
Colby College Colby College

Digital Commons @ Colby Digital Commons @ Colby

Senior Scholar Papers Student Research

2001

Building an Interactive, Three-dimensional Virtual World Building an Interactive, Three-dimensional Virtual World

Raymond Mazza
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/seniorscholars

 Part of the Computer Sciences Commons

Colby College theses are protected by copyright. They may be viewed or downloaded from this

site for the purposes of research and scholarship. Reproduction or distribution for commercial

purposes is prohibited without written permission of the author.

Recommended Citation Recommended Citation

Mazza, Raymond, "Building an Interactive, Three-dimensional Virtual World" (2001). Senior

Scholar Papers. Paper 274.

https://digitalcommons.colby.edu/seniorscholars/274

This Senior Scholars Paper (Open Access) is brought to you for free and open access by the Student Research at
Digital Commons @ Colby. It has been accepted for inclusion in Senior Scholar Papers by an authorized
administrator of Digital Commons @ Colby.

http://www.colby.edu/
http://www.colby.edu/
https://digitalcommons.colby.edu/
https://digitalcommons.colby.edu/seniorscholars
https://digitalcommons.colby.edu/student_research
https://digitalcommons.colby.edu/seniorscholars?utm_source=digitalcommons.colby.edu%2Fseniorscholars%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.colby.edu%2Fseniorscholars%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages

BUILDING AN INTERACTIVE,

THREE-DIMENSIONAL VIRTUAL WORLD

by

RAYMOND MAZZA

Submitted in Partial Fulfillment of the Requirements of the

Senior Scholar Program

COLBY COLLEGE

2001

Acknowledgements

First, I would like to thank my advisor, Randy Jones, for the motivation he has

provided me with throughout the year. Without Randy helping me set weekly goals for

myself, I don't think I would have been able to accomplish nearly as much. Randy has

also helped me put this paper together, as well as documents for the CCSCNE conference

we anended to present my work.

I would also like to thank Clare Congdon for her constructive criticisms and

assessments of my writings, which have been very helpful. Clare also provided great

guidance this year in general as my academic advisor.

Thanks to Randy, Clare and Dale Skrien for being readers of my paper, and

mentors throughout my college career.

Lastly, thanks to everyone else who has been interested in my work and stopped

by the lab to ask questions or give me compliments and further motivation.

ABSTRACT

The movement of graphics and audio programming towards three dimensions is to

better simulate the way we experience our world. In this project T looked to use

methods for coming closer to such simulation via realistic graphics and sound combined

with a natural interface.

I did most of my work on a Dell OptiPlex with an 800 MHz Pentium III

processor and an NVIDlA GeForce 256 AGP Plus graphics accelerator - high end

products in the consumer market as of April 2000. For graphics, I used OpenGL [1],

an open·source, multi-platform set of graphics libraries that is relatively easy to use.

coded in C++.

The basic engine I ftrst put together was a system to place objects in a scene and

to navigate around the scene in real time. Once I accomplished this, I was able to

investigate speciftc techniques for making parts of a scene more appealing.

The use of texture mapping (fitting images to geometric surfaces) makes one of

the most incredible differences because it provides a means to add much detail to

objects in the scenes. Furthermore, it saves time and geometry over representing the

contents of the image in three dimensions. Textures can also be mapped to objects

dynamically to make surfaces appear to move - this is useful when designing, say,

the surface of a body of water. I used a technique of combining textures in a paint

program to make transitions of textures appear less harsh or abrupt.

In order to keep a decent frame rate (around 40 frames per second), geometry has

to be limited. Since detailed objects are more pleasing, I decided to have more

complicated objects and smaller scenes. By connecting many of these smaller scenes,

the user experiences a large, detailed world. I have also found that objects composed of

many pieces at different depths are very pleasing to move around. I use 3D Studio

Max [2] to model and alter objects, and 3D Exploration [3] to convert 3D object files

to OpenGL code in C++.

By adding three-dimensional sound, the user can pay attention to the world with

two senses as opposed to one. I added sounds using OpenAL [4] with some difficulty

I

and continuing trouble. OpenAL has support for attenuation, pitch control,

reverberation, and Doppler effect.

I added interaction through two different methods: collision detection, and picking

(OpenGL). Collision detection uses geometric approximations of objects' forms to

detect when a moving object hits another, and is important to keep from walking

through walls. Picking renders into a buffer, rather than to the screen, and provides

useful information about the buffer's contents.

Life-like camera motion allows the user to feel more natural while navigating the

world. Physics equations of motion controls falling of objects, including the camera.

Other aesthetics I have added are alterations of lighting - to become darker during the

"night" and lighter during the "day." I am also using blending to make objects such as

water transparent, and to make distant objects fade in and out of the scene with a

"fog". And I have worked on real-time reflections on flat and curved surfaces.

All these effects have brought this project far as I have had excellent results.

Most of the techniques I used were successful. The world turned out to have a total of

eleven interesting scenes. Although, there are many more possibilities [or further

scenes and features to incorporate. Some include different forms of optimization, real

time shadows, animation of complex objects, stereovision viewing with a headset, and

head tracking.

Contents

CHAPTER 1 Introduction 1

CHAPTER 2 Background and Terminology 4

CHAPTER 3 Creation of High Polygon Count Objects
 7

3.1 Introduction 7

3.2 The Procedural Approach 7

3.3 The 3-D Object Modeler Approach 9

CHAPTER 4 Keeping it in Real Time 12

4.1 Introduction 12

4.2 Optimizing Storage: Display Lists and Texture Objects 12

4.3 Face Culling 13

4.4 Dividing Scenes 14

CHAPTERS Scene Unification 17

5.1 Introduction 17

5.2 Transports 18

5.3 Transitions Situated Around Comers 18

5.4 Screen Snapshots and Transfers 19

CHAPTER 6 Adding the Element of Time 23

CHAPTER 7 Visual Realism - Textures, Blending, Lighting, Fog 28

7.1 Introduction 28

7.2 Textures 28

7.3 Dynamic Textures 36

7.4 Blending, Lighting, and Multi-Texturing 37

7.5 Sphere Mapping 40

7.6 Reflections on Flat Surfaces 43

7.7 Textures with Alpha Channels 45

7.8 Special Texturing Techniques 48

7.9 Fog Effects 50

7.10 Per-object fog 53

7.11 Multiple Transparencies 54

7.12 Fog and the Stencil Buffer 56

CHAPTER 8 Terrain 58

8.1 Introduction 58

8.2 Close Terrain 58

8.3 Distant Terrain 60

CHAPTER 9 Particle Engine 63

CHAPTER 10 Boundlessness: Living Up to the Word "World" 68

10.1 Introduction 68

10.2 Arrangement 68

10.3 Working with Emptiness 69

CHAPTER 11 Navigation 70

CHAPTER 12 Collision Detection 72

12.1 Introduction 72

12.2 Ray-Casting 73

12.3 Collision Cylinders 75

12.4 Collision Optimization 77

CHAPTER 13 Collision Reaction 80

13.1 Introduction 80

13.2 Multiple Subsequent Collisions 82

13.3 Ground Versus Walls 82

88

CHAPTER 14 Audile Realism 84

14.1
14.2

143

CHAPTER 15

CHAPTER 16

16.1
16.2
16.3
16.4

CHAPTER 17

17.1
17.2

BIBLIOGRAPHY

Introduction 84

False Starts 84

Working Sound 85

Real-Time Engine Manipulation

Bugs, Obstacles, and Pjtfalls 91

Installations and Incompatibilities 91

On The Mechanics of Fog and Lighting 93

Collision Setup 94

3rt! Party Bugs 94

Conclusions 96

Results 96

Future Work 96

Resources 102

CHAPTER 1: Introduction

For the past academic year (2001) I have used recent technology and computer

tools to design a virrual world that can be navigated fluidly in "real time". My goals were

to make the world as realistic and visually pleasing as possible, as well as to keep the

program running quickly enough for it to remain in real time.

The title of my project includes the adjective "interactive" because it is the

defining characteristic for nearly every approach I took to designing the various parts of

my world. The largest focus of interaction was on the "real-time" aspect of the world, as

it would be in most other projects of this nature (especially with graphics).

When a graphical system does not include the real-time constraint, the product

can be as complicated as necessary and can contain extremely intricate levels of detail.

Real time has the objective of generating a storyline based on the user' 5 control, whereas

pre-rendered systems necessarily produce a static path through a scene, if they are even

used for animation. (To "render" a scene is to draw it to the screen or an image file.) In

such non-intercutive systems, the user has very limited or no control, but the graphical

presentation can be extremely realistic. If a scene takes 30 seconds or even an hour to

render from one viewpoint., it is all right. A path through a non-real-time scene may take

weeks to render. Movies commonly use pre-rendered 3D graphics to complement their

live scenes. For example, in The Trul7um Show [24], some of the buildings only had first

floors on the set, and computer graphics were used to fill in the higher floors seamlessly.

When planning my world, I constantly had to create a balance between

complexity and speed. There is a limit to the number of polygons that may be rendered

in a reasonable amount of time. Calculations on the computer's processor and graphics

card, and the amount of memory required by the program also have limitations that must

be addressed to keep response times quick enough.

I had two major goals for taking on such a Lask. First, my primary professional

interests lie in the field of computer entertainment, so I wanted to produce an application

in that area. What I had in mind was something I could show to anybody, regardless of

computer science background. and get a response such as "Wow, that's really cool." My

second goal was to take away from this project a new wealth of knowledge and

experience that would allow me to continue entertainment programming, perhaps even

professionally.

The main, overarching challenge was to develop a world that can be navigated in

real time, and that remains realistic and aesthetic. The subsequent challenges, all of

which will be described in this paper, include using textures, fog, blending, and lighting

to create visual effects for water, sky, clouds, and reflections to increase realism with

methods that can be managed "on the fly" for real time. For some realistic phenomena, I

endeavored to build a particle engine that would be useful for snow and water systems,

among others.

Modeling objects, large and small, and incorporating them into scenes served a

tough task. Even the breaking up of the entire world into scenes that could be managed

in real time was difficult, especially connecting them seamlessly to one another.

I had to also deal with empty space around scenes, and chose to do so by filling it

with terrain. colored by height to produce realistic mountains and rivers. The terrain and

other objects had to be optimized to require as little overhead as possible for the graphics

card while still maintaining visual appeal.

By far the hardest of challenges was implementing collision detection, a means to

keep objects moving through boundaries, for instance, to keep the person walking around

the world from going through walls.

2

Some other challenges were adding fonns of interaction with the mouse, use of

three-dimensional sound, and adding the passage of time to the world, for realistic day

night transitions with synchronized lighting effects.

3

CHAPTER 2: Background and Terminology

My inspiration comes almost wholly from computer games, especially recent

three-dimensional ones. These games include Golden Eye and The Legend ofZelda,

Ocarina ofTime for the Nintendo64 console system, and most notably Unreal

Tournament [23] for Macintosh or Windows - a game with incredibly fast, smooth

rendering, and a beautiful set of worlds. These games are put together by teams of

programmers, coordinators, writers, and artists, and use the state-of-the-art graphics

techniques to achieve wonderful effects. It is now common to see shadows, smoke, fITe,

explosions, realistic water, and even on occasion, reflections in newer games. The

physics simulations, passage of time, weather phenomena, and realistic three-dimensional

sound these games possess are great sources of motivation and are to be striven for.

In the remainder of this chapter I will provide some basic information about the

mechanics of OpenGL [17] (the graphics libraries I used) and 3-D programming that will

be necessary in order to follow the remaining chapters. Terms that are not defined in this

section will be defined when they are fIrst mentioned.

At the time of my proposal I had essentially no experience programming, or

designing 3D graphics and sound. Nor had I ever used the programming language (C++)

or graphics API (OpenGL, which I will explain in the following paragraphs) that were to

soon become commonplace in my arsenal of tools. My experience was limited to a

course on the design and implementation of computer games, a course that I took as a

sophomore. This course dealt with a number of technjcal issues, but concentrated mostly

on two-dimensional world representations.

Throughout the year I was continually picking up new abilities. I have become

adept in C++ and OpenGL, as well as various sound and graphics related applications. I

necessarily learned methods for creation, manipulation, interaction, and integration of 3D

graphics and sound.

4

OpenGL is a set of libraries that allow the programming of graphics (17]. The

basic constructs are points (vertices), lines. triangles, quads (rectangles), and n-sided

polygons. The polygons can be filled with a color. or empty (wireframe). Each vertex of

a polygon can have its own COIOf, if desired, which creates a meld of colors from vertex

to vertex. All the polygon coloring I mention uses 0.0 as the minimum and 1.0 as the

maximum intensity of color. Each polygon can also have a normal - a vector that

usually points away from the surface of the polygon, perpendicularly (but can point in

any direction desired). Normals do not need to be specified for polygons when lighting is

disabled. A small angle between a polygon's normal and a light in the scene means it

will recei ve more light and be shaded less. Larger angles cause more shading.

Normalizing a nonnal, or any other vector, reduces its length to one.

During explanations. I will refer to whomever the imaginary person is that is

navigating the world as the "user" or the "viewer". If sound is involved. I may use the

term "listener" instead. If 1'm talking about the object that is in the scene at the viewer's

location, I will be talking about the "camera" - the user's portal to this world.

Vertices are drawn with the OpenGL call "gIVerlex3fO" with coordinates for an

X, Y, and Z position in the parentheses. OpenGL uses a standard three dimensional

coordinate system, with the Y axis vertical. and the X and Z axes on the horizontal plane.

The Z axis points towards the viewer. "Z value" is thus commonly the name used for a

metric that describes how far an object is from the viewer. The Z buffer is a buffer which

holds these values for every pixel that is present in a scene. The Z buffer is used for

"depth testing", a function provided by OpenGL that looks at these values each time the

screen is rendered and is able to draw pixels in the correct order. In other words, with

depth testing enabled, if there is one building in front of another, they will get drawn in

the correct order. Without depth testing, the back building may get drawn in front of the

front one.

5

OpenGL's coordinate system can be navigated and modified with marrix

operations. OpenGL has a few built in, including methods for transformation, rotation,

and scale. Transfonnation moves around the coordinate system, rotation rotates the

coordinate system, and scaling changes the size of the coordinate system. Object

placement and sizing in scenes occurs with a series of such commands. Now we are

ready to talk about object creation, which is the subject of the next chapter.

Having gone over some of the basics, we can now start to take a look at the issues

I had and how I went about solving them. Keep in mind that every problem I had to

solve was related to the universal problem of reducing polygon counts and computation

whjle keeping the level of realism and aesthetics high.

6

CHAPTER 3: Creation of High Polygon Count Objects

3.1 Introduction

When I began programming objects (in this sense, a group of polygons that

represent something - a tree or a wall) I quickly ran into a problem. Telling OpenGL to

draw polygons is done with a series of vertex specifications, all typed in. For larger

objects, this became tedious as it was taking a long time and I could not view the object

as I was designing it. There are two approaches I will discuss that address this method.

The fIrst, is designing objects in a three-dimensional modeler (essentially a 3-D drawing

and painting program) and converting the format to something usable by OpenGL. The

second approach (the procedural approach) uses a set of functions that builds objects on

the fly (each time the program draws to the screen) - which can be used for objects with

repealed structure or some structure that can be described mathematically.

3.2 The Procedural Approach

For simple scenes composed of a few poJygons and basic, pre-built objects like

spheres and cylinders, coding by hand is probably the quicker method. Creating a room

out of six rectangles and placing a sphere in the center would only take minutes.

But what if we wanted to add, say, a poned plant in one of the comers? If the

plant has more than about twenty polygons (which is not many at all), it would be an

extremely arduous task to sit down and type in, by hand, all the points into glVertex3fO

statements. This is also especially difficult considering the lack of visualization hard

coding in this manner provides. Typing a few polygons, executing the code to see if they

are in the correct places, adding a few more and so on soon gets tedious.

7

Th fjn~1 ~cene I dr w up on paper was a crave of lJee encompa d b a wall.

with a narr w pening at on end for an exit, pi ture blow).

Figu re 3.1 n overhead viev. of the flISt .-cen I d -j ned. I drev. the circular

ponion of the wall~ procedural I) (\\ ith math). f modeled the gr~s tufts b) the

stone and the ground in 3D Studio Max [3] and impo ed lh 'm. and the lree~ I

ownJoaded from 3D afe.com [1] and imponed lhem ~ well.

The wall: al n w r going to take me ab ut fifteen polygon. to on truct. not

omething I wanted t input b" hand. M olulion w s to drav-: th ir ular portion

procedurally. u inb a loop and some basic ge m trical properties of a irl. A loop i a

pra~,ramming constru I to do a eri s of irnilar commands one afler th other.

incremented a d gree \"alue in the loop such that new poinl: were define around the

edge of a cirel a h I as.. which were u ed t dra\\ a . erie of rectan,J . Th n all I had

to do wa t pe in a fev- more r ctangl for th ntrance.

The benefit were tw f Id: this method w s quick r than hard dino' an it

allowed for simple alteration. By adjusting a ~ w \·ariables. the number of wall segment

could be adjusted to better approximate a circular enclostrre, and the size of those

segments could also be modified. In addition, this method was more intellectually

exciting than typing in a bunch of numbers, rather mindlessly.

3.3 The 3~D Object Modeler Approach

Once the scene had walls, it needed some trees. Each tree would have a few

hundred or so leaves, each leaf made of about five polygons for a total of over a few

thousand polygons. I had two feasible options, hard coding certainly not one of them. I

could draw a cylinder for the trunk, then make a method that draws one leaf. Using a

series of controlled random transformations and rotations, I could draw these leaves

around the trunk of the tree in a way we might expect them to be distributed on a real

tree. This method would be considered a procedural approach, akin to the drawing of the

enclosure.

One of the reasons I chose not to head in this direction was because each leaf

would require a different set of translations and rotations to be put into place. After eight

trees, that would be thousands upon thousands of matrix calculations. High levels of

computation should be avoided because they can slow execution of the program, while

one of my goals was to get the program running as quickly as possible. (A second reason

I opted not to take the procedural approach was because I would have had to spend much

of my time working on artistically perfecting the tree, something I did not wish to do

when I could spend my time otherwise.)

I chose instead to make use of a tree object that I downloaded from 3DCafe.com

[1] in Studio Max formaL In order to use objects of other formalS in my system, they had

to be converted to OpenGUC++ code, or a series of numbers that can be read in from a

file to OpenGUC++ code. I used an application called 3D Exploration [2] for such

conversions. I created a tree object out of the resulting conversion. Now Ijust had to

9

tran.late the ene to th I 'alion where J v. anted a tree, and told the free object [drav.'

iL If witb ~ome sale to properly ize it. Thjs required no r alion of polygons on my

part. and aved much tim ven though] had t make alterations to th gen rat d code

f r jt to work properl).

Imponing model in thi wa a1 0 "a\'ed computational time. Th~ ntire 0 ~e

ha it pieces all in pia e with prop r co rdinat s, s no matrix alculation fOf rotation

or translation ne d to be done to put it t gether.

Figure 3.2 Si e view of one of le tr in nl) fir~ ,cen . Each

leaf i,.; five triangle,.;. the entire tree is made u of 4629 uiangle~.

La<;l! for thi, ne I wanted to de ign a gr und that was n t 0 nat. J ha ne

r 'te ngl for the ground. and it looked too. mo th. What rneed d \\ a: to b able to ee

the obje t I wa~ de igniog \I'llile de igning it. This j" where I ftf t b gall U iog 3D Studio

Max 10 cr at my own obj cts. Professional three dimensional modelers su h as 3D

'tudia max are incredibI u eful and can greatly expedite object creation. I was able [Q

10

model objects in 3D Studio Max and work with characteristics of the model that OpenGL

makes use of, such as face nonnaJs and texture mapping functions (which will be

discussed in later sections). Using Studio Max I also designed some tufts of grass to put

in the scene. Again, this was much quicker for me than typing in polygons by hand, and

compul.ationally quicker than procedurally creating these objects.

11

CHAPTER 4: Keeping it in Real Time

4.1 Introduction

The aspect of my project that introduces the most constraints is the ability to

suppon graphical rendering and physical interaction in real time - as I have mentioned

before the real-rime aspect is what most of the project is based upon. Users can sit down

and push a direction on the keypad and get virtually immediate visual response as the

scene updates itself to account for the change. Without being able to accomplish this, the

program would offer an altogether different type of experience, involving entirely

different techniques for design, implementation, and use. This chapter covers many of

the techniques I used to speed up the entire simulation in general, as opposed to specific

types of effects that will be covered in later chapters.

4.2 Optimizing storage: Display Lists and Texture Objects

Display lists and texture objects are two common methods used to optimize

storage of data [25]. A display list takes a series of OpenGL commands and stores them

on the graphics card that is associated with the computer monitor (or display). In doing

so, each time that portion of code needs to be used. it is already in the display's memory,

ready to quickly dump the contents it will produce to the screen. All the large objects in

the world use display lists, storing their thousands of points in the display's memory.

The trees in the grove all use the same display list, so each time the screen gets drawn, it

gets used many times, and reused in subsequent drawings. All model conversion through

3D Exploration [2] automatically utilized display lists, so I was able to take them for

granted.

12

Texture Obj t. ar anoth r method to tore frequentl u'ed information n the

dLplayadapt r wh re th are needed. tvl u e of them was transp< r nr cau e it wa

built into th texture handler 1 wa utilizing.

4.3 face Culling

Fae ullin~ i at atur that allow reduction of polygon overh ad b. roughly a

factor of two. AD ... polya n drawn to the s re n has two fac - a front and a back. (In

OpenGL this i. determine by the order the vertices are used to dravv the polygon.) Face

cullin~ r moves the bac face fr m all de ignated polygon. A culled quare v,'ould be

\'j ible from the front. but from the back would not \'j ible.

Figur(' 4.1 Thi~ j aie'.'. from underneath a scen that u· "' fact' culling. The ocr an

some wal _ are im i~ib becau:e their back face:,. are facing us and thus culled. ',hile all

[he eiJing~ and mo~t of the 'aTh are v' ible be au,e their front fa ~ are tov. arc!: u:.

Cullint:; a fev. po gon make no ifferenc. ut culling arge number of

olYbon~ oa\' me a fev. frame per nd increa e in peed in 'ome area . Tput it to

Us anywh re [I,l,·a dr v ing many polygons thal the viewer would only from one

[3

side - essentially all the ground. walls. and sky. If the user were to walk outside the

boundaries of most terrain in the world. they would still be able to see the rest of the

scene, because the back of the wall would Dot be visible to block the view. In Unreal

Tournament [23] I put on a "walk through walls" code that allowed me to go outside the

boundaries, and sure enough, the designers had culled all polygon faces possible.

Although I used culling, it was not one of the major focuses of this project.

4.4 Dividing Scenes

Constructing a large-scale world inevitably requires many polygons and likely

many textures and sounds as well. I realized early on, when developing my frrst scene,

that it would be impossible to handle all the polygons for my wbole world concurrently

and retain an acceptable frame rate. Testing revealed that the graphics card I was using

could handle around 40,000 triangles at a time, but no more, to keep above a tbreshold of

about 30 frames per second (fps) with texturing and lighting enabled. (This threshold

was a guideline, but by no means my definitive factor in deciding polygon count. Such

things as special effects needed to be taken into account as well.) 30 Frames per second is

good, while around 45-60 is very good. To keep above my frame rate threshold, I had to

construct the world out of smaller pieces, which I refer to as "scenes". Each scene would

bave its own 40,000 triangle limit and would be handled individually by the graphics card

while ignoring the rest of the scenes. In this way, a world with p triangles would require

p/40.000 scenes. Most adventure type games are logically broken up this way. Even

older, two-dimensional games like Final Fantasy VI (Japanese Version) [6] are typically

broken up into various scenes that are filled with as much detail as possible without

hitting some upper limit (polygon count in the 3D case).

There are many benefits and only a few negatives to this approach. The greatest

benefit is achieving the expected outcome - being able to keep polygon count to a

14

maximum as well as retaining a high frame rate. Although this approach initially makes

programming somewhat more difficult, in the long run the program becomes more

modular and extensible, allowing for simpler addition of new scenes.

Each scene was then able to have its own objects, sounds. textures, and methods

associated with it. The second scene I started designing was the path that the grove leads

out to. Notice that this scene (below) contains no trees. None of the trees from the grove

have to be drawn when viewing this scene, and since this scene has no trees, none of the

tree objects even have to be loaded into memory, thus allowing more room for other

objects. In the same way, there is a limit to the amount of texture memory a graphics

card has. The second scene does not use any grass textures so they are not loaded,

leaving room for the textures that are needed. Also, the sound card (if one is used,

otherwise RAM is used) has limits to the amount of sound that can be loaded, another

reason to keep sounds unique lO a scene associated only with that particular scene.

15

Figure 4.2 A \ i of ump 'wal and ground. with bare! dL tingui "hable mountains in the background.

What thi I ave. i. a \\ay to k ep very detailed "cen _, v.ilh anI th nc ssary

a. ocialion-, allowing for unification to a larger, m r impre ive v.:hole. With. cen

now. eparated from one ane th r, one might wonder how thi affect. interaction \"ith the

world in real time. Moving from. n to cene will requir a pau e while the ne\\ ene

loa . Dep ndmg on il.e, thl. ma.l take anywhere from a fraction fa s condo La a fev....

se nd~. All my .cenes take only pan of a second 10 I ad. 0 t detracting from the fe, 1

tim 'p ct of th v. arid. The longer meone ha' t v. ail, Ihe more likely it i thaI the .

I)"ojJl notice thi. lag, which is nOI desired.

The only delail left 10 worry about in re.pe It en tran ilion i ho\\ to unify

alllh en s. 1hay d \01 d a eparale chapt r to discu ingju·t this In ii, fair

amount f information.

16

CHAPTER 5: Scene Unification

5.1 Introduction

Planning for scene unification should start. as I have come to realize the hard way,

before each scene is created. I 5taned planning early, but I did not take a thorough

approach at the time. First I designed all the scenes, then I put lhem all together. This

caused a belated discovery of certain facets of unification that I should have had in mind

during scene design.

Transitions from one scene to the next must progress smoothly both visually, and

technically in the coding. The simpler of the two to handle is the technical portion, if the

scenes are programmed in a clean and modular fashion. All that needs to be done

technically is, upon detecting the camera at the transition point (see chapter on collision

detection), memory cleanup of the old scene, loading of the new scene, and switching

execution to render and update the new scene.

The more difficult element of unification is the visual one. In the real world, it is

not usual for a person to walk somewhere while looking straight ahead and not see a

portion of the area in the distance. If a person is about to walk through a doorway, they

see part of the room they are moving into. Even if there is a closed door, upon opening it

some of the next room can be seen from the current one. For a virtual world to be more

realistic, the same rules must apply - one scene must be visible from any scene directly

connected to it (in the way common sense would dictate).

We cannot simply draw the entire connecting scene(s) adjacent to the current one,

because that completely defeats the purpose of breaking the scenes up to begin with. I

have investigated three valid approaches to handle this with minimal computational

overhead, although none of them are necessarily quick to implement

17

5.2 Transports

The first method to handle scene unification is to completely avoid such

connections. Using something I call "transports" (conceptually a matter transporter. like

in Star Trek) the user can be transported between scenes without seeing the new scene

beforehand. Their use is restricted by genre, most likely to be found in science fiction

worlds. Many multi-player games such as Quake and Unreal ToumamerU [23] use

transports, especially for relocating to various places within the same scene. Visual

connections can also be avoided by creating a world where an event sequence causes

transitions, as opposed to approaching an adjacent scene. For example, in the game

Siphon Filter, a special operative is set in one scene and must complete checkpoints such

as disarming bombs or saving hostages. When all the checkpoints in one area are

complete, game play stops. and soon the player is found in another scene with new

checkpoints (possibly far from the fIrst scene in Siphon Filter's world). This style would

not have suited my needs. since all my scenes are directly neighboring other scenes.

5.3 Transitions Situated Around Corners

The second approach is to have scene transitions around comers, or situated in a

way that only some minimum amount of the next scene is visible. This type of layout

where the bulk of the scene lies around a corner can be seen in the overhead picture of the

grove in chapter 3. This approach then takes the necessary polygons from that scene and

attaches it to the current scene, making sure to trigger transportation before the camera

gets close enough to see around the comer or to where the rest of the scene should be.

This method is appealing because it quite visually accurate. However, it is also

very difficult (and does stin require extra polygons). It is especially difficult in a world

that usesjirst-person perspective viewing. In this perspective. the camera may be looking

straight into the next scene, as opposed to a third-person perspective where the camera

18

may be at a slight angle to the ground or straight down and taking in less of the next

scene.

5.4 Screen Snapshots and Transfers

The third approach is the one I chose to implement. I made sure to have most

ttansitions situated around corners or in narrow paths to reduce the amount of inter-scene

visibility. Then I took snapshots of the scenes from their entrance points, and "cut out"

the sky using alpha values. An Alpha value is an optional component of an image (or

polygon) that dictates a portion or level of ttansparency (see Visual Realism - Textures

with Alpha Channels). I was then able to texture a rectangle located at the edge of the

current scene with a snapshot of the next scene. Using alpha values, I made portions of

these textures transparent, so the sky and background could be seen through the "cut out"

parts.

Another reason to reduce the view of the next scene is that these textures are

limited in detail compared to their three dimensional representation. In addition, these

images are best viewed from the position at which they were taken. If part of the

snapshot is a tree off in the distance, walking directly up to the texture reveals that the

tree is not in the distance at all, but painted on a flat mural.

19

Figure 5.1 Tw nap,ho~' (from oppo-ing seen ') U.: d in the world for .-cene Iran~llion,. The

blac arc:a, are the "cut out"' ar~,

Figure 5.2 The:e t va pictures. how the tran..:ition :>nap, hal:' actualJ) Uc ed In th 3D scenes to eate vtsual

tran:-il1a~·. The black pans from the textures are trans arent, ho\\ ing the sk) and mountain, behind,

T addre lhis i . ue. I decided on a policy of re 'emiog lhe am ra from gelling

a clos to lhe 'nap hot. To enforce lhis, if the user brin2 the camera too cia ,they

will aut malicalJ "tran POri" inlo [he onnecting n , Su h tran ition r quir a

trigger oint to In \ e 10 the ne t scene out ide of !hi limit. and an arri\ al point even

. nh r III for r turning fr m th other scen ' If rh return point 1 (00 cI to th

(ran irian' s trigger - within tl e radius of the camera (see chapl r on olli ion

10

DeTeCTion) - then up n appearino in (he scene. (he trioO'er wil imm diatel end the

amera back t \\.h n e it came. .Also. if the r turn point ito far {\ a. : it I k like you

app ar in the mid t of the sc n .

Figur 5.-' Ov rh d \ ie \ ilJu tratin2 lhe mechanic. of a tran. f r lion and return point in one .cene.

Notice from th abo\' liagrarn that this arrangement require quit a bit of room.

To ac 'ommodate thi la out. I had to modify s rn ... of m I ,cene to tretch out th ir

length n ar lfansitions.

Z Ida for the Nintendo 64 can ole is a third per 0 perspective oame that emplo 'S

an inter ling technique. imiJar to my method. The difference is \\h 1 the pia er

approa h the tran iti n pint, the camera fre z : and the charaCler k 1. \\-alking

tov. ard and through the textured recLangle. Ho \' \' T, the charact r i_ dra\\. n after the

(extur \\'ith no depth 1 .sting comparison to it. so th character i en n (p of the

21

texture even when it is logically further away than the texture. This creates a great

illusion of depth with the texture that cannot be created with my fust person perspective.

22

CHAPTER 6: Adding the Element of Time

Something I thought would make the world even more realistic is if it changed

with time akin to our world. With progressing time in our world trees grow, water flows,

and day turns to night By implementing a flow of time, I could at least create day-night

transitions.

The element of time within a virtual world is a completely different topic than the

aspect of executing in real time. Real time focuses on optimizations and design in such a

way that user-world interaction can take place near instantaneously. The world actually

having ilS own time, on the other hand., means being able to program characteristics of

the world to change and be updated based on the flow of this time. As a matter of fact,

the flow of time in the virtual world could be completely independent of the rate

rendering occurs. It is possible to have one without the other, both, or neither. In a

virtual world that does run in real time, adding time allows for more possibilities and

creativity.

Figure 6.1

This figure illustrates

lhe constant loop of
scene rendering and

upda.ting. The update

method receives user
input.

23

In the virtual world, before everything is drawn, I call an update method that

makes any necessary alterations from one time frame to the next. If the user is holding

the forward button, the update method makes sure to move the camera in the scene such

that it appears the viewer has moved forward. An update must be invoked every time a

new animation frame is rendered, otherwise the view may appear slow or jumpy. If no

updating is done, there is no reason to redraw the screen anyway, since it will be exactly

the same (and hence wasting precious computations on the graphics card). Making

updates in the update method once every time frame can provide time in the world that is

dependent only on the combined speed of one update and one screen drawing.

I used this setup for a while, but it did Dot make much of a difference at the time

because it was not critical to control the speed of the few updates I had. This may be

completely acceptable depending upon the nawre of the world, but the more changes that

are taking place, the more likely it wiu be helpful to govern the frequency at which they

take place. The one update that manifested this lack of control in my world was related

to the vertical camera movement that simulates the position of a walking person's eyes

through each step. Towards the middle of scenes the graphics card does more work,

giving a slower frame and update rate - this is the rate on which I had based the

movement The camera appeared to move normally until approaching the very edge of a

scene, when it would start to bob up and down very rapidly and unrealistically because

the under-worked graphics card sped up rendering.

According to Game Architecture and Desilm [19] there are two approaches to

decouple rendering from updating. One, called semi-decoupling, keeps the updates at a

constant frequency, while the rendering occurs as quickly as possible. The other,full~

decoupling, again renders as quickly as possible, but also has updates going as quickly as

possible with some measure of time (perhaps the inverse of rendering frequency) to

control the amount to update objects.

24

Interestingly, without researching these methods before hand, I employed a

technique that is a hybrid of full and semi-decoupling. Rendering and updating follow

each other sequentially as quickly as possible, and I let the update method know the

current time when it executes. Time difference since the last update may be figured out,

but that alone is not sufficient for everything. Say you were designing a simulation of a

person throughout the day. If that person normally wakes up at 6:00 am, it would not be

sufficient to know only the amount of time that has passed since last update - the actual

time of day is needed.

Another example of how this is useful would be the operation of the sky in my

world. What the sky looks like at any point during the program's execution is a function

completely dependent on the current time, which is given to the update method as

military time in decimal form (e.g. - exactly 1:3Oprn in my representation is 13.5000...).

The sky goes through various transitions, most notably a light sky with clouds in the day

to a dark. starry sky at night. If a sky update occurs at 6:21 am (6.35000...), the

following conditional from my program, represented as pseudocode, gets executed:

if (military tirre > 4: 3Dan AN) mill t:ary tirre <= 6: 30am) {
II then this is sunrise, tre sky.needs to get lighter
interval = (military tirre - 4: 3Qan) / 2.0;
II interval is rx:w a IlJ..lTd::er £ron 0.0 for the beginni..ng of sunrise
II to 1. 0 at the erd of sunrise.
visi..b.ility of day sky = interval * naxinun visibility;
II this last line fardes the c:By sky in frcm 4:30 to 6:30an

)

(Note: lines beginning with "/1" denote a comment)

25

This is far less than everything that happens to the sky during update, but it helps

illustrate the point that rather than having a fInite set of Slates, updating based on current

time provides the ability to produce a continuous spectrum of states. As the day sky

fades in during the early morning hours, its opaqueness is determined by where in the

interval between 4:30 am and 6:30 am the current time falls. At 4:30 am its opaqueness

is multiplied by an "interval" factor of 0.0, giving it 0.0 opaqueness, so the night sky

(which is always present, just slightly above the day sky) shows completely through. At

6:30 am the opaqueness is multiplied by a factor of 1.0 for a completely opaque and

visible day sky, blocking OUl the night sky. All points in between are a blend of the day

sky with the night sky behind it. All this happens seconds of the viewer's time - the

virtual world's time can move at any speed; a full day in the world passes in only a few

minutes of user time.

27

CHAPTER 7: Visual Realism - Textures, blending, lighting, fog

7.1 Introduction

Pan of the original goal was to design a world that, although optimized to run in

real time, remains "realistic and aesthetic" as well. Moving water, objects fading into the

distance, windows, and reflections are all effects for added realism in the world that I will

discuss in this chapter.

Texturing (applying images to surfaces), blending (transparencies), lighting, and

fog effects are all features of OpenGL that I have spent time working with. Texturing is

by far the most important tool of the four, but working well with all of them provides a

means to produce wonderful visual realism in real time. Many of them go hand-in-hand

for various techniques, and that is why [have included them all in the same chapter.

7.2 Textures

Texture mapping is the ability to take an image, and through some function, map

it onto the face of a polygon. It is almost cenainly the most appealing capability of

current three-dimensional graphics APIs. To compare, look at the two screenshots

below, the scene on the left with textures disabled, and the same scene on the right, but

with textures enabled. Notice the incredible difference a few textures can make.

28

Figure- 7.1 Left: "Flat hading" in a $C ne with no texture. Right: Th .'arne sene with textures.

Th first lime I made the jump from a scene of tlal color to one c ated \vith

d lailed t xlUre . I wa~ u ing buill-in a je t with pre-defined te 'lur ordinate.

including the famous teapot _ n in man Lhr e dimen ional d man, tTation [8}. I

realized that texture mapping \liould be a great tool. but it wa not until I understood ils

inner workings that I became aware of it· full potential u h as being able La move on an

object).

One advanlage of textur mappmg 1 th amazing detail il can add to obj ct ,

ed c rreetly. it an s ve time and polygons (so they can be used el ewber over

repre enting the contenlS of the image in three dim nsi ns, and yield e' ellent visual

re ult [21]. For e 'ample. La create a vi 'ua) effect simihr to that of the stone wall in my

/:,[0 e _c n without u in,., textme . the wall auld ha\' I b constructed out of three

dim n lanaI stall s with careful attention to oloring and placement. Although cuch a

de ign may look go d, this would be very time co sumirL and \vaSle many polygons on

311 insignifIcant object that is not .. uppo ed to draw much focus (like rna t vv'all that

mere!, are present to provIde bound for a cene).

The urfaces of most stati objecL in my \vorld are CO\ I' d ith texture - the

"round has gra' texture, dirt, and, and ton t xtures. \ aIls are usually some 'ort of

29

rock-like texture. Some tree ha\' bark. \\ ood can truCL ha\'e a vi ibJe grain. nd

window orate~ ar dark metal.

Onl
J

a few it ms - indi\'idual trands f grass. and di~tinctl a e - are a Ie to

mak up for la k of texture 'W ith moderat pol gon counts along \\ ith a newhat

expected uniformity of 01 r). Each gra tuft n IS m o.'ed of a total of 91 c I red

triangl " \-"hi hi a lot of detail for a r lativ I me.]] object. Forgoing the adornment of

te, ture on these tufL i thu ace pta le, Polygon provide detail in depth of Slructur .

wherea_ t xture pI' vide detail in a flat seD_e. A balanc bet\veen Lh two is ameli me.

([I' than ju t making use f one or the otll r. For example. The Le e1ld a/Zelda:

Ocorill{l a/Time pre. ent~ tuft of lant life using a f w r ctangle \\ ith moderate!

d tail d texturl,..S mapped on them [7]. Th textur s hay transparent e tion . Vie\\- the

comparison below.

Figure 7.2

High-pol gon~c unt gra, $ tuft

(right) made of 912 green triangle'.

Mu 'h d pth f tructure can be

n. Al o. notice the triangle

with face poiming away from the
light ourc are shaded.

Figure 7.3

Plain gra s texture (left).

e eOliall. mapp none

flat pol, gon.

30

Figure 7.4
Plant (top-left) from The Legend a/Zelda:

Ocarina of Time \'iewed from the ide at a slightly

.1 vated angle. The plant i compo~ed of ix

rectangle textured ith the arne image (bottom

left). The \ hite pani n ar tran. parent. Vi wed

from directly above, the arrangement would look

like the pattern on the bottom- right

An arly id a I had wa to u~ textures to create a vinual art gallery. This turned

ut LO be quite simple in theory and in pra ti . The id a v.:as to take imag file ot

ariou works of an r lat d to th th me of my world and ';hang" them up in a hallway

for r aI-time i wing in !hree-dimenjon . One barrier wa that texture can onJ e

loaded in OpenGL \vith dim n, ion, that are PO\ ers of t o. Since thi power of two

pro! ortionality usually does not match up to an.i artwork. I had to keep track or the true

dim nsion. of the piece before loading. then scale the texture mapped rectangle in order

[0 'on' c! for this (with the olScalefO matrix op ration). The following c d

demon U'ate the caling done for th John Waterhouse painting Pandom 's Box, with

r lativ dimen ions 497 units wide to 75 unit.- tall:

glScalef (1. Of, O. 72f, 1. Of); J.! scales t.l'E picrure to square
glScalef (1. Of, 1.76[, 1. Of); II adjusts to original 497 x 875 ratio
lScalef (4. Of, 4. Of, 1. Of) ; II quamupl the picture' I'.ridth ard height

111 tenure's (0,0) coordinates are mapped to the bottom left of the rectangle it is drawn

on. and it, (1.1 coordinate are mapped to the upper-right corner of the rectangle. Again.

thi i, a impl t .chnique that has atlrati\,e result.

31

Figure 7.5 Pandora's Box - a painting that

I angs on the \\ all of (he vinual an galle ,'.

Th re i, another "cookie-cutler"' method for storing textures tbat w uld allow

maintenance of aspect ratio. This is done by taking the original ima2e, and adding mpty

pac to the dimensions in a paint program until they are po\Ver~ of 1\\,0. Then u in"

texture coordinate that are the ratio of each nginal dim nSlOn to the new dimen ion, the

imag can be CUl OUl, leaving the !lit spac unused. I cho~e not to u . thi .. method

becau it required sli c htly mar work (addin~ white s[)ac . However. thi melh d is

u eful f r taring man textures that can be retrieved by some mathematical function to

p 'if... a ponion of the texture to return. u e f r lhi .. would be th alpha et tared in

one te rur (ee below).

32

ABCDEFG

HIW-MN

OPQRSTU
VWXYZ

Fignre7.6

If an image of the alphabet is loaded as one texture, a mapping can be

made from each desired lener to a particular portion of the texture to

draw. The cexture coordinates are (0,0) in the lower left. and (1,1) in the

upper right corner. Letter number 11 (K) has coordinates of (3n. 2/4) in
the lower left and (4n, 3/4) in the top right (K is four letters from the left

in rows of 7. and the third letter from the bottom in columns of four).

In the castle counyard I wanted to make the ground more interesting than it was

with only one texture. There is DO reason surfaces (a surface may be made of multiple

polygons) should be limited to one texture. In the back-left comer of the counyard, I

wanted to have the stone floor break away to reveal the earth underneath it. This could

be done by replacing the rectangle's texture in the comer with a dirt texture, but the

transition between the two would be very sharp and obviously unnatural. Instead, I lOOk

the stone floor texture I was using and, in a graphics program (paint Shop Pro), layered it

on top of the dirt texture I desired. By cuning out portions of the top stone texture,

removing some completely, and pushing and rotating other pieces, I was creating the

natural transition I was looking for. When satisfied, I combined the layers into one image

and loaded that as the texnrre for the far-left comer of the courtyard. Notice that when I

was cutting pieces away, I had to make sure to leave any edges of the texture that would

be adjacent to the normal texture of the ground undisturbed, so as to create the transition

completely within the image I was engineering. This process is illustrated below.

33

+

Figure 7.7 The ~ one texture (top-lef1) wa-, placed on op of th dirt and pebble tc 'LUre ((0 -right) in

a patm program. Then pieces r th LOp Jaye were cut a va)' nd rotated to produ e the (xture below.

34

This manual ombininc of image LO produ one ad hoc texture \\ arks" ell, and

an b appli d in man situation. nfortunatel" it took LOa much tim for me to ,\lark

with it e nSI\' ly. J did. however, take th idea one tep further. and planned the \\ hole

utd or groun the art gallery to be one textur . Th re is a ath of brick. leadinc

from the door to and nampa ing the tr . with intemionaJ break to gi'" the look of

aging. rcompletely laid out th pol gons of the cene befor .hand; only after lakin",

mea urement w I able LO use the paint program LO d ign the texture in a way that it

would fit correctl '.

Figure 7.8 e gr '. rick patb. and tree soil u all one arge texture engineered pecificalJ) for th~

35

This technique is commonly seen in three-dimensional games to represent

features that would normally be flat anyway, such as papers on the surface of a desk,

seashells in sand, or worn paths on the ground similar to the path in my gallery scene. In

Tony Hawk's Pro Skater 2, for example, scenes are littered with graffiti that is painted

onto the texture of the background [22J.

7.3 Dynamic Textures

Until now I have discussed objects in my world that all have constant texture

coordinates - rocks, trees, and still items. This was not suitable enough, as I wanted

some way to create the effect of flowing water or moving clouds. Desirable special

effects can be created by a method of allowing the texture's mapping onto the object to

change with respect to time, that I will refer to as dynamic texture mapping.

Peering into the well of the castle courtyard. one can see that the surface of the

water appears to be constricting and expanding gradually. Also, in the large valley with

the evergreen trees, the brook flows calmly through the scene. The polygons that the

brook and the well water are represented with do not, themselves, move. The appearance

of movement is created through using variable texture coordinates when mapping to the

polygons. For example, the brook is drawn with its width's texture coordinates

incremented each update, so the width of the image slides across the polygons that make

up its surface.

36

Figure 7.9 The arro v pain' in the direction the dynamic lexlUr akes the \ aler

1 al id n t v, ant the water to e completely opaque. a it is not in nature. A

featur of OpenGL called Mendillo a110\\5 f I' P Iyg ns t be tran ar nt. blendino v, itll

an I alar values of p Iygons pre\'iou Iy drawn behind til m in ea h SCI' en dr, \\ ing.

Blending provides a \ ay (0 gi e object. a realistic wat ry or gla yappearance.

7,4 Blending, Lighting, and Multi-Texturing

Th . k~ in my world ma' use of blending to pIa multipl textur 5 on one

polygon (often referred (0 as JIIulli-rexTuriJl [14]). By looking at my v, orld's sky during

the ay. you will notice tW la I' of lauds, different sizes. mO\'ing in lightly different

direction~ at differ nt rate~ of seed. 111ere e I wo _et:: of pol, gon. acb wi(h th II' 0\\ n

set of lauds. The cloud texrur i th . am . just used differentl beach et of 01. ",on.

(v,hi hI v. ill refer to as sky! and sky2). 5/.:\'2 is drawn fir t. completely paque, \."ith

dynamic t xture c ordinate mO\'in the clouds in one dir cion. Sk. '1 is [11 n dr wn ine

e 'a 'tly the arne location, ov rlapping Sk:....2, ut with an alpha value of 0,,-. meaning S0ge

37

opaque. Sky] also has texture coordinates that are half the value of Sky2's, meaning it

only fits half as much of the texnrre onto itself. The texture therefore appears twice as

large with bigger clouds, and looks to be closer to the viewer than the other set of smaller

clouds. In addition. skyl's texture coordinates are incremented with a larger value,

causing the clouds to move more quickly across the sky. All of this gives the impression

of two layers of clouds. one much closer than the other. even though it is really a

projection onto a flat plane.

For even more realistic effects, I wanted to take what I had done with the sky and

modify it so that it would be bright and mOderately cloudy during the day, but dark and

slarry during the night as well. Via the time dependence on the alpha values I discussed

in chapter 6, I didjust this. As the day gets later, both of the sky layers in the day slowly

fade out to reveal a night sky placed slightly above. The process reverses at dawn. By

encapsulating the world with a fading blue cylinder inside a stable black cylinder, me

entire horizon and background became part of me night-day effect as well.

In my initial implementation, while the sky and background turned dark at night.

the rest of the scene stayed just as bright as before. When viewing the sky during this

transition, the illusion that other objects in the scene dim as well is created because this is

what we expect to happen. Turning this from an illusion into a tangible reality was the

next logical design step.

OpenGL provides up to eight lights for use at anyone time. Lights provide shade

for polygons based on their angle to the light (determined by a nonnal vector for each

polygon or vertex).

38

Fioure 7.11 Thi picture .~how .. the :-ame ene -; ith lighrin enabl' . Notice the "hading that wa.<;

n I pr,' nt before. er i~ u h gr at r elail in Ih Qras_. ~lOne. and leave".

1d igned my scenes to have til fir. t of lh e be lh default light, the .. un" that

is int n e enough to illuminate an entire cen . B res lYing thi" lighl for the sun, I was

abl t ~ynchronize the changing. ky with thi particular lioht u ing a proce ur

(mblin o that of the fluctuating tran lu nc of the day :k" .

7.5 Sphere Mapping

Something el e I v;a looking to _omehow add to the world \\'a a method of r al~

lime light reflection. One method of doing 0 \\ ith minimal computational o\'erh d i.'

known as phere mappin .

40

Sphere mapping is a mode of texture mapping that takes a texture and projects it

onto a specified surface as if the surface were a completely reflective sphere. The "rays

of light" from the texture are projected parallel, as if from infinitely far away, and with an

infinite focus [15]. The effect this gives is the appearance of the surface reflecting that

texture. It is a quick approximation for reflections when you know what will actually be

reflected, although it is not nearly as accurate as ray tracing. Ray tracing simulates many

light rays projected from the eye of the observer, and uses accurate physics to determine

the destination of each ray. This is computationally expensive, but produces very

realistic images. Since this cannot be done in real time on consumer hardware, sphere

mapping can be used to approximate the reflection. Sphere mapping is especially well

suited for curved surfaces, on which humans cannot notice odd reflection nearly as easily

as on flat surfaces.

Games commonly use sphere mapping (or similar functions) to give surfaces a

shiny appearance without intention of reflecting a portion of the scene. In The Legend of

Zelda. Majora's Mask a small mound of gold dust is sphere mapped with a golden

yellow texture with lighter and darker areas. When viewed from different angles, the

appearance of portions of the mound change from lighter to darker gold giving the

surface a shiny appearance. Glass window panes and beakers in GoldenEye are also

mapped with light white and gray textures in this manner, combined with blending, to

make the glass look as if it is reflecting light at various angles.

41

Figure 7.12 Sphe mapping on a ph n.: for feigned reflection.

I u phere mappin.:= to create a reflection on a h mi'phere lodged in the i e of

a \\all. To do this pr perly. I po itioned the mera here the sph.r \>vas to be loe ted.

and napped a creen hot for the texlur) [fecti\, Iy apturing the "light" that w uld b

incidenl n the pher . Then Tapplied it to th here and I dged it in th v. all so only

half c uld be en. More than half would r al thal it \>va~ retlecting the .. am imag n

matt r wh r it is viewed from. To mak il more int r tint> and add the illu ion that the

r t1 tion update in r aI-time, I took a piel1Jre from the arne local ion at night. and

appli d it to a slightly smaller sphere which I placed in-ide ule day spher .

S" n hronously fading the a ph r \\ ith me da -night transition I' \eals the night

sph r underneath, but it i 0 10. e in iz t the da ph r that it appear to be the .arne

one. and thus 'hanging ren eti n with its surroundings.

42

7.6 Renections on Flat Surfaces

At this point in time (2001), it is impossible to create reflections through

physically real methods (i.e. - ray tracing) in real time on consumer hardware. That is

one reason, from my experience, reflections are often not seen in real time. Unreal

Tournament [23], Tony Hawk's Pro Skater 2, and Perfect Dark all have some reflections

on flat sUlfaces, but use them sparingly. I discovered the preferred method, or 'trick", for

creating the illusion of a real reflection from the NeHe tutorials [11]. It is relatively

simple, and produces visually accurate reflections in real time.

The "trick" to doing this is only a few steps:

L Determine the plane the reflective surface wil11ie OD.

2.	 Take any objects that will be reflected, and produce a way to draw them with their

coordinates flipped over this plane. If the plane were the Y=0 plane, all this would

entail is changing the sign of all the Y coordinates of the objecL Do the same for the

Dormal vectors.

3.	 Draw the normal objects, with the normal lighting.

4.	 Draw the "reflected" objects, using the stencil buffer if necessary lO cut out the

portion of the screen to draw to that corresponds only to the reflective surface. To be

as accurate as possible (but this is not necessary) reflect all the light positions as well

before drawing these objects. (The stencil buffer allows drawing to take place only in

specified portions of the screen. For a more in-depth explanation, see chapter 7.12

Fog and the Stencil Buffer.)

5.	 Lastly, blend the reflective surface in its place, so the reflective objects can be seen

partially through it.

I employed this technique 10 create a reflection on a floor, and it carne out very nice (see

the images below). Note that I did Dot have to use the stencil buffer because the viewer

cannot move to any position so as to see the reflected objects from anywhere except

through the floor.

43

FiQUre 7.13 Ref1ection~ in the floor of a ned tr and windo\!. (- ov). and a wooden hair (below).

44

Figure 7.14 Thi. is not an image accidemaJl. in 'I1ed u sid - owo. but rather the same ,cene vieeel

from underneath the floor. looking upwards. The 0 jecL are omp t ly mirrored beneal 1 the floor.

7.7 Textures with Alpha Channels

Each pixel of a texture can be defined to hav r d. (IT en. blue, and an alpha

component to determin xactly how that pixel i di play don-screen. Th alph,

channel. like blending, designates how tran parent a pixel should b~. Grea thine- can be

done ju t y de ignating ert.ain pi j- to complete!... tran parent. lmagine tellin o

OpenGL to drav. ten gr n triangl v,.ithin a r cLangular boundary in t\ 0 dimen ion a

in the imag s en below.

figu re 7.15 The black portion of thi· linage can be ,-pecified as tran:parenl.

T gel lhe same effe t, you could allernalely lake this image of all the triangl s

\-Vilh the t la k areas de ignated a transparent. and map that onto a re [an Ie. This

reduc p I, gon unl and, a\' pr gramming lime.

In lhe world I u. d lhe. e textur in lWO places. Th lrees in lh valle ha\'

foliage th I is mapped onlO f ur large triangle for ach Iree. They do nOI look early ~

prelly as the ver; leaf. trees, bUI use Ie s than l/lOOth the number of polygons [Q draw.

Had a t xlure artisl de igned the foliage rather than m elf, il would I k much etlef

and still onl. ne d a f \\ polygon.

A b lter looking example is the I of metal window grates in the gallery.

Figure 7.16 Thi!; \\ in o\' grate is a texture with the pha' ue. mapped onto a rectang e.

46

They are each one rectangle mapped with a texture with alpha channels.

The related challenge for me was getting such textures to load. OpenGL does not

perform any image loading functions, that is left up to the user. I had a third party

package for loading TGA format images, but it did not support alpha channels. Without

knowing the fIrst thing about file formats, I took it upon myself to tailor the package for

my needs. I ended up taking arrays of 24-bit pixels for each image (1 byte/8 bits each for

red, green, and blue channels), and resizing the array to accommodate the same number

of pixels with 32-bit size. r inserted another 8 bits for an alpha value on the end of each

pixel while making sure to slide the other pixels back in the array, unharmed. After

doing this for each pixel, the array becomes completely fuJI. To make use of the-new

accommodating texture (represented as an array of pixels), I designed a function that

would take a red, green, and blue value as input, and turn that composite color completely

transparent by iterating through the pixel array searching for matches. From what I have

seen, it is common to use black as this color. For the trees, I used a paint program to

design the texture, and made aU the desired see-through portions black (RGB components

0-0-0). Then I loaded the texture, specifying color components of 0-0-0 to be

transparent.

47

Figu re 7.17 Ever reen tree~ I made ith alpha-chann led textur .~ for tran parent· lion.

7.8 Special Texturing Techniques

Through a fair! imple ombination of dynami Ie turing an wireframe

polygon, r was able to create a gr .at effect in the horizon, cene. The ground and \val!

fad aVvay to re\'eal a \ ir frame Lructure which look like it ha flash s of light

tra\'el ing up the wire_ and shooting acras Lhe grid. llle id a for thi scen came from

the movie The 13r1r Floor. I wa a Ie to recreate it with the foUO\\'ing texture of m . own

creation:

..+8

Figure 7.19 ~ irefram mountain.-- ,eem to 'urge \~ith green energy

by dynamically mapping tbe abo\' t xture to the \ ire strucTUre.

In wireframe mode \\'hil texturing i enabl d. he \I.·ires di play v. haley r ortion

of le '(Ure falls on them at an, gl\' n moment. A the abo\' texture traver e the gri . the

bright lin s era ~ th v. ires Ie than th dark r areas of the texture. 111 light angl 'or

the bright r lines are to reduce these inter'eetions to points, whieh move up and down

\\ire a the imag slides aero s the Structuf . Tdi covered this t hnique quite by chance

when I happen d t e vie\\'ing the war d in \\ ireframe 'hile ooking at the -tarry night

sk_ of the \\ arid. Th t xture of larry sky \ tlashin,::, aero th k " \\ ire grid a the

49

brighter stars passed. I quickly adapted this to the green flashing wires - which mrned

out to be ODe of my favorite displays.

7.9 Fog Effects

Once I had some of the scenes laid out, I want.ed to be able to do some interesting

things with them. One of which was hiding distant portions from the viewer so as to

encourage exploration to those areas. The solution was fog.

OpenGL and other modem 3D graphics APIs like DirectX [18] and Sony's

Emotion Engine [20] for Playstation2 provide a feature referred to as/og. Fog is a way to

take a set of polygons, and blend their colors with a specified fog color, with a magnitude

that is functionally dependent on Z value (the distance from the origin, which is where a

scene is always viewed from). It acts essentially the same way as real fog - the further

away we are from some object, the more fog there is between us and that object to

obscure our view of iL Except in OpenGL we get to control all sorts of parameters that

govern the way this fog acts. Fog comes in any color or density that the programmer can

imagine, and actually has more uses than just to have fog in a scene. Two other values

that control the fog are min and max values, stating where the fog begins and ends,

respectively. Until min., there is no fog effect, and past max, the fog color takes

precedence over everything, fogging out anything beyond.

50

Fi!!Uf"(' 7.20 Foggy ntranc to t underground lake .cen in the world.

One. ttable parameter in OpenGL is a di tance e and whi 1 II will not

dra\\ anythin Ct • I read in the OpenGL SuperBible[25] that one ammon us for f g i'

cr ating a gentle means for object to fade in and out of a scene at [hi maximal dnw. ing

di tance. By retting th foo color t the color of the k . and the fog end di tan to Ie,

than the drawing thI hold. obje t do not g t har hly sli 'ed away. However. this i.- only

nn i,su in \'.r lare . op n-ended terrain ar a:. Before there v. ere an, mountain .. in the

a kground of my cenes. the nt, [ion large en ubh for me to u_e thi f~t \\ a the

vaUey.

On 'e I impl mented the tim -variable sk, mal hanged from blu durin" the day

to black at nighl, th . tati -color fOe: needed modification to a 'count for th i . What \I,:as

h ppening at night \\ a. trees and terrain in the di_tanc v,ould be fOe bien d to a liQht

lue col r, ut di n rtinglyagain t a black sky. I n d d £ war to figur out what the

effecti\'e color of the ky during thi. tran-ition was. Since til a kground wa black I

'" 3) able to alculat the effective re ,gre n, and blue channels f the k y mullipl ing

the blu f the front la r by its alpha valu each time th d:

effec: iveRai = skyRErl:hannel * kyAlpha;
ef£ec:tiVEGrE'el1 = skyGreerChanne1 • skyAlpha;
effec:tiveBlue = skyBlueChannel skyAlpha;Y

When the alpha value i, at it maximum of 1.0 durin o th day. the effecti\' \'alu s make

up the blu col r of th front layer of ,k ,and hen at a minimum of 0.0 at night. all th

olor hanneL, cale to 0.0 for black.

Figure 7.21 Fog effect.- u:ed to -imuJat light attenuation from \i \\ r po, itio .

Thus, at night. the fog rves as a imulation of light attenuation from the

\ J '" r' position. In th underground pa age cen (a \e) I took this to an extreme

and u ed black fog \\-ith a hort m ximum di lance. SU Il that the vie\\er can anI_

s all percemaoe of the surrounding scene at any time. It 100 a if the uri walkino

\\ ith a weak. non- ire tionallight (like a t rch. minu - til flickering.

52

7.10 Per-object fog

There was a point when the mountainous terrain in the scenes ended abruptly. The

mountains are all one piece. and they are incomplete on the edge - they have no

backside because no viewer could see them from that angle without breaking rules set by

my program. (Viewed from afar, their shape somewhat resembles a cutout of an egg

crate. with cuts going through the peaks of the crate.) The troughs in the terrain are

colored blue for rivers. and they inelegantly "flow'"' into thin air at the terrain's edge.

My solution to dealing with this was giving the mountains. and sometimes just the

mountains (depending on the scene) a fog value. Fog does not have to be applied equally

to an entire scene. If fog is enabled. the current fog values at the drawing of an object are

used, allowing for per-object fog, or even per-polygon fog. This became very useful for

me, because often I did not want certain objects to fade in the distance as quickly as

others, or even at all.

To improve the aesthetics, I applied fog to the terrain (on a scene by scene basis)

with a maximwn value that is no greater than the minimum distance the viewer can come

to an edge of the terrain.

glFogf (GL_FCG...,.SI'ARI', 100. Of) ;	 / / set the start distance of the fcg
g1Fogf(~FOG-END, 450.0f);	 / / 450 is always closer than t.enai.n' s ~

glEhable (GL_FOG) ;	 / / enable fog (just for the terrain)

/ / other ~ state <:har9=s
glPushMatrix () ;	 / / store a.u:rent m:delview rratrix state

glTranslatef(O.O,SO,O.Ol; / / position the terrain
glSca1ef(1000.0f, 500.0f, 1OO0.0fl ; / / scale up the tenai.n
t.errain->drawList () ;	 / / draw the terrain

glFbfMatrix () ;	 / / restore the rreOelview rratrix state
/ / rrore cx:mrarrls
/ / go fc:q cbes rot effect things dral,..n after

This code is from the gallery scene. Notice that the maximum fog distance,

GL_FOG_END, is set to 450 units. The camera is never able to get closer than 450 units

53

in this scene to any edge of the terrain. The terrain thus fades off into the distance before

the edge, and the viewer is not aware of any such sharp or sudden cutoff.

7.11 Multiple Transparencies

After fixing this problem with terrain, I started looking for a method to draw more

realistic water than I had been using, which was just a transparent sheet with a water

texture applied to it It would appear more realistic if the water got darker with deepness.

Water absorbs more light the deeper it becomes, making it more difficult to see at lower

depths. With just transparent polygons, every depth underneath is proponionally as

visible as without the water.

The first solution I came up with involved using multiple water layers blended

together. Each layer would "absorb" more light, essentially making each level of depth

less the color of non-water elements, and more the color of the water itself. The well in

the courtyard scene displays this method of attenuation by depth. The top sections of the

well are easier to see and distinguish details in than layers further down. While this

approach is conceptually straightforward, there are fmer points of the implementation that

warrant discussion.

First, OpenGL only blends transparent pixels with pixels that have already been

drawn. In this way it makes sense to draw anything transparent at the end of the drawing

section of code. If I were to draw all the water layers and then draw the surrounding well,

the weU would not be visible through the water at any level at all.

54

Figure 7.22 view looking do I/n the veIL dra 'n ... ith multiple

lIan:parem lay r'.

his al a implie that the indl idu I water la, er~ mu t b orLed accor ing to

epth. and drawn from the boltom up. Sin'e th vie\\ er \\ ill alwa s b situated a a to

the to layer fir I. then the se and. third, et cet ra. tI layers an h< e tati

drawing rd r. Ho\ 'ever, complications can an e if th ·tatic a umption can be violated.

on ider an xample c ne \\-here two tran parent gla e are illing on a table. From

one angle. the ftr t ~la can be seen through the, condo and from anoth r., th e ond

gla C I b s n through the fin. In thes two cas s. the)rder of dra\\'ing n ed to be

determined dynamical! y di. tane to the cam ra - d plh-sorting the tran 'par nl it In,

and dra\\-in::o in ord r fr In furthe t to 10 l.

55

Figure 7.23 Left: the equen of la 'e . :hov,;n . p ed further apan towards III bonom Right. a

cia -up f the lOp three lay f"" ho ing ani) the top one needs 0 hay a water texrure. The reo I are

IU~I Iran 'parent.

An lher finer pint to ad lre- \vh n drawing the water layer in the w II i u)at. at

larg r di. tance apart from neighboring la rs, la er can a,. ily be di tingui-hed by the

viewer. and he v.·ater will not look a- r ali Ii s with ju t the to la, r alan. \Vh n

10 king into a lake or a gla . of water. we expect [0 see ju-t on di linct tran ition \\here

air meet water. nfortunately, I auld n t ju t draw hoard~ of la er infinit simally

I s to ea h other, 1e au~e OpenGL has to do calculation for each. I found Lhat after

aboul ev n or a tran par nt la r. frarne rate drop to poor I \' I . To work around

thi . Tclre\ . Lhe ftf t two layers very close tog ther, <Inc! each sub quem el further apart.

Thi Vi rk \1,' 11 becau ewer layer. are more ob cured from high~r . nes. and th yare

therefor less noticeable a eli tin I layer.

7.12 Fog and the Stencil Buffer

Another approach to creating reali tic water can be implem nte with fog and the

tenLil buffer. The 't n il uffer [2 J j' a buffer that ontrol- the portion of the cr e

lhat are drawn to (hence iL name. rn other war s, if you \I, anted to drav. to the top- J ft

mer of the screen, y u oul fill the corr ponding I ation in the stencil buff r \! ilh

56

one value (for "draw") and the rest with another (for "don't draw). Then every

subsequent drawing when stenciling is enabled would only output to the top-left comer of

the screen. Unfortunately I have not bad time to code this method, but I have solidly

worked out the logistics.

In the courtyard scene, say I wanted to fade the well water relative to depth in a

smoother fashion than with multiple transparent layers. This could be done by applying a

fog to everything under the level of the water, with perhaps a deep blue, almost black

color. However, unlike nonnal fog effects, we do not want this fog to apply to the entire

visible scene, just to the water in the well. The stencil buffer must be manipulated to

single out this part of the scene. Since there is no terrain in the courtyard below water

level except that covered by the water itself, we would only have to set up a plane

equation of Y = W3.ter Level and give it to the stencil buffer. Having the proper area

singled out for fog is the harder part. Next the fog must be controlled. A depth of two

units in the water should be just as obscure if the viewer were standing at the water's

edge as if standing far away. The fog start and end attributes must be updated relative to

the viewer's distance from the water such that the fog always starts at the distance the

viewer is from the water's edge, with some constant difference between fog start and fog

end.

This will create the smooth light attenuation we are looking for. A caveat is that

this is a better approximation for a body of water with a smaller localized surface area.

This is because at the edge of the water, water closer to the top will still be darker further

away than at that point However, since water tends to reflect more light at greater angles

of incidence to the surface, we expect to see less in this situation anyway. The effect is

worth its flaws, and is less expensive for the graphics processor than blending multiple

layers as previously discussed (blending with fog is only done once, not multiple times).

57

CHAPTER 8: Terrain

8.1 Introduction

In this chapter I will discuss two types of terrain (landforms) that are different

because of their use in scenes and the methods by which they were created. An example

of distant terrain is the set of mountains and water in the background of most of the

outdoor scenes, which I used to fill the emptiness beyond the scene. Oose terrain is all

other terrain that can be closely viewed, such as walls, ground, and rocks.

8.2 Close Terrain

Rarely does one walk outside and see landfonns that have completely flat faces in

nature. Good textures help a great deal, but a geometrically flat surface still looks flat. I

made it a point to use good textures and dedicate the use of many polygons in some of the

more enclosed scenes to create pleasing and realistic terrain. By using higher levels of

polygons, surfaces can be given a bumpy appearance rather than a plain, flat one. One

feature of "good texwres" is high cootrast (e.g. - splotches of light and dark) to suggest

shadows due to indentations and protrusions.

The path leading up to the castle is a very nice example of high terrain polygon

counts, versus the lower polygon count walls in the valley. The path was a prime choice

for high polygon count land because the focus of the scene is on the land itself. There are

no special non-terrain objects to draw attention. I fonned the walls and ground in 3D

Studio Max using large sheets of connected rectangles. At fIrst I tried to apply a noise

function to create some bumps in the walls, but at high enough levels to perceive a

difference from flatness the effects were too angular. I ended up repeatedly selecting

semi-random groups of vertices, and pushing and pulling them until the terrain was

shaped in a way I thought looked realistic and had a moderately bumpy surface. I used a

58

l Xlure =-eneration function to ma n t xlure l the -urfac f the pam.

Although automatic te "ture g n r tion doe not alway ei\'e good re~ult (it \ ork more

oft n when perfection i not ne e sar.), it work d well in th's ase.

igure 8.1 Rock on tlle beach were mad in D tudio Max from 'pher

function~. and lhen havin :phericaJ Ie. lUre mapping coordinalc, applied.

1cr ated the rock in the path and the rocL on the ach (abo\') a sphere in 3D

Srudi lax. and then 1 again applie I noi e and tr tch function .. In Sludio 1 alaI 0

appli d multiple textur mapping function pr vided, including hrink-v, rap, phericaJ,

an cylindri a!. Th spherical mapping produc d bell r looking r ult man the oth r

un tions. I made the tuft f gra in Studi Max by creating four triangle- haped

bla -. and appl ing a end modifier to t 1 m at different angle. By duplicating th m

and pojtioning them aroun a ·ircle. the (uft took hap .

59

R.3 Distant Terrain

Befor I h d included any di tant telTain in my world, I had noticed nagglOe

feeling of emptine, s while navigatin some of th outdoor seen ,. With no [earur .'e

beyond the imme iar 'ene. the view'er f els as if the cene exists in a vtlsl expan e of

nothingne s. And it did. T all viat thi. " n. e, I filled the \'oid with hat I all "di tant

terrain" b au it I oms far in the di lance.

'jog 3D Studio Max, I start d to mod I telTain \\ ith a she t f 7200 onnected

triangle. lllis is -lightly more t lan th number of polygons in one of the leafy tree

m del' in the world. and for the amount of each ourd r c ne tbi- landscape w uld fill

up. that" s an a .ptable number. To ontinue, I pushed and pulled \' rti e (like pu hine

and ulling portion f a sheet of illy putty) and. I ped set of triangl until r had ~'hat

) th LIght looked Iike good land: ape.

Figure 8.2 The di tant terrain landform I m led in 3D tudio Max. 1 'Ot ic th orange c~ linder

n om ~. ing the mountain~ - thi' i.<; b shape of h texture mapping function u~ed.

60

The method J u ed to apply a feali~tj looking te ture to this terrain i: inter 'tin",_

A ommon mean for texturing terra' is to r ate some function th t texture ccording

to a [unction of height. similar to the way a top logical map is c lored. For xample. he

highe. t point ar whit for. nov;. Slightly 1 wer than snow, bu above the tree line. i

brav. n. Diff r nt I of bfeen repre ent ar a around and abo\'e a I v I [or gra

and tree, and blue are u ed for water at the 10'> est point. U. in", Paint Shop Pro. I

desiollt.:d my own texture with those levels of color:

Snow

R I • .;

Some Tree.

rass and Tree:-

Water

Figure 8.3 Th ru I created for the

t rrain mapping. an th ariou~ eigh
corre:;ponding 10 the t) pe of land feature
each represen '-.

1applied this texture c lindricalJy to lhe terrain u ing a function uilt int Studi

1vla,. Thi e entiaJly take the texture an wrap. it into a lube around the stru ture,

applyine the textur t th P nion of th 11 del it meet with.

61

Figure 8.4 Overbead \'ie v of th terrain (above) and .1 ie (belo\\),

62

CHAPTER 9: Particle Engine

Up to a point in the world, I had no real dynamic structures. At most, textures on

polygons were moving, but no actual polygons were changing with time. I decided to try

implementing some realistic natural effects by manipulating polygons.

Many phenomena in nature consist of a structure that is a building block for a

much larger structure. Some examples are rain, snow, water, clouds, dust, and fog. A

rainstonn consists of individual drops of rain. as a snowstorm consists of many individual

snow flakes. Fog. clouds, and water all are made up of water particles in different

densities. A particle engine is an object that controls a set of building blocks to produce a

larger, dynamic phenomenon. Although I have already developed clouds and water with

dynamic textures, a particle engine would allow me to bring the phenomena out of the

plane, and really into 3D. Dynamically textured water could be paired with a particle

engine for something like splashes in the water.

I got the basic idea from a tutorial on a website [15], and decided to implement

my own. First, a particle for my purposes had to be a polygon or set of polygons that act

according to certain rules. most specifically, physical laws of motion. The attributes of

my panicles are position, velocity, acceleration, color, texture, size, lifetime, decay rate,

and whether active or not Each time a particle is updated, its velocity is incremented by

its acceleration due to gravity (and gravity alone, minimizing calculations by singling out

the most important factor), and its position is incremented by its velocity. In this way,

snow can fall, water can be spouted upwards and fall back to the earth, or haze can just

bang in midair.

Say we were to create a particle engine with ten thousand small particles that have

a blue, circular texture and a negative acceleration in the vertical direction (acceleration

downwards, towards the ground). The engine would then draw each of these ten

63

thousand blue particles falling at the same rate from the starting point. We want to be

able to spread the particles out somewhat, so I defmed functions to set initial position and

velocity to random values within a given range. Now say we used this to spread the

panicles out over ten units. and vary initial velocity slightly. We would then see the

particles fall over a space of ten units slightly apan from each other. But they keep

falling and eventually can't be seen any more.

[n order to keep particles flowing, we need to regenerate particles that are no

longer of use, like those that fall through the ground. This is why all the particles have a

lifetime, starting with some random value between 0.0 and 1.0. On update, all particles

have their life decreased by their decay value. Upon reaching 0.0 life, a panicle is given

full life (1.0) again along with its initial position and velocity. I added an alternative

condition for regener3tion upon reaching a specified plane. In my valley scene I have

snow falling, and once it passes through the plane Y=O, it is a waste of resources to wait

for those particles to die, since they cannot be seen. Instead, they immediately

regenerate on passing through this plane. To make the transition from alive to dead less

visibly abrupt, the life of the particle (conveniently between 0.0 and 1.0) can be used as

the alpha channel, so the particle fades away as it decays.

I also created functions to randomize size within bounds, color, and decay. With

all this functionality, I have imitated snowfall, water spouts, and small waterfalls fairly

convincingly.

64

Figure 9.1 The Panicle Engin used

to create a fountain spouting \ ateL

One problem I had \\'a that I wa' nl drawing the particles ac ircle in one

plane, and they became less vi ibl a the \'iewer moved clo er to thi plan fr.m th

ide. My first intention v..as to u eat chniqu alled ilIboarding [-1 wh,.xe a pol gon i

rotated that it 'urface i aJways facing the viewer. Many games. e peciall' arlyones

like C tie Wolf n tein. u e thi techniqu [-+] f r mall r it III that are clo e in the

scen ,or for objects that sa e needed space by being repr .. ent d <L a seri of flat

P l.'Q n rath r than a large set of polygon in three dimensions. Object with radial

symm try (in real life) are e pecially suitable for billboarding because the . hould look

appro imately th .. am from an angle, anywa·. Appl ing thr e maU"ix operation p r

pani J " (one for rotation in each dimen ion) i.. not f a. ible [or thousand of parti I . a

thi_ ~Iow the frame rat do\vn to una c ptable levi.

Another oluti n, \vhich I e\'enrually cho ,is to pro\'ide the plion to draw a

parti Ie a three orthogonal rectangles (see cir J d P 11ion or \\"ireframe imab elo\\).

It u three times a many pol.. g ns as the J re\'iou particle that \ ere onl. being dra\\ n

in one plane, butth e newer parti Jesould b . een well [rom any angle due to th ir

tructur . Thi, approa h wa aLo much better than a 'wally drawing the particle: a'

65

sph r s, ~hich would r quire at least .IX times as man
J

polygons per particle LO get an

ap roximation of roundnes. inherent in aniele u h a \: ater droplet.

in~ the parti Ie engine for an ntire large body of waLer is out of th ue tion

becau the rendering limit of about to.OOO particles (to keep a decem fram rat ~ould

need 10 be far e'c ded. -ing large. d namjcally te ·tur mapp d pol gons i still bett r

in thi ca e. but f r m re detailed imulation . th pani 'Ie engine i u fu!.

Fi<>ure 9.- Part of a . ne dra\ in \\lfeframe. wi h th panicle engIne simulating snow. \OllC Ih \'0

10-' r no\\ particl ." CiT J d in red). and how each h~ polygons nih X- . X-Z. and Y-Z plane' . for

\ ie\\ ing from an) angle.

66

Figure 9.3 The panicle engin u eel to creal, 10.000 con-tan snow pani I • that recycle th m. h upo

itting the ground.

67

CHAPTER 10: Boundlessness: Living up to the word ''World''

10.1 Introduction

"Building a world" is quite a phrase to live up to indeed. I could not imaging

exploring our earth to the extent that I have seen every ponion of it. "World" is used

with a connotation of this son of boundlessness, a quality I attempted to introduce into

my world through aesthetics and size rather than any particular programming methods.

The number of explorabJe scenes present was the most important aspect of design

in respect to vastness. The world has a total of ten different areas. The goal was to have

at least ten, and am glad I was able to achieve this many, although the more the better.

Ten was enough to allow variation within the scenes themselves, creating strong diversity

in the world with a beach, mountain paths, a castle and art gallery, a grove of crees,

underground sections, bodies of water, and the end of the programmed world.

10.2 Arrangement

The arrangement of scenes plays a very important role in giving the user a feeling

of expansiveness. The worSl possible organization of scenes would be to have the fIrst

scene connected to one scene, that to another, all the way to the last scene in a completely

linear fashion. The user needs opporumity to make decisions regarding where to explore.

By choosing to go one direction and temporarily leaving another untouched, the hinting

feeling of vastness begins to grow. Linearly, this is not possible.

The underground passage, mountain path, and valley scene all present these

decisions. With a limited number of scenes, they cannot all be connected reasonably this

way, and there are dead ends that effectively put a cap on the world. It is conceivable

that all the scenes could have more than two connections to the other scenes, but that

would ruin the mental map one creates when exploring.

68

10.3 Working with Emptiness

Adding th . urr undine terrain f m untain_ and river to the outdoor ene v:a

n of the be, t oppo_itions to confinem nt. Explorabl or not. th terrain took a \'a_l

m iness, and turned it around into a \'je\\ suggesting a large, l n trial land. high-

altitude eaJlery's outdoor portion give the be. t outlook onto the land, e pecially if the

viewer jum up mo the t n \ all t th edge of the yard.

1 specifically reat d a beach becau e oceans calT, \\; ith them an all" f a\ e orne

immen ity. We ar u d to looking at an oc an ..llld ·trivin,:, to comprehend \: here it

Ie d and \Vh t may be "on the other side". In my \Xi rid it I opefully pr mpts ue!

que_tioning, a the u er d e not know that I did not program _omething to be on a far off

m where.

Figure 10.1 A vie\'. off into the distanc . on the beach in the \Vorl .

69

CHAPTER 11: Navigation

Once there is a scene in place, with some ground and rocks or trees. there is the

problem of actually being able to move around it to look at everything. It is Dot a feature

automatic or built in to OpenGL, so I needed to figure out a way to draw things to the

screen in positions such that it looked like the viewer were able to move.

One of the ftrst OpenGL programs I wrote was very simple, displaying a red

wireframe cube on the screen. I added interactions that would change the position of the

cube based on key input, to give the appearance of moving towards or away from the

cube. I did this by including an updateable variable in the Z coordinate of the cube's

position:

gl'I'ranslatefCO.O, 0.0, -10 + variable); II get to ili= o:>rrect spX.
glutwirea.JbeCl. 0); I I draw a a.Jbe th:!re of side lergth 1

The third field in the translate function teUs OpenGL to move back along the Z axis 10

units plus some variable amount that depends on user input. The cube is then drawn

there.

After this simple experiment, what I wanted was to draw multiple objects and

manipulate them such that it looked like the user was actually walking around. Now. in

OpenGL the scene is always drawn from the origin. So to get this movement effect I

could just add some variable teon to each dimension of the object's position similar to

the way I handled the cube. But then when the user walks around, the world would only

be viewable from one angle, straight down the negative Z axis. To account for this in the

same manner I would have added variables to a rotation term for each object as well.

Unfortunately. this approach quickly becomes tedious and messy with variables allover

the place.

70

To take care of the problem in a cleaner fashion, I used a common approach

where the entire scene is rotated and then translated at once. My program keeps track of

the amount of distance from the origin and rotation past zero degrees to represent the

view based on input. Before drawing each scene, the rotations are applied, once for each

dimension, then the translation is applied. All the values that are used are the opposite

sign of their stored values - to move the "camera" ahead 5 units, we are actually instead

moving the whole scene back 5 units. And by keeping the effects of the translations and

rotations on the current transfonnation matrix while everything in the scene is drawn, it

will look as if the "camera" has moved, when it actually is the entire scene.

At this point I was then able to navigate scenes and look at my objects from any

point or angle (excluding roll- analogous to a side-head-lilling movement). As exciting

as this may have been, the experience of moving around was like navigating a completely

empty space - I could walk through walls and I could move backwards off the edge of

the scene and watch it grow smaller and fade away. This brings up the much more

complicated topics of collision detection and collision reaction, which I discuss in the

next chapters.

71

CHAPTER 12: Collision Detection

U.l Introduction

Before collision detection was implemented, I had my scenes all laid out and they

looked great - but there were some big problems. When walking around, it was

possible to move right through walls and objects. If the viewer happened to try walking

down a hill, the hill would simply drop away underneath, requiring an explicit set of key

commands for floating up and down. I needed some way to know exactly where the

boundaries were in each scene, so that the viewer could react to them automatically.

Collision detection is the ability to be notified when two objects paths intersect in

space-time. It is a means to connect the viewer (and other objects) to the world in more

than the superficial sense of being restricted to looking at the scenery. Collision

detection bas an application wherever you want to know when two objects hit one

another. In a car racing game it would be used to see when cars crash into one another

and to keep them from falling through the ground or driving through walls. In a soccer

game, players would not be able to kick the ball without collision detection.

Collision detection is no trivial matter - at least one month of my allotted time

overall was spent researching and implementing collision detection. Entire fields of

research are dedicated to this topic alone. As a matter of fact, when I was searching for

information on collision detection, much of it was too complicated to get involved with.

I also attempted to use two different third party collision detection packages, but due to

complexity and lack of time to spend understanding other people's interfaces, I did Dot

use either. Instead. I decided to save many hours and much frusn-ation, and at the same

time learn a great deal, by implementing roy own version.

72

i

12.2 Ray-Casting

One of the foundation of olli ion detection within three dimen ional graphic

a mathematical concept known as ray-ca ling. Ray-ca~ting has the abil ity to account for

the worl . thr patial dimension. An online LUtoria at fJipcocl .com [13] help d me

get started dealing with ray-ca ting. The concept L fairl a 'y to under tand: you take an

initial poif1l in 3-. pac of a moving object and a d .. tination point in the same pace at

some later time. then find the mathematical equation of {he ray f rmed by moving from

on to 111 other, Now. iterate through all collision polygon and te~t LO ee if the ra

iDl rsect with the plane that the e polygons lie on. Each tim rhe ray iDler ect with

on of these planes. check to if the point of inters ction with th plane is actually

within rh bound of that pol, gon, If so, then there was a colli ion,

Figure 12.1 TI1i~ picture shows ra -casting from (he c mer of the cylindrical boundary

surrounding the camera to i edg in the directions of planes thal colli'ion polygons lie

on. Green and yellow points. ho\ \ here intersection' with th ~ P anc~ DC ur. None of

1 ;;e in e _ clion~ are actually with pol\'", n•. JUSt their plan .

This required the implementation of some basic geometric snuctures. I wrote the

representation for a 3D Point, which is equivalent to a vector and has the same

fundamental operations. Then I wrote a 3D Plane representation, which uses a 3D Poiot

for its normal vector. and I wrote a 3D Polygon representation that uses 3D Points as its

venices. Some sample code I use in my project to determine an intersection point using

ray-casting is below.

PointJD Plane3D: :RayIntersect {PointJD start, PointJD fi.nish) {
float t; I I p:>int in the ray W1ere tre intersecticn occurs
PointJD ray(finish.x, finish.y, finish.z); II duplicate the finish r:cint
ray. subtract (&start) ;

float run = PointJD: :[btP:roduct(nomal. &start) + dist.an:::e;
float denn = Point3D: :DotP:roduct(nozrnal, &ray);

if(&!nan = 0.0) (
t = 1.0£;

)eIse{

t = run! den::m;
)

ray. scale (-t) ; I I scale ra.f b.t -t. l:e-:ai IS€' of h3ckwards coord. systan
ray. a::Xl (&start) ; I I ad:) the starti.n.;J r:cint to it.
return ray; I I ooIds r:cint of int.erse±ion rDIJ

)

Just finding out if one point intersects with a polygon is only the beginning to

collision detection. We don't want to represent the viewer as a point - for if we did the

viewer would fall to the surlace of the ground and feel like the size of a pea. Also, the

viewer would be able to get within the minimum drawing distance of objects, which is

0.5 units. Any pixels within these bounds do not gel drawn. If the camera is allowed to

gel within 0.5 units of a wall, that portion of the wall will disappear to reveal anything

that mayor may not be behind. For this reason, the camera must be associated with a

collision volume.

74

U.3	 Collision Cylinders

The collision geometry I use most often in the world next to polygons, is the

cylinder. I chose to use cylinders because they are quite symmetrical, easy to represent,

and can be used to give curved surfaces accurate collision behavior. In order to avoid

excessive and time-consuming calculation, I restricted cylinder space to all upright

cylinders (whose caps remain in the horizontal plane).

The three polygon-cylinder cases supported by my collision manager (so far) are when:

1.	 The center of a cylinder moves through a polygon.

2.	 A vertical cylinder intersects with a vertical polygon, with better approximation for polygons

with closer to vertical edges.

3.	 A vertical cylinder intersects with a horizontal polygon. with greater approximation as angle

of elevation increases for non-horizontal polygons.

The three cases are checked in the order presented. If any test finds there is a

collision. the other tests do not happen. Case (1) simply tests to see if the center of the

given cylinder passes through the polygon by casting a ray from the initial position of the

cylinder's center to its final position.

If case (1) is not lrue, case (2) is checked. First, the vertical region of space where

the cylinder and polygon overlap is found. If there is none, there is no intersection.

Otherwise, the test continues by taking the midpoint of the vertical range of overlap, and

casting a ray from that vertical point in the horizontal center of the cylinder along the

polygon's positive and negative normal (could be on either side of the polygon). If either

of these rays intersect the polygon, there is a collision. Also, to account for the case of a

cylinder being outside the vertical boundaries of the polygon, the closest point of the

polygon in the horizontal (X-Z) plane is found, and a ray is cast from the center of the

cylinder through that polygon's X-Z point and the cylinder's Y point.

75

Ca e(3)i ub. gu ntl heckedifcases(l)and (2) v.erenegati\' " Ittak, tho

of th lOp ca of th cylind r in the c, linder's dir tion of motion, and

ca t a ray from thi point t th ame point n the ,lind r's bottom a . An

inl 1'5 cti n i' a colli-ion.

Figu r 12.2 Th~' screenshot 'how' colJi'ion boundari in a Iran lu en red. color. Noli e the Dal

pol) ooru on th floor and lIs. and the Lindrical boundari around the turrels and \vel " ;-.iOlic \\ ilh the

velllha! something need nOI be. drawn for a boundary to exi.. l: in the w II's case. il is III absence of a

floor lhal requires a bounda , 0 the i wer cannot fall down lh vel!.

Th thre ca~e ombin d \>,'ith the orientation renrri [Ion of the colli ion object

ro\'id an ffectiv mans to detect cylinder-polygon 'olli ions. Ke p in mind. that is

only one set of test. that took 0' r 10 lines of compact, v,'ell-tho ~ht-out C++ ode to

implement. Th colli. ion manager pro\"ide other ets f test including polygon-:phere,

linder-c lind 1', et cetera. On probl m I had wa th t c linder colliding with a point

wh r two polycan' met in a orner sam tim. got th linder stuck along one of the

01 .::on5 if the point \v r an angle f 270 degr e (vh re lhe cylin r i within that

76

angle). Since vertical cylinder<ylinder collisions do not have any flaws. I began sealing

such points with cylinders.

12.4 Collision Optimization

Some forms of optimization are necessary for collision detection, because it is not

feasible to check for a collision between every existent polygon. This would be 0(n-1)12

checks (where n is the total number of polygons), which takes 0(n2
) time to complete.

For one of my normal scenes, this would be well over a billion checks. This must all be

done within a miniscule fraction of a second to be useful, and I would not want my

program to have that dependency. Forms of optimization exist that reduce the set of total

polygons for the collision manager to handle, and that reduce the number of polygons

within that set that have to be checked against one another.

Jt is logical to break up the collision objects that move from the objects that do

not, because objects that do not move will not have a chance to collide with each other.

My collision manager has a separate container for each of these objects. The dynamic

objects are checked against one another, then checked against all the static objects for

collision. This partition saves many calculations since many more static elements (like

walls and floors) will generally exist than dynamic ones (like a camera or a bird).

77

Figure 12.3 J th eel colli.~ion polygon approximating the :,hape of the all to funher reduce the ~ 't of

ollJ:ion polygons, ill> oppo, to u. iog ever) pol gon that mak . up th wall ~- a bounda!) ,

One I had all the constructs that uld collide with one anoth r (lind rs,

P Ivg n'. et cetera). J was able to lise them to approximate all the surface the 'amer

might collide with in \' rJ'cene ("e n above), By approximating these urface a

opp d to usin tho e urfa _, I wa re u illg til l of colli ion lyg n,. There are

tw rea ons why it would not ha e been a g od idea for m to tIter all . cen polygons

lhr ugh a function to create Ili ion pol gons. The fir t i that 'f acne ha 4 -,00

ratic polyg Il . and ju 't the am ra. it would take hundreds of thou ands of call to

function that make man al 'ulation to te t all ibi itie", ddin more _nami o

polygon rna . this number of aJculations mu h larg r. I wa generally 'll) t m k

7

the approximatIons \ iLh twenty t event.> polygon_ and cyllnd rs - a much beller

number than tens of thou ands.

I would like to bri fly discuss another form of colli ion optimization that r did nol

have the need [0 use nor the lime to implement. although it is v~ry imere ting and quite

leganl. It u a can truct caJled an OClree [10J. which i. a tree \.vhere each node ha

eight chillren. Th yare u d by taking the thr e-dimen ional pac in a ene, a a ub

and br aking it up intO ight 'mailer ub each of equal dimen ions. Cube ar

recur. i\' Iy broken dov. n until some stopping criterion is met, uch a a minimum. ize or

ontem. 11 colli ion object are added to the leaf of til tr . that they fall into

(0 ibl" more than one). Sin e collision are patially depend nt and anI, obj t' in the

arne leaf are close. \ve lena"'\' that only objects falling \- ithin the arne leaf could po.. ibly

c lIide with one another. Thu. the \.\ork.inb set is reduced greatly, and quickly, in a

graceful \vay. I think implementing octrees would be a great exten ion to the project, as

they are useful in other meth ds of optimization a well.

figure 12.4 lJ]u:;tration of an OClree panition

79

CHAPTER 13: Collision Reaction

13.1 Introduction

Being able to detect a collision is great, but not enough in itself. Something

actually needs to be done when two things hit each other. For the camera specifically, we

want to at least stop it from moving through the wall. By keeping a starting position and

a destination position as part of the camera's information for each update, if the camera

collides between these two points, it is sufficient to set its destination back to its slarting

point In that way, if the camera collides with any wall, it is stopped in its tracks.

There are two problems with just stopping the camera's motion completely. First,

it is less frustrating when moving around if the camera were actually to slide along walls.

rather than being stopped and having to back up or turn around to continue moving.

Second, if there is a gravity that keeps the camera on the ground, it would never be able

to move at all because it would be constantly colliding with the ground. I had this

problem at first, so I had to set gravity to zero while I coped with the situation.

After drawing many picnrres and diagrams, I figured out that to slide an object

along a collision barrier, two crucial pieces of information are needed. These pieces are

the path of the object's attempted travel, and the normal of the collision surface at the

point of collision. The path is known, since it was used to detect a collision. The

normals are an inherent piece of polygons. and those polygons only need be queried.

Sphere normals can be found by taking the ray from the center of the sphere to the point

of collision and normalizing it (reducing its length to 1). Lastly, (vertical) cylinders also

have a function to return a nonnal, which is the ray from its center to the point of

collision. with lhe same vertical coordinate, normalized.

By taking the dot product of the path and the normal, a distance d is yielded that is

the length of the path along the normal. This essentially collapses the path onto the

80

normal, but the value d has no direction (it is a scalar value). Now, the amounllo remove

is obtained by scaling the normal by d (this result has a direction). Then the produced

vector can be subtracted from the destination of the moving object before collision

reaction to attain the new, altered destination. This is illustrated below.

I Destination before reaction
I
I
I
I

ormaJ

• y--
Point after sliding \ Initial point

A - 8 = Corrected Path of Travel

Figure 13.1 The mechanism for sliding along a collision boundary.

Notice that even though there are right triangles and similar triangles involved in

the diagrams, trigonometry alone is not enough to solve the problem. VectOTS need be

used because more than just magnitudes, we are dealing with direction in two (or three)

dimensions. Also. although in the diagram it appears to be taking place far from the edge

of the surface, this is generally not the case. In real time, the distances involved in

traveling from one point to the next are minute since they span all of a few hundredths of

a second. The distance is therefore not noticeable. Be aware, however, that this sliding

technique is used uniquely in navigation. If we were to try simulating a ball being

81

thrown at the same surface, we would want to instead reverse its velocity and flip over

the surface's normal for an elastic collision.

13.2 Multiple Subseqoent Collisions

It is possible that a situation would occur, most likely in a corner, where a

collision with one polygon would slide the viewer past the boundary of the other

polygon. Someone would easily be able to then "slide" out of the boundaries of a scene,

and literally falloff the edge of the world. Gravity would relentlessly pull the viewer

downward into a never ending pit of emptiness - a situation that I did not want to let

happen.

To prevent escaping boundaries via sliding. I added additional collision handling

as a follow up to any initial collision. The collision manager executes a loop for each

moving object that breaks only when that object's path does not collide with anything at

all. There is also an alternate condition which breaks upon some maximum number of

collisions so as to avoid an infinite loop. although this has not been necessary.

13.3 Ground versus Walls

At this point the viewer had pleasing reactions when moving along walls, and

when gravity was enabled, the viewer was able to walk along the ground freely. A

problem I did not foresee was related to sloping ground. I buill a test ramp in the castle

courtyard scene to test the completeness of my algorithms, which, of course, were proven

incomplete by the ramp.

I was pleased to see that I could navigate the viewer up the ramp and falloff the

end to the ground, without going through the ground. The problem was that standing still

on the ramp revealed that the surface appeared to have no friction. The force due to

gravity was constantly trying to pull the camera slightly below the surface, and the

82

3

'urface due to gra it).

Destination

a magnirude proponional to the ~lope of the urface.

urface a_ Iiding it back along the normal. The nel vector pointed down the ramp with

IL wa clear that I eilher had to add some friction [0 the surface, or more pIau ibly,

liding along the normal, the camera's collision c. linder casl a raJ from the enter of it:

I had to change the amera's reaction to ground colli i 0" a that it \ ould till be

make ~ome 'on of I chnical di tinction berv.een wall and ground, which i the option I

Y all repr . entation. The amera onLinued to handle collisi n v.ith walls ithout

opt cI for. From my Polygon repre~entation. I derived th Ground represe tmion and the

modifi 'ations.

ba" along the vector of graviry to find a poim of jnt"rs ction. The component of this

thi new one. Thu, the camera is placed ever so slightly above (he ground. retaining its

able I OlaV, a [properly wilh gravity, and not lid down slop d f es. So ralh r than

point al ng the \'ector of gra il is rak n. incremented b a on -hundred-thou, andth of a

prill (in the direction oppo ing gravity). and replaces the camera' component v.. ith

compon nl of motioo along the ground to allow for sliding.

Figu re 13.2 Til vj \v r ·tiding dOl n two differently 10

CHAPTER 14: Audile Realism

14.1 Introduction

Originally I had not considered putting sound in my project, and had not even

mentioned it in my proposal. But sound, even a random distant bird call, breaks the

monotony of silence and causes the viewer to focus on the world with two senses instead

of one. Requiring attention of another sense draws the user into a more unified world

that is all the more realistic. As I realized this I became inclined to include audio as an

integral feature of the world.

14.2 False Starts

There was much trouble in the process of including audio. I examined two

suitable options for three dimensional sound APIs: Microsoft DirectSound, and OpenAL

[16]. OpenAL (for Open Audio Language) is OpenGL's equivalent in audio - multi

platform, state-based, and generally similar in dialecl OpenAL, however, is at a

premature stage, copyrighted in 2000. DirectSound is part of Microsoft's larger suite of

programming libraries, DirectX. I chose to work with DirectSound since it has,

ostensibly, a sturdier foothold being on version 7.0 as opposed to OpenAL's 1.0 version.

This chimera of mine lasted only a few days when I became increasingly

frustrated with the sheer amount of code necessary to load just one sound and play it.

The tutorial on Microsoft's website had about seven pages of code with frequent absuuse

and unexplained code statements. Upon attempting to compile the files, I received errors

when theoretically I should not have. All this was just for a dimensionless sound, the

ordeal doubtlessly more difficult for three-dimensional sound. I pondered what I had

learned, then promptly threw in the towel and moved on to OpenAL.

84

A sample project the designers of OpenAL sent me was relatively easy to

understand. Every piece of code had a clear meaning, and there was far less set up to get

OpenAL functioning. It took me quite a while to install the correct files in order to use

OpenAL, and I still do not have the optimal setup. I discuss this further and relate it to a

more general problem in a later chapter Bugs. Obstacles, and Pitfalls.

14.3 Working Sound

Once I was able to get sounds playing, my first intention was to synchronize

sounds with individual footsteps (the low points in the up-down "head" movement of the

camera). Using a sound editor I broke up a clip of a person walking through leaves into

fi ve separate footsteps. One of the five is randomly chosen and played each step at the

foot of the viewer, providing the viewer with a more human feeling interface, as opposed

to a rigid camera gliding silently through the air. If I had time, I would have liked to take

this idea further. I wanted to give each section of ground a "material" property that

describes what type of ground it is, such as snow, grass, water, stone, or gravel. Over the

continuous collision the camera's bounding cylinder has with the grounds, it could record

the current material underfoot. Then the stepping sound could be changed depending on

the type of material. Tony Hawk's Pro Skater 2 is a popular skateboarding game in 3D

that gains much from utilizing such methods. The sound the skateboard produces rolling

around changes masterfully when skating from one material to another. Blacktop.

wooden ramps, rails, and even corrugated metal have sounds that match exquisitely, and

were probably taken from real skating clips.

Next, I decided to add sounds that insinuated the presence of other life in the

world. I chose crows because they are birds that are common most places, and people are

usually used to hearing them. I divided up some crow calls I had found into four

different ones, and placed the four in random distant locations in the outdoor scenes. By

85

having distant crow sounds, I hoped users would get the feeling that since the crows

could not be seen, but could in fact be heard, that there were actually crows somewhere

else in the world., subliminally conveying that somewhere else actually exists and the

world is larger than the explorable sections. There is also the possibility that the user

would hear the crow sounds and not register it as something special due to their

commonality in our world., and thus feel somewhat more at ease. Note that the speed of

sounds is in no way affected by the element of time in the world. A crow will sound just

the same if days pass in seconds or hours in our world. The frequency at which

individual sounds occur may change if it is dependent on time (for example, the

occurrence of the sound of a plane flying overhead every virtual-world-hour will change

with the rate of virtual-world-time). Its pitch, wavelength, and amplitude will not, as they

are only dependent on position and velocity relative to the listener.

The other worldly sound present in outdoor scenes is wind. A constant wind

blowing that reminds the listener of the elements, and fits in with the moving clouds

above. There are functions available in OpenAL to set the minimum and maximum gain

of a sounds, however not in the version I was using. The min and max gain could be set

to the same value to keep a sound as completely ambient, with the same volume at any

location in the scene. This is the way I wanted to handle the wind, since there is no

effective point source for wind. Since these functions were out of grasp, I had to reset the

position of the wind to be the same distance relative to the viewer at all times. Problems

occurred when I set the location to be the exact location of the listener, however. The

screen got all jumpy and no sounds would play, as if some computational task were

eating all the program's resources. Just accepting this as something that causes problems,

I avoided positioning sources at the listener from then on.

The last sound found in the world is a pervading static. Most of the crows and

footsteps have a shoTt burst of static each time OpenAL plays one of them. I was unable

86

to chop these pans off in an editor, and became unsure whether this static was a

byproduct of the audio editing program itself or OpenAL. Either way, it was noticeable,

and mildly annoying, since I am not used to hearing my shoes spout white noise with

each step. My fix was to add a continuous static at low enough volume that the listener is

unaware, yet still masks the aggravating static accompanying regular sounds.

87

CHAPTER 15: ReaI-Time Engine Manipulation

A "3D Engine" is basically a set of functions and procedures that are used in a

controlled way to display three dimensional graphics. It almost always connotes real

time viewing. I had (Q have the ability to toggle features of my 3D engine while moving

around the world. Most commonly, I needed to turn collision detection off to get to

forbidden parts of a scene for debugging purposes (in which case I also had to turn

gravity off prior, so I would not plummet through the ground). I have left the various key

toggles in place so users can actually view the world under different circumstances.

Fog can be toggled. In the valley scene, and any other scene with the mountains

in view this makes a significant difference.

Lighting can be toggled. The differences are incredible in some areas, especially

the grove. The leafy trees and the tomb have much more definition when their polygons

are shaded with respect to face normals. The grass also gains much definition from

lighting.

Textures may be enabled and disabled. Textures are altered by the color of the

polygon faces they are applied to. Rarely it was useful to color the polygons anything

other than bright white. Disabling textures shows the flat polygons and their colors.

A feature called depth testing may be toggled. Depth testing utilizes the Z-buffer,

comparing Z values of the current item being drawn with values in the same location of

the buffer, allowing pixels to be drawn to the screen jf they are spatially in front of all

other pixels. Turning off depth testing draws polygons to the screen in the order they are

given to OpenGL. If the viewer is inside a solid black cube, but an orange cylinder is

drawn after the cube with no depth testing, the cube would be visible.

Gravity can be toggled, allowing the viewer to hover any height above the

ground.

88

Collision detection can be toggled for travel through walls and floors. Without

collision, there is no way to detect when the camera hits a scene transition point. If

gravity is still on, the camera will fall through the ground. The collision boundaries can

also be drawn as light-red. semi-transparent polygons. The scene, independent of the

collision boundaries by be toggled as well.

Users can view camera orientation, position, and current frame rate in the title bar

of the window if desired.

Figure 15.1 Below are all the keys used and their corresponding affect when the world

is running.

«8" - Move forward (on number pad)

"5" - Move Backward (on number pad)

"4" - Turn Left (on number pad)

"6" - Tum Right (on number pad)

"7" - Sidestep Left (on number pad)

"9" - Sidestep Right (on number pad)

"A" - Look Down

'7." - Look Up

Up Arrow - Float up when gravity is disabled

Down Arrow - Float down when gravity is disabled

Hold "Tab" - Doubles speed of movement

Hold "Caps Lock" - Extremely quick movement

"P" - Toggle position display

"0" - (0 as in olive) Toggle orientation display

"P' - Toggle frames per second and day counter display

89

"M' - Toggle "Mouselook" so the mouse can be used to change orientation venically

and horizontal}y.

"S" - Toggle drawing the scene (use with the boundary toggle to see only boundaries)

"B" - Toggle view of collision boundaries

"C" - Toggle Collision Detection

"Gil - Toggle Gravity

"Space Bar" - Jump

"L" - Toggle Lighting

"Y' - Toggle Fog Effects

"W" - Toggle Wireframe Mode

'1)" - Toggle Depth Testing

"'r" - Toggle Textures

"X" - Toggle Cross-Hairs (an orange square that stays in the center of the screen)

"E" - Toggle Panicle Engine (use in valley to toggle snow, and in the underground lake

to toggle the water spout).

"RETURN' - This returns everything to normal. Use when you falloff the edge of the

scene, get stuck, or can't see anything.

90

CHAPTER 16: Bugs, Obstacles, and Pitfalls

16.1 Installations and Incompatibilities

In my ideal world, computers would be completely set up for me. Every

necessary piece of software would be installed, and one-hundred percent bug-free. This

includes all the programming tools and libraries - they would all come ready to use,

newest version and compiler independent, with clear descriptions of the constructs

available and how they are to be used. Then I could sit down and do my thing; I could

design and program. There would be no time wasted on false starts, no conflicting

versions or missing pieces. And, ideally, I would make no errors along the way.

Unfortunately, such a world is far from existence. Throughout the project I have

encountered many bugs and numerous obstacles that impeded my progress. The larger

ones are mainly related to using third party code and compatibility.

To begin with, when I finally started implementing scene transitions, I began

getting inconsistent crashes. I narrowed the location of the bug down to loading of

textures for new scenes. Using the debugger, I pinpointed the exact line causing the

error. It happened to be in the texture loader files that are quite popular among the

OpenGL community. The constructor (function that creates the image) for the TGA

image format was using a conditional statement to incorrectly determine whether to free

memory associated with the image. It did not make sense to me why memory would be

freed on construction, so I circumvented the freeing in the constructor. The results were

that creating textures no longer trampled on memory in other locations. This also fixed

an uncanny problem I was having where an ill field of the fifth collision polygon added

to the collision manager would get corrupted. Up to that point, I had to uncomfortably

add a "decoy" polygon to the collision manager so none of the good ones would get

disturbed. It turns out its memory was usually part of the memory freed by the image

91

1 ader file. Thi. 1ug [Ook Il1Ullipl da of arching to finally undeLland and fix .. ince

the program did not era b aLthe sam point eve time.

A smaJl r i ue related to textures v. as the on\'er ion from 3D Studio ax to

OpenGL. Te rur coordinate gen raled in 3D S io MaJ waul nOl ahva an- ver

IT ctly through 3D E ploration (Q OpenGL. Specifically, the box-mapping function

had probl ms. In 3D Studio 1ax I would apply ate, ture (Q an bject as jf it re being

v. rapped around a brick, and onl rwo oppo ite face would od up correctly mapped in

OpenGL. The re t woule! hav treaks of te ·ture as pixels were dragged along th

'urfa . Thi an be e n in the: ,tion \vith the [ne tru Lur that th "j w r an walk

un r. Th .e vere all box-mapped. I did not dete Lthe problem until the s n wa in

Op nGL, at \\ hi h point i would have taken more time than it a worth t g back and

hang all the boxe La individual re tangles and map all six faces of all the block

indivi ually with a lanar functi n.

Figure 16.1 treaking s non th in-id nd underside of block:

im lied from 3D Studio, a;'.

16.2 On The Mechanics of Fog and Lighting

The first time I tried to make use of fog was in my underground lake scene. I did

not want the viewer to be able to see the far end of the cave until making it most of the

way inside. I applied a simple linear, gray fog function to the whole scene. It worked

well except that the water was not behaving as expected. The water did not seem to be

shading enough at some times, and more than necessary at other times. It was also

shading the entire (sheet) of water the same, rather than getting foggier with distance. I

eventually realized by standing in the middle of the water and spinning around, that the

amount the sheet of water was shaded depended on the camera's angle in the horizontal

plane. At 0, 90, 180, and 270 degrees, the fog was at a minimum and directly in between

each of those adjacent values was a maximum. At the minima, the camera's line of sight

was perpendicular to one of the water's edges, whereas the maximums were facing

corners. What I came away with was that since the water was just one large rectangle

(where the rest of the cave was made of smaller triangles) the whole thing was getting

shaded the same - more when the camera was facing a corner since the corners were

further away than any edge. It also did not help that I was standing in the middle of the

polygon that was being shaded, either.

This was a simple lesson for me early in the project, before I had designed all of

my scenes. From then on, I tessellated the polygons in my scene to be smaller than a

certain size, no larger than about three meters on either side (for rectangles). The smaller

the polygons are, the smoother fog looks. Tessellation is the term for breaking one

polygon up into a larger number of smaller polygons. Lighting also works in a similar

way, giving closer approximations to real world lighting as the amount of tessellation

approaches infinity - of course, you do not want to tessellate until the frame rate drops

to sloth-like speeds, but rather find a suitable balance.

93

16.3 Collision Setup

On ta k that became tedi u ·tfter a while \\'< ting point [or c IIi ion

poly~ n . r had no meth d to e d olygons into that w uld kno\\' how to break them

d \\ n into r resentative pol/oons. Su h a me hod would al 0 be hard rc~ e to give

meamng uch a. "ground" or "\\'all" to the pol gons. 0 r had t do I that my If. J

dr \\ r -hair n the r en .0 I could pinpoint I atJOn. th n typed the point int

various (rr< y th·lt J u. d to cre t th pol gons. It would have been ni e not to ha\' to

p nd '0 much time ding thi tit 1 would have spent mol' time doing it any other way.

nnd it h d to get done.

3rd16.4 Party Bugs

_ 0No\\ the larg t pr blem of them all: rvin o to u third part) softwar

from the TG loader that worked in th end). Ma y in s I ttempted to use packag

f r 111 ion d te tion. I h -t xtur imag oad rs. Dir tX \.vrapper . an Op nAL that

. u·llly. I fund that librarie my devel pmen n ir I mem need d 0

have 1I1 tailed t \\ ork with th p rag S W I' ot put t get her for Cod Y alTior.

Li ranes <. re pecifi to th compiler, and there are more common ones than

CodeW, Tior that I fund m t librmi ~.- w~rc made for, u as Vi ual C++. If I could

oot find the ne . (ry 11 rmie . I tri din tallin th fil th were created fr m, uto J

often they r quir doth I' fjl I did not h ve. I cone pond with individu Is d signated u

to t programm' u h a my elf. but to linl avail.

The on in tance I v. as hel ed well va whe I was trying to i stall 0 nAL.

inform~d 0 of th fi.=;ure of ITO" I \\'a getting. and got th rep "w id an

f th \ in \\'. od 1£1 t w k. but i ov r a few d'IY . go that he in lu e

fil ~s ... \\' r the \'rono version ." Ev ntuall
J

• aft r much dru g ry I will not di u s

here. r \Va able to::: t OpenAL (0 campi I - a huge ucces . Howe\' r. " \Va oon t

94

be outdated by a newer version. On the unfortunate side of things, the version I have still

seems to be unstable.

95

CHAPTER 17: Conclusions

17.1 Results

I am very pleased with the distance this project has come, considering I was a

complete novice at the beginning of the year. Towards the beginning, it took two weeks

just to get everything installed correctly and write a program that drew a red square. One

of the first 3-D objects I used was the standard teapot [8J, but it looked "funny". It took

me a while 10 figure out that depth testing was not activated, something that I would be

able to notice in a second now. I went from taking over a month to design one scene to

creating more than one per week at times. My productiveness sped up immensely

throughout the year.

To briefly recap the major work I have done: scene design, layout, object

modeling, object importing, texturing, dynamic texturing, multitexturing, texture

transitions, texture special effects, terrain mapping, particle engine design for snow and

water systems, reflections feigned on curved surfaces, accurate reflections on flat

surfaces, collision detection, pleasing collision reaction, basic inclusion of physics of

motion, interaction through picking, a realistic interface, work with 3-D sound,

optimization, fog and lighting effects, and inclusion of time with day-night transitions.

All work that was done with one goal in mind - to creaJe a realistic and aesthetic world

that can be navigated in real rime. It is a goal I think I definitely achieved.

17.2 Future Work

Inevitably, this project can be extended in many ways. This section is aimed

towards anyone who may want to continue work on this project, and the possible areas to

focus on.

96

• Sound: Installing a newer. robust version of openAL, as it is quickly maturing.

With it in place, use sounds included with the project and others to fill the world with

realistic sounds. I suggest having the sound of the viewer's footsteps change when

walking on different surfaces; I also suggest switching from crow sounds during the

day to crickets and owls at night (both of which I have sounds for).

• Code Organization: I could not, in the interest of time, focus primarily on the

structure and neatness of my code. There is definitely room to make it more object

oriented and somewhat cleaner. I am sure there are files with duplication of code.

and these could be fixed. One of my obstacles in this respect was being new to the

C++ language, so this may be bener suited for someone with prior C++ experience.

• Animation: Adding complex animations, like a creature that has moving legs and a

head that can walk around the world, or a flying bird.

• Optimization: Implement "Octrees" [10]. They are supposedly wonderful for

optimization of collision detection, and cuBing portions of scenes that do not need to

be drawn, allowing for larger, more detailed scenes with more interaction.

• Shadows: Real-time shadows on more than just one plane. Ray-casting is used in

some methods for shadows, which will make this easier since I have implemented

ray-casting already for collision detection.

• Collision Detection: The current methods for collision detection are good enough.

but have room for extension. Create a function for automatically approximating

surfaces and turning them into collision boundaries. Or try MathEngine's collision

detection package that is included in the files with thjs project. I personally got more

out of implementing it myself, however, and I suggest the same.

• Stereo Vision: It would be very cool to modify the world to render into stereo

buffers and have it output to a stereo vision visor, with a head tracker to control

viewer orientation.

97

•	 Purpose/Story: Use the world for something: experimentation, scientific

visualization, or a game - give it a purpose or a story besides that of understanding

the mechanics of real-time 3-D graph.ics programming.

Each of these would be a great amendment to the current state of the project.

Anyone who works with this project or a similar one long enough (Q get past the initial

learning curve will discover just how fun real-time, three-dimensional graphics

programming can be.

98

Resources

[I] 3D CAFE'S FREE "0 10DELS M SHES. Online. IDternet. r pril 19,2001].

[2J 3D Exploration. Online. Internet. [D ember 14.2000]. AvaJlable WWW:

http://\\ \ V. .xd. ofLcom/explorer/

['"'] 3D tudia MAX R lea e 3, Online. Internet. [December 14. 2000J. Available

WWW: hHp:l/V. w2.discreeLcom/productJd products.html?prod=3dsmax

[4J 3D Techniques ,ed In Gam s. Onl111 . Internet. [Ma 2, 200 I]. Available

WWW: http://WWW-sLUd.fh

re&en. burg.del-kuo32652/engli. h/gamegraphic.html#billboarding

[J BiJlboarding by Nate mer. Online. Internet. [May 2.2001]. Available

\VWW: hllp://nale.scuay.netldoc.·/billboard.hlml

[6) Final Fantasy VI - Feature. Online. Internet. [April 18 200 1]. Available

WWW: hltp:l/ww\\._ quar . OfLtOm/Vveb/2ame./antholo2y!FFV I/f alures .htm I

. Available WWW:

[] The History of The Teapot. Onlm . Internet. [April] .2001]. Available

WWW: hllp:l/web2.iadfv. .netfsjbaker If. oftwarelLeapot.html

[9J Introduction to DirectX Graphics. Online. Internet. [December 14. 2000J.

Available WWW:

hllp:l/msdn.microsoft.comfJibrary/p. dk/directxld 8 c/hh/direct 8 c/ dx introl!uclIon to

directx graphic graphic .hlm

[10] Introductiol1to Octr s. Online. Internet, [May 1,2001]. Available \ 'WW:

hllp://\\ ww.flipcode.com/lutorial Itut octree... html

[I J J Je f i1olofee' OpenGL \\ indow Tutorial #27. Online. Internet. lay 1.2001 .

Available WWW: htlp://nehe.gamedev.netltutorial fie _00_7.3 p

102

[12J John onbaugh, Richard: Kalin, Martin. Object-Onented Programming in C+

Second Edition. Prentice Hall, 1 99.

[13] Miller, Kurt. Collision Detection. Onlin . Internet. [April 19.20011. Availabl

\v\V\V: http://ww.... flipcode.com/tulorial !lUl colli ion .. hlml

[14] Multilexture. Online. Internel. [April 23. 2(01). A\'ailable WWW:

hltp://reality. gi.com/blvthe/ ig99!advanced99!nme !node60.hlml

[L] eon H lium Productions. Online. inlernet. [April 16, 2000]. AVailable WWW:

htlp://nehe.gamedev.netlopengl.a. p

[16J Op n L.org, Online. Internet. [December 14, 20001. A\'ailable WWW:

http://,,,v,.w,openal.org

[17] OpenGL.org, Online, Internet. [December 14, 2000j, Available WWW:

http://''''w\>., ,opengl.org

[18J Range-Ba-ed Fog. Online. Internet. [April 23. 2001). Available WWW:

hup:!/m'dn.micro ofl.comllibrary/p. dkidirectxlDX Ihh/direct 8 c/ dx range ba. ed

fog graphics.hlm

[l9J Rolling'.

Group. 2000.

[April 23. 2001 . A\'ailable

(21) Texture Mapping. Online. Internet. [April 19, 20011. Available WWW:

http://\>., W\>.,. futuretech. \,uur\verk ,n Vtex. hlml

[_2 Tony Hawk 2 - Pictur . Page 3. Online. Internet. [ay 3, 200 I], vailable

WWW: hllp:!!\'ideogam ..about.com/game !videogamesflibrarvlbllhawk2dcpics3.hlm

23 nr al Tournament. Onlin . Internet. [May 1,2001]. A ailabl . WWW:

http://\\'w\v.unrealtournament.com/

103

[24] Weir, Peter. The Truman Show. DVD. Paramount Studio. 1999.

[25] Wright Jr.. Richard. OpenGL SuperBible. Second Edition. Waite Press, 1999.

104

	Building an Interactive, Three-dimensional Virtual World
	Recommended Citation

	tmp.1230572903.pdf.qCKvQ

