byedu.colby.cs.JeSS.util.PluginLoader

public class PluginLoader
extends java.lang.Object

This class is responsible for dynamically loading the external visitors used in a JeSS scan. The class uses the path as set
in the JeSS preferences to search for the external visitors. The type is checked and the existance of a proper constructor
is confirmed. Then the external visitors are all added to a JeSSVisitorCollection and returned.

Nested Class Summary
private
 class

PluginLoader.classFileFilter
 The FileFilter that is used to screen out non-class files

private
 class

PluginLoader.JeSSPluginLoader
 This is a private ClassLoader that loads a class from file on disk.

Field Summary
private

 java.lang.Class[]
args

Constructor Summary
PluginLoader()

Method Summary
 JeSSVisitorCollection getPluginVisitors(org.eclipse.jface.preference.IPreferenceStore store,

VisitorManager vManager)
 This method searches the JeSS plugin folder for class files it then checks to make sure
the class files are valid JeSSVisitors and then instantiates them and passes them back in a
JeSSVisitorCollection

private boolean isValidJeSSVisitor(java.lang.Class userClass)
 Check to see if the loaded object is in fact a valid JeSSVisitor.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

PluginLoader file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:47 AM

Field Detail

args

private java.lang.Class[] args

Constructor Detail

PluginLoader

public PluginLoader()

Method Detail

getPluginVisitors

public JeSSVisitorCollection getPluginVisitors(org.eclipse.jface.preference.IPreferenceStore store,
 VisitorManager vManager)

This method searches the JeSS plugin folder for class files it then checks to make sure the class files are valid
JeSSVisitors and then instantiates them and passes them back in a JeSSVisitorCollection

Returns:
JeSSVisitorCollection - the collection of discovered visitors

isValidJeSSVisitor

private boolean isValidJeSSVisitor(java.lang.Class userClass)

Check to see if the loaded object is in fact a valid JeSSVisitor. As in, it is a subclass of JeSSVisitor and it has a
constructor that takes type VisitorManager as a paramter

Parameters:
userClass - - the object to be tested

Returns:
boolean - true if a valid visitor

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

PluginLoader.classFileFilter file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:27 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class PluginLoader.classFileFilter
java.lang.Object
 extended byedu.colby.cs.JeSS.util.PluginLoader.classFileFilter

All Implemented Interfaces:
java.io.FileFilter

Enclosing class:
PluginLoader

private class PluginLoader.classFileFilter
extends java.lang.Object
implements java.io.FileFilter

The FileFilter that is used to screen out non-class files

Constructor Summary
private PluginLoader.classFileFilter()

Method Summary
 boolean accept(java.io.File file)

 Retrieve the file name and check to see if it is a class file

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

PluginLoader.classFileFilter

private PluginLoader.classFileFilter()

Method Detail

PluginLoader.classFileFilter file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:27 AM

accept

public boolean accept(java.io.File file)

Retrieve the file name and check to see if it is a class file

Specified by:
accept in interface java.io.FileFilter

Returns:
boolean - true if it is a class file

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MissingModifierFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 3 11/7/2008 10:49 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.visitors
Class MissingModifierFinder
java.lang.Object
 extended byorg.eclipse.jdt.core.dom.ASTVisitor
 extended byedu.colby.cs.JeSS.util.JeSSVisitor
 extended byedu.colby.cs.JeSS.visitors.MissingModifierFinder

public class MissingModifierFinder
extends JeSSVisitor

The visitor that finds Types, Fields, and Methods that are missing modifiers.

Field Summary

Fields inherited from class edu.colby.cs.JeSS.util.JeSSVisitor

Fields inherited from class org.eclipse.jdt.core.dom.ASTVisitor

Constructor Summary
MissingModifierFinder(VisitorManager vManager)

Method Summary
 boolean visit(org.eclipse.jdt.core.dom.FieldDeclaration node)

 Check the Field declaration for a missing modifier
 boolean visit(org.eclipse.jdt.core.dom.MethodDeclaration node)

 Check the Method declaration for a missing modifier
 boolean visit(org.eclipse.jdt.core.dom.TypeDeclaration node)

 Check the Type declaration for a missing modifier

Methods inherited from class edu.colby.cs.JeSS.util.JeSSVisitor
parseClassName, parseStandardName, reportProblem

Methods inherited from class org.eclipse.jdt.core.dom.ASTVisitor

MissingModifierFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 3 11/7/2008 10:49 AM

endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, postVisit, preVisit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

MissingModifierFinder

public MissingModifierFinder(VisitorManager vManager)

Method Detail

visit

public boolean visit(org.eclipse.jdt.core.dom.FieldDeclaration node)

Check the Field declaration for a missing modifier

visit

public boolean visit(org.eclipse.jdt.core.dom.MethodDeclaration node)

Check the Method declaration for a missing modifier

visit

public boolean visit(org.eclipse.jdt.core.dom.TypeDeclaration node)

Check the Type declaration for a missing modifier

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

MissingModifierFinder file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 3 11/7/2008 10:49 AM

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MarkerResolutionGenerator file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:28 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class MarkerResolutionGenerator
java.lang.Object
 extended byedu.colby.cs.JeSS.util.MarkerResolutionGenerator

All Implemented Interfaces:
org.eclipse.ui.IMarkerResolutionGenerator

public class MarkerResolutionGenerator
extends java.lang.Object
implements org.eclipse.ui.IMarkerResolutionGenerator

This class provides the implementation for simple resolutions of JeSS security bugs. It is possible to ignore the
individual marker, ignore all markers on a particular file, and to ignore all markers on a project. Further implementation
of Error resolutions should be done in this class.

Author:
rspitler

Nested Class Summary
private
 class

MarkerResolutionGenerator.JeSSMarkerResolutionIgnore
 The resolution that allows the deletion of a single JeSS marker

private
 class

MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile
 The resolution that allows the deletion of all markers in the containing file

private
 class

MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject
 The resolution that allows the deletion of all markers in the containing the project

Constructor Summary
MarkerResolutionGenerator()

Method Summary
 org.eclipse.ui.IMarkerResolution[] getResolutions(org.eclipse.core.resources.IMarker marker)

 This method returns the array of possible markers resolutions for the
given marker.

 boolean hasResolutions(org.eclipse.core.resources.IMarker marker)
 A boolean check to see if resolutions exist for the marker

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

MarkerResolutionGenerator file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:28 AM

Constructor Detail

MarkerResolutionGenerator

public MarkerResolutionGenerator()

Method Detail

getResolutions

public org.eclipse.ui.IMarkerResolution[] getResolutions(org.eclipse.core.resources.IMarker marker)

This method returns the array of possible markers resolutions for the given marker.

Specified by:
getResolutions in interface org.eclipse.ui.IMarkerResolutionGenerator

Parameters:
marker - - the marker to find resolutions for

Returns:
an array containing resolutionsfor the marker

See Also:
IMarkerResolutionGenerator.getResolutions(org.eclipse.core.resources.IMarker)

hasResolutions

public boolean hasResolutions(org.eclipse.core.resources.IMarker marker)

A boolean check to see if resolutions exist for the marker

Parameters:
marker - - the marker to check for resolutions

Returns:
booelan - depending upon existance of resolutions

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Location file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 4 11/7/2008 10:30 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class Location
java.lang.Object
 extended byedu.colby.cs.JeSS.util.Location

public class Location
extends java.lang.Object

This class stores the information about a problem to be used in marker creation

Field Summary
private int charEnd

private int charStart

private

 org.eclipse.core.resources.IFile
file

private java.lang.String key

private int lineNumber

Constructor Summary
Location()

Method Summary
 int getCharEnd()

 int getCharStart()

 org.eclipse.core.resources.IFile getFile()

 java.lang.String getKey()

Location file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 4 11/7/2008 10:30 AM

 int getLineNumber()

 void setCharEnd(int charEnd)

 void setCharStart(int charStart)

 void setFile(org.eclipse.core.resources.IFile file)

 void setKey(java.lang.String key)

 void setLineNumber(int lineNumber)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

file

private org.eclipse.core.resources.IFile file

key

private java.lang.String key

charStart

private int charStart

charEnd

private int charEnd

lineNumber

private int lineNumber

Constructor Detail

Location file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 4 11/7/2008 10:30 AM

Location

public Location()

Method Detail

getLineNumber

public int getLineNumber()

Returns:
lineNumber - the line number of the problem.

setLineNumber

public void setLineNumber(int lineNumber)

Parameters:
lineNumber - The lineNumber to set.

getCharEnd

public int getCharEnd()

Returns:
charEnd - the last character of the problem in the file

setCharEnd

public void setCharEnd(int charEnd)

Parameters:
charEnd - The charEnd to set.

getCharStart

public int getCharStart()

Returns:
Returns the charStart.

setCharStart

public void setCharStart(int charStart)

Parameters:

Location file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

4 of 4 11/7/2008 10:30 AM

charStart - The charStart to set.

getFile

public org.eclipse.core.resources.IFile getFile()

Returns:
Returns the file.

setFile

public void setFile(org.eclipse.core.resources.IFile file)

Parameters:
file - The file to set.

getKey

public java.lang.String getKey()

Returns:
Returns the key.

setKey

public void setKey(java.lang.String key)

Parameters:
key - The key to set.

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:34 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class
MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject
java.lang.Object
 extended byedu.colby.cs.JeSS.util.MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject

All Implemented Interfaces:
org.eclipse.ui.IMarkerResolution

Enclosing class:
MarkerResolutionGenerator

private class MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject
extends java.lang.Object
implements org.eclipse.ui.IMarkerResolution

The resolution that allows the deletion of all markers in the containing the project

Constructor Summary
private MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject()

Method Summary
 java.lang.String getLabel()

 void run(org.eclipse.core.resources.IMarker marker)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject

private MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject()

Method Detail

getLabel

MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllProject file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:34 AM

public java.lang.String getLabel()

Specified by:
getLabel in interface org.eclipse.ui.IMarkerResolution

run

public void run(org.eclipse.core.resources.IMarker marker)

Specified by:
run in interface org.eclipse.ui.IMarkerResolution

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

JeSSPreferencePage file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 5 11/7/2008 10:31 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.preferences
Class JeSSPreferencePage
java.lang.Object
 extended byorg.eclipse.jface.dialogs.DialogPage
 extended byorg.eclipse.jface.preference.PreferencePage
 extended byorg.eclipse.jface.preference.FieldEditorPreferencePage
 extended byedu.colby.cs.JeSS.preferences.JeSSPreferencePage

All Implemented Interfaces:
java.util.EventListener, org.eclipse.jface.dialogs.IDialogPage, org.eclipse.jface.dialogs.IMessageProvider,
org.eclipse.jface.preference.IPreferencePage, org.eclipse.jface.util.IPropertyChangeListener,
org.eclipse.ui.IWorkbenchPreferencePage

public class JeSSPreferencePage
extends org.eclipse.jface.preference.FieldEditorPreferencePage
implements org.eclipse.ui.IWorkbenchPreferencePage

This class represents a preference page that is contributed to the Preferences dialog. The built in visitors are
referenced in this preference page. They are represented as a boolean checkbox. There is also the option for
selecting the directory that JeSS searches in to discover user defiend visitors. The default for this directory is the
"plugins" folder in the edu.colby.cs.JeSS plugin

Field Summary
static java.lang.String EXCEPTIONS

static java.lang.String EXTERNAL_VISITORS

static java.lang.String FINAL

static java.lang.String INNER_CLASS

static java.lang.String MISS_MODIFIER

static java.lang.String PLUGIN_DIR

static java.lang.String PROTECT_MODIFIER

static java.lang.String PUBLIC_FINAL_CLASS

JeSSPreferencePage file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 5 11/7/2008 10:31 AM

static java.lang.String PUBLIC_MODIFIER

Fields inherited from class org.eclipse.jface.preference.FieldEditorPreferencePage
FLAT, GRID, MARGIN_HEIGHT, MARGIN_WIDTH, VERTICAL_SPACING

Fields inherited from class org.eclipse.jface.preference.PreferencePage

Fields inherited from class org.eclipse.jface.dialogs.DialogPage

Fields inherited from interface org.eclipse.jface.dialogs.IMessageProvider
ERROR, INFORMATION, NONE, WARNING

Constructor Summary
JeSSPreferencePage()

Method Summary
 void createFieldEditors()

 Creates the field editors.
 void init(org.eclipse.ui.IWorkbench workbench)

 Eclipse Generated - does nothing
private

 void
initializeDefaults()
 Set the default values of the preferences for the default scan.

Methods inherited from class org.eclipse.jface.preference.FieldEditorPreferencePage
addField, adjustGridLayout, applyFont, checkState, createContents, dispose,
getFieldEditorParent, initialize, performDefaults, performOk, propertyChange, setVisible

Methods inherited from class org.eclipse.jface.preference.PreferencePage
applyDialogFont, computeSize, contributeButtons, createControl, createDescriptionLabel,
createNoteComposite, doComputeSize, doGetPreferenceStore, getApplyButton, getContainer,
getDefaultsButton, getPreferenceStore, isValid, noDefaultAndApplyButton, okToLeave,
performApply, performCancel, performHelp, setContainer, setErrorMessage, setMessage,
setPreferenceStore, setSize, setTitle, setValid, toString, updateApplyButton

Methods inherited from class org.eclipse.jface.dialogs.DialogPage
convertHeightInCharsToPixels, convertHorizontalDLUsToPixels, convertVerticalDLUsToPixels,
convertWidthInCharsToPixels, getControl, getDescription, getDialogFontName, getErrorMessage,
getFont, getImage, getMessage, getMessageType, getShell, getTitle, getToolTipText,
initializeDialogUnits, isControlCreated, setButtonLayoutData, setControl, setDescription,
setImageDescriptor, setMessage

Methods inherited from class java.lang.Object

JeSSPreferencePage file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 5 11/7/2008 10:31 AM

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface org.eclipse.jface.preference.IPreferencePage
computeSize, isValid, okToLeave, performCancel, performOk, setContainer, setSize

Methods inherited from interface org.eclipse.jface.dialogs.IDialogPage
createControl, dispose, getControl, getDescription, getErrorMessage, getImage, getMessage,
getTitle, performHelp, setDescription, setImageDescriptor, setTitle, setVisible

Field Detail

INNER_CLASS

public static final java.lang.String INNER_CLASS

See Also:
Constant Field Values

FINAL

public static final java.lang.String FINAL

See Also:
Constant Field Values

EXCEPTIONS

public static final java.lang.String EXCEPTIONS

See Also:
Constant Field Values

MISS_MODIFIER

public static final java.lang.String MISS_MODIFIER

See Also:
Constant Field Values

PROTECT_MODIFIER

public static final java.lang.String PROTECT_MODIFIER

See Also:
Constant Field Values

JeSSPreferencePage file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

4 of 5 11/7/2008 10:31 AM

PUBLIC_MODIFIER

public static final java.lang.String PUBLIC_MODIFIER

See Also:
Constant Field Values

EXTERNAL_VISITORS

public static final java.lang.String EXTERNAL_VISITORS

See Also:
Constant Field Values

PUBLIC_FINAL_CLASS

public static final java.lang.String PUBLIC_FINAL_CLASS

See Also:
Constant Field Values

PLUGIN_DIR

public static final java.lang.String PLUGIN_DIR

See Also:
Constant Field Values

Constructor Detail

JeSSPreferencePage

public JeSSPreferencePage()

Method Detail

initializeDefaults

private void initializeDefaults()

Set the default values of the preferences for the default scan.

createFieldEditors

public void createFieldEditors()

Creates the field editors. Set up the boolean editors for the built in visitors and a directory selector to
specify the source of the external editors

JeSSPreferencePage file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

5 of 5 11/7/2008 10:31 AM

init

public void init(org.eclipse.ui.IWorkbench workbench)

Eclipse Generated - does nothing

Specified by:
init in interface org.eclipse.ui.IWorkbenchPreferencePage

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

JeSSVisitor file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 3 11/7/2008 10:32 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class JeSSVisitor
java.lang.Object
 extended byorg.eclipse.jdt.core.dom.ASTVisitor
 extended byedu.colby.cs.JeSS.util.JeSSVisitor

Direct Known Subclasses:
ExceptionFinder, FinalFinder, InnerClassFinder, MissingModifierFinder, ProtectedModifierFinder,
PublicFinalClassFinder, PublicModifierFinder

public class JeSSVisitor
extends org.eclipse.jdt.core.dom.ASTVisitor

This is the super class for all Visitors in the JeSS scanner. This is created to allow easy extensibility to the JeSS plugin.
Simply create a sub-type of JeSSVisitor to find patterns in an AST and then use the reportProblem() method of
JeSSVisitor to create a security marker.

Author:
Russell Spitler Mar 24, 2005

Field Summary
private

 VisitorManager
vManager

Fields inherited from class org.eclipse.jdt.core.dom.ASTVisitor

Constructor Summary
JeSSVisitor(VisitorManager vManager)
 The constructor stores a reference to the Visitor manager for error reporting

Method Summary
protected

 java.lang.String
parseClassName(java.lang.String string)
 This helper method parses a class name from the output of the standard toString() method in
the TypeDeclaration AST node.

protected
 java.lang.String

parseStandardName(java.lang.String string)
 This method parses a user readable name from the toString() output of FieldDeclaration and
MethodDeclaration.

 void reportProblem(org.eclipse.jdt.core.dom.ASTNode node,
java.lang.String errorMessage)
 Used to report a problem and create a security marker for the security bug.

JeSSVisitor file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 3 11/7/2008 10:32 AM

Methods inherited from class org.eclipse.jdt.core.dom.ASTVisitor
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit, endVisit,
endVisit, endVisit, postVisit, preVisit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit, visit,
visit, visit, visit, visit, visit

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

vManager

private VisitorManager vManager

Constructor Detail

JeSSVisitor

public JeSSVisitor(VisitorManager vManager)

The constructor stores a reference to the Visitor manager for error reporting

Method Detail

reportProblem

public void reportProblem(org.eclipse.jdt.core.dom.ASTNode node,
 java.lang.String errorMessage)

Used to report a problem and create a security marker for the security bug. This method uses the reportProblem()
method of the VisitorManager.

Parameters:
node - - the root of the problem
errorMessage - - the message associated with the error

parseClassName

protected java.lang.String parseClassName(java.lang.String string)

This helper method parses a class name from the output of the standard toString() method in the TypeDeclaration

JeSSVisitor file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

3 of 3 11/7/2008 10:32 AM

AST node. This method relies upon the standard format of TypeDeclaration[class CLASSNAME
DECLARATIONS]. The name is converted to user readable form "class CLASSNAME"

Parameters:
string - - toString() from a TypeDeclaration AST node

Returns:
the name in user readable form

parseStandardName

protected java.lang.String parseStandardName(java.lang.String string)

This method parses a user readable name from the toString() output of FieldDeclaration and MethodDeclaration.
This method relies on the standard format of ***Declaration[*** NAME]

Parameters:
string - - toString() from a MethodDeclaration or FieldDeclaration node

Returns:
the name in user readable form

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:31 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class
MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile
java.lang.Object
 extended byedu.colby.cs.JeSS.util.MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile

All Implemented Interfaces:
org.eclipse.ui.IMarkerResolution

Enclosing class:
MarkerResolutionGenerator

private class MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile
extends java.lang.Object
implements org.eclipse.ui.IMarkerResolution

The resolution that allows the deletion of all markers in the containing file

Constructor Summary
private MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile()

Method Summary
 java.lang.String getLabel()

 void run(org.eclipse.core.resources.IMarker marker)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile

private MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile()

Method Detail

MarkerResolutionGenerator.JeSSMarkerResolutionIgnoreAllFile file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:31 AM

getLabel

public java.lang.String getLabel()

Specified by:
getLabel in interface org.eclipse.ui.IMarkerResolution

run

public void run(org.eclipse.core.resources.IMarker marker)

Specified by:
run in interface org.eclipse.ui.IMarkerResolution

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

MarkerResolutionGenerator.JeSSMarkerResolutionIgnore file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

1 of 2 11/7/2008 10:34 AM

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

edu.colby.cs.JeSS.util
Class MarkerResolutionGenerator.JeSSMarkerResolutionIgnore
java.lang.Object
 extended byedu.colby.cs.JeSS.util.MarkerResolutionGenerator.JeSSMarkerResolutionIgnore

All Implemented Interfaces:
org.eclipse.ui.IMarkerResolution

Enclosing class:
MarkerResolutionGenerator

private class MarkerResolutionGenerator.JeSSMarkerResolutionIgnore
extends java.lang.Object
implements org.eclipse.ui.IMarkerResolution

The resolution that allows the deletion of a single JeSS marker

Constructor Summary
private MarkerResolutionGenerator.JeSSMarkerResolutionIgnore()

Method Summary
 java.lang.String getLabel()

 void run(org.eclipse.core.resources.IMarker marker)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail

MarkerResolutionGenerator.JeSSMarkerResolutionIgnore

private MarkerResolutionGenerator.JeSSMarkerResolutionIgnore()

MarkerResolutionGenerator.JeSSMarkerResolutionIgnore file://///Fileserver1/admin/Library/libstudents/Institutional%20Repositor...

2 of 2 11/7/2008 10:34 AM

Method Detail

getLabel

public java.lang.String getLabel()

Specified by:
getLabel in interface org.eclipse.ui.IMarkerResolution

run

public void run(org.eclipse.core.resources.IMarker marker)

Specified by:
run in interface org.eclipse.ui.IMarkerResolution

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

	JeSS – a Java Security Scanner for Eclipse
	Recommended Citation

	Spitler1.pdf
	Spitler2.pdf
	Spitler3.pdf

