
Colby College Colby College

Digital Commons @ Colby Digital Commons @ Colby

Senior Scholar Papers Student Research

2000

Designing a Remote Navigation System Designing a Remote Navigation System

Jared P. Lazzaro
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/seniorscholars

 Part of the Computer Sciences Commons

Colby College theses are protected by copyright. They may be viewed or downloaded from this

site for the purposes of research and scholarship. Reproduction or distribution for commercial

purposes is prohibited without written permission of the author.

Recommended Citation Recommended Citation

Lazzaro, Jared P., "Designing a Remote Navigation System" (2000). Senior Scholar Papers.

Paper 273.

https://digitalcommons.colby.edu/seniorscholars/273

This Senior Scholars Paper (Open Access) is brought to you for free and open access by the Student Research at
Digital Commons @ Colby. It has been accepted for inclusion in Senior Scholar Papers by an authorized
administrator of Digital Commons @ Colby.

http://www.colby.edu/
http://www.colby.edu/
https://digitalcommons.colby.edu/
https://digitalcommons.colby.edu/seniorscholars
https://digitalcommons.colby.edu/student_research
https://digitalcommons.colby.edu/seniorscholars?utm_source=digitalcommons.colby.edu%2Fseniorscholars%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.colby.edu%2Fseniorscholars%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGNING A REMOTE NAVIGATION SYSTEM

by

JARED P. LAZZARO

Submitted in Partial Fulfillment of the Requirements of the

Senior Scholars Program

COLBY COLLEGE

2000

APPROVED:

&;:d:tf~~
,jP~

II

ABOUT THE AUTHOR

Jared Lazzaro grew up near the coast of Massachusetts, in the small town of

Hamilton. After graduating from Hamilton-Wenham Regional High School

in 1996, he came to Colby. Though relatively far from the sea, Jared focused

his studies on maritime issues. His Science, Technology, and Society minor

enabled him to study topics such as "transportation at sea" and "the history of

navigation" as well as to obtain his USCG Master 100 Ton Near-coastal

license over Jan-Plan. In the spring of 1999, Lazzaro took his semester

"abroad" to Mystic, Connecticut, where he attended the Williams College­

Mystic Seaport Maritime Studies Program. \Vith this Senior Scholars project

and other maritime experiences, he hopes to fmd a job related to maritime

technology on or near the sea.

III

ABSTRACT

DESIGNING A REMOTE NAVIGATION SYSTEM

Jared P. Lazzaro
jplazzar@colby. edu

Colby College
7136 Mayflower Hill

Waterville, ME 04901-8871

Advisor: Allen B. Downey
abdowney@colby.edu

This project involves the design and implementation of a global electronic tracking

system intended for use by trans-oceanic vessels, using the technology of the U.S.

Government's Global Positioning System (GPS) and a wireless connection to a

networked computer.

Traditional navigation skills are being replaced with highly accurate

electronics. GPS receivers, computers, and mobile communication are becoming

common among both recreational and commercial boaters. With computers and

advanced communication available throughout the maritime world, information can

be shared instantaneously around the globe. This ability to monitor one's

whereabouts from afar can provide an increased level of safety and efficiency.

Current navigation so1hvare seldom includes the capability of providing up­

to-the-minute navigation information for remote display. Remote access to this data

will allow boat owners to track the progress of their boats, land-based organizations

to monitor weather patterns and suggest course changes, and school groups to track

the progress of a vessel and learn about navigation and science. The software

developed in this project allows navigation information from a vessel to be remotely

transmitted to a land-based server, for interpretation and deployment to remote users

over the Internet. This differs from current software in that it allows the tracking of

one vessel by multiple users and provides a means for two-way text messaging

between users and the vesse I.

Beyond the coastal coverage provided by cellular telephones, mobil.e

communication is advancing rapidly. Current lOols such as satellite telephones and

single-sideband radio enable worldwide communications, including the ability to

connect to the Internet. If current trends continue, portable global communication

will be available at a reasonable price and Internet connections on boats will become

more common.

IV

Goals of the project are:

• To develop a system for reliable, -remote access to GPS data.

• To implement the system, RemoleNav, in software.

The project uses the Java programming language for both the navigation

system and the remote interface. The result is a GPS interface allowing both local

and remote display of navigation infonnation on a vessel. Other features include

two-way text messaging and multiple client connections. Through the use of a

proxy server, the tracking system ensures the integrity of transmitted data and

provides a reliable framework for chent connections to the server.

Future work on this project could include: a fun implementation of the

proposed design; support for tracking data from multiple vessels~ design of an

effective graphical user interface for viewing/interpreting navigation data; additional

navigation information processing such as sunrise/sunset times: support for sending

data to other devices such as autopilots.

TABLE OF CONTENTS

Approval Page
 11

About the Author
 III

Abstract
 IV

Table of Contents VI

1. Background I

2. Project Overview 6

3. Project Design 9

4. Development Environment 13

5. Software Details 15

6. Prototype Development 25

7. Conclusions and Future Work 27

8. The Experience 29

Appendix A: The NNfEA Standard 30

Appendix B: Acknowledgements 34

Appendix C: Bibliography 35

Appendix D: Software on CD·ROM 36

V1

1. Background

In the past hundred years, electronic navigation has grown rapidly.

Since radio waves were first used to transmit wireless morse code messages

around 1900, the use and application of wave theory have enabled the

development of directiou-fmding and positioning systems. The recent trend

in computer ttechnoEogy has greatly furthered the art of navigation. The last

three decades have seen tremendous advances in the types of navigation

devices available, as well as the reliability and accuracy of the infonnation

they provide. Systems such as LORAN-C, CONSOLAN, and most recently,

the U. S. Government's Global Positioning System (GPS) require

sophisticated computer processing to provide useful position infonnation.

a) Global Navigation

Land-based radio navigation systems such as LORAN (Long Range

Navigation) transmit radio signals from stations along the coast. The

LORAN receiver processes the signals from multiple stations to obtain a

position fix. Developed in the 1940s and improved through the early 1980s,

LORAN navigation proved useful when travelling within a few hundred

miles of the coast. In 1978, the U.S. Department of Defense began plans for

a satellite navigation with global coverage. Originally dubbed Navstar, this

system is now known as the Global Positioning System (GPS).

GPS is the most recent electronic navigation system to gain mass

public appeal. Today's system employs a constellation of 24 satellites and a

ground-based control station. Each satellite transmits a unique message

containing its identification number, position in space, and time of

tr<l!1smission. A GPS receiver can compute the distance to a satellite by

comparing the time a signal was transmitted to the time it was received.

Using three or more satellites, a receiver can accurately compute latitude and

longitude. One of the most compelling factors of GPS is that its coverage is

global. The GPS constellation ensures ample coverage at any point on the

globe at any time. GPS is also less prone to error than land-based radio

navigation systems. Over long distances, land-based systems lose accuJacy

from the Earth'5 curvature. Though small errors can be introduced by

propagation delay due to atmospheric effects and clock errors in the receiver,

most receivers are designed to compensate for these effects and will do so

quite efficiently.l

The accuracy of GPS depends on the type of receiver. GPS was

designed as a military tool, but in the early 1980s, President Ronald Reagan

announced that GPS would be made available io everyone-with the

exception that the best accuracy would still be reserved for the military.2

With this in mind, Selective Availability (SA) was designed and implemented

in all new satellites. Selective Availability provides a way for civilian and

military users to access different levels of accuracy. Civilian GPS receivers

are usually accurate within 65 meters. Though SA provides position data

within 100 meters 95% of the time, the accuracy is usually much better.

Military and specialty receivers can provide increased accuracy to within a

centimeter. For most purposes, the accuracy of GPS with SA is sufficient for

most navigators. As an alternative, a Differential CPS (DGPS) receiver can

provide position corrections transmitted from a nearby land station. This is

helpful in coastal navigation where it is often desirable to precisely know

your position.

One example of the early use of GPS was during Operation Desert

Storm. When faced with a shortage of military GPS receivers, regular

civilian handheld units were sent to the troops. The less accurate civilian

units employed in Desert Stann proved helpful nonetheless. Rumors exist

that the government turned off selective availability at times, providing all

GPS users with extremely precise navigation information.

As of May 1, 2000, the U.S. discontinued the use of SA. The

accuracy of civilian GPS receivers can still be degraded on a regional level if

necessary, but the overall accuracy of GPS is greatly increased. Instead of

being able to limit accuracy to the area of a football field, users can feel

confident that they're within a tennis court's distance from their plotted

position.

In the past ten years, GPS has gained acceptance as a reliable,

affordable navigation technique. At the same time as GPS was growing in

I Garmin Electronics. "What is GPS?". www.garmin.com....propagation delay is the

'slowing down' of the GPS signal as it passes through Earth's ionosphere and troposphere.

In space, radio signals travel at the speed of light, but they are significantly slower once they

enter our atnlOsphere.

2 Source: Garmin Electronics. "What is GPS?". www.gannin.com.

2

popularity, lhere was tremendous growth in other related areas of navigation

technology. With computers becoming smaller and [aster, many applications

for interfacing with the navigation technology were developed. As

electronics on board ships packed increased computing power in display units

and receivers, the amount of available infonnation increased.

b) Interfacing Navigation Devices

Electronics such as autopilots, GPS receivers, and depth sounders

become more convenient and valuable when they share their data. In order to

share information between electronic devices, they must use the same type of

data interface. Most devices employ a talker and listener design, where one

device broadcasts its information to all other connected devices. When

electron.ics manufacturers first began implementing data interfaces in their

products, many used their own designs. As a result, many types of equipment

could only interface with products from the same manufacturer.

In 1980, a group of professionals from the navigation industry met to

develop a standard "language" for marine interfaces.3 Their goal, to provide a

universal interface between LORAN and autopilots, was achieved in the

National Marine Electronics Association (NMEA) 0180 standard. The

acceptance and use of1\TMEA-0180 interfaces proved that a standard could be

adopted and would be followed by manufacturers. In lhe years since the

0180 standard, improvements, revisions, and other changes were made to

allow for detailed information to be sent from a variety of different talkers.

These changes are now a part of the NMEA-OI83 interface standard, the most

common marine data protocol in use today.

The widespread use of the NMEA-O 183 staTIdard has encouraged the

design of computer software that processes navigation data from any NMEA­

o183-compatible device. Computers are becomirlg increasingly portable as

well as more powerful. It is now common for sailors and power boaters alike

to bring their laptop computers on voyages so they can process, display, and

log all their navigation information. Today, many boats are equipped wilh

integrated electronics for managing all on-board systems. The NMEA

interface uses the same electrical signals as the ports on the back of standard

} Simpsoo, Wayne. "Understanding Manne Electronics Interfacing: The Promise, the
Problems", Mainsheet (the Catalina and Capri Owners association magazine). May 1991.

3

computers, so it lends itself nicely to extensive software development. This,

coupled with current global communication systems, allows boaters to share

large amounts of detailed infonnation from the most remote locations around

the globe.

c) Global Communication

Communication at sea provides many challenges. Standard two-way

radio communication is commonly hmited by the power of the radio signal

and the curvature of the earth. Near the shore, many vessels can take

advantage of land-based wireless communication systems, such as cellular

networks, shore stations, and radio broadcast towers. (See Table 1 for more

information.)

From the middle of the ocean, these systems are useless. As a

solution, vessels can use earth-orbiting communication satellites for their

communication needs. Several constellations of satellites exist, but the most

common are Inmarsat and Orbcornm. Until 1999, a handheld satellite

telephone system was in use, but the privately owned company, Iridium LLC,

struggled with fmancial problems and recently (March 17, 2000) terminated

Table 1: CIH"rent Available Wireless Communication Systems
Ty,pe QI ~yS(~ I ec!mology uescmptlon LO"\'~rage Lapamllty LOst
LClIular & I"l,,~ Modem

Cellular
Telephone
Ne~'orks

Losf­
cffective for
near-shore
infrequeru
reponing (a
few limes
per da,y)

westcm
Hemisphere,
Europe, most
ot" Asia, parts
of Africa

lJata or VOice t'ay lor nme
used or
amount of
data
transferred

t'3CKet Vata ana uses J wo- Cost- Nann. Vata or VOIce uepenas on
Trunked RadiO Way Radio

Technology
to Intcrprct
and Rel'ay
Data or
VOIce.

effective for
near-real­
time
repol1ing (a
few limcs
per hour)

Central, and
South
America,
Europe, Asia

servIce
provider
and/or
amount of
data
transferred

LJOOlcated Kaalo Uses 2-way
Radios for
Point-to-PI
Coinmunic-<lt
ion

(jreat tor
real-lime
reporting (a
few ,times
per minute)

lJepenas on
licensing
restrictions,
often used in
land.based

lJata or VOice Large caPital
outlay for
infrastructure,
usage is
unlimiTed.

comm.
:space-l:Sased ~alelllles lireat wn.ere lilobal, wltn tJata or VOice POSlllons
Sate.lliIe relay wide poor coverage (voicc is only appx: SO.05
Network infonnation

between
users and a
land-based
station

coverage is
desired,
expensl"c

in some arca.
(atmospheric
conditions
may
determine
svstem
a~'ailablli-ty

available
Through
higher-end
systems
designed for
larger vessels)

per repon,
Messages
appx: SO.OI
per character.

4

all conunercial service. Users of the Iridium system now must employ the

services of another satellite communication provider. Despite the difficl)lHies

presented by global conununication systems, and the relatively low demand

for their use, the surviving communication systems such as Inmarsat and

Orbcomm each offer useful services. Despite the utility of satellite

communicatIon systems, they suffer from connection-related problems when

the satellites are not positioned in an advantageous way. At times, a signal

may not be strong enough to ensure proper communication between devices.

At other times, a satellite may be out of range of the land-based control

station, in which case, unidirectional messages could be sent to the satellites

and forwarded to their appropriate recipients when the satellite makes contact

with the control station. Most often, these types of errors will occur when the

satellite in view is close to the horizon. Then, the effect of Earth's

atmosphere is more pronounced.. Apart from the sometimes unreliable

connection at sea, communication can occur from anywhere on Earth. The

combination of communication, navigation, and computing at sea creates a

unique setting for the development of specialized software.

5

2. Project Overview

The main components of a tracking system are:

• a positioning system

• a communications link

• a user (client) program

Communication at sea is often intennittent. Voice or data must be

transmitted to a powerful receiver Oil land or in the sky. From the middle of

the ocean to the high-latitudes of the porar regions, radio communication has

proved to be a challenge. Given recent growth in the computer industry, and

the use of the Internet as an
Figure 1: Basic Tracking System

important communication link,

many manne communication

systems have provided methods

for data transfer (See Table I). It

is only a matter of time before

communication at sea will be able

to handle the bandwidth of

common Internet data transfer.

Near shore, cellular service

providers have designed wireless

I..

Internet access that allows

efficient data transfer through their digital communication networks. In other

areas, cell phones can be used like a standard phone line, in order to obtain

dial-up access to the Internet. This project takes Into consideration the

upcoming ''webification'' of communication systems across the globe.

When developing a global tracking system for vessels, we must keep

in mind the intermittent and possibly unreliable communication link between

land arId a vessel at sea. The system must be reliable, efficient, and effective.

In other words, it must be able to provide accurate, appropriate information

upon request from its users. Tracking a vessel could meaf\ providing its

current position upon a user's request. It could also involve the intermittent

logging of the vessel's position to provide additional data.

6

We developed the following goals for our tracking system:

•	 To allow multiple users access to one vessel's position information.

•	 To allow for intermittent updates of the vessel's position, as well as the

potential for streaming real-time position data to users.

•	 To incorporate a text messaging system for sending short messages

between users and the vessel.

In designing our system, we acknowledged the wireless communication

link as the weakest part. The design we propose minimizes the effect of this

weak: link on the users of the tracking software. Users can download the

history of where the vessel has been, as well as navigation infonnation such

as its heading and speed. This information could be used for educational

purposes, to track a vessel's progress around the world and teach children

about navigation. It could also be used by friends and family to track a

vessel's progress on a voyage. The safety and educational value of the

system is also furthered by the ability for two-way text messaging. Messages

about weather conditions or course changes could be sent to the users; as long

as the vessel is connected to the system, interactive messages can be sent.

a) RemoteNav Features

The software design we present here is called RemoteNav. It is

intended to be a low-cost, versatile, platfonn-independent, vessel-traclGng

system that provides reliable service despite an often-sporadic ship-to-shore

connection. RemoteNav can provide real-time navigation data to a remote

computer when the vessel is connected. It is often not cost-effective, nor

even possible for a vessel to stay connected throughout its voyage. The

ability to connect and upload current navigation data at each update interval

is a more reasonable and affordable solution. Given the unreliable nature of

the wireless link, some of these intermittent connections may not be

successful. In these cases, the system logs the navigation information on the

vessel when a connection can't be made, for later uploading to avoid gaps in

the tracking data. We want the user to have access to a complete hilstory of

the vessel's progress, with a precision set by the system's data update

7

interval. The on-board logging of the navigation data prevents gaps in the

data available to users.

The RemoteNav software contains three main components:

1. Nav. Data Processor and Vessel User Interface (GPServer)

2. Land-Based Proxy Server (ProxyServer)

3. Client User Interface (Client)

8

Log
File

Intermittent
Connection

Log
File

I
I

---~--;
: opliooal I

: Log:
: File :
I I
I I
I I
I •
1 1

Figure 2: Interaction between Clients and the Server

3. Project Design

The primary design decision was the selection of a medium for

communication between the vessel being tracked and the client "trackers."

The desire to make the tracking data available to many users, as well as the

potential for future development of a web-based client interface, led us to

choose a network socket interface. The only requirement is that the

computers are connected to a suitable network. For most purposes, this can

be the Internet. Based on an evaluation of currently available communication

systems, we developed the software with the understanding that a ship-to­

shore data connection to a networked computer exists on board the vessel. In

some regards, this project is designed with the future in mind. If current

tTends continue, the cost of wireless global Internet access will continue to

drop; service and coverage will become faster and more reliable. Because the

current cost per unit of data is high, a large emphasis was placed on

minimizing the amount of data sent. Also, speeds of data connections

. through wireless communication systems are generally not as fast as in

normal land-based conulllmication systems such as dial-up access to Internet

providers. While current cellular data communication can reach speeds of

33600 bps, most satellite data transfer occurs at speeds around 2400 bps.

a) More Wireless Details

The signal quality of wireless messages often limits the system's

ability to use high baud rates. Some remote parts of the world (generally in

higher latitudes near the poles) have weak, if any, coverage, due to the lack of

satellites positioned overhead. The most extensive coverage is provided by

the Inmarsat satellite network. Rush Hambleton (Colby Class of 1997), an

experienced ocean-sailor, shares his experience with Inrnarsat during his most

recent circumnavigation:

The Inmarsat system has been a little slow to modernize to aU­
data connections, but they're getting there. They have high
alti tude satellites which provide spotty coverage at times
(there are only four of them), so it is possible to sail out of
their area. When you're in areas where the coverage is good,
and all but the most exotic sailors are, it perfonns very weU.

9

Just watch out if you're ever in the Indian Ocean, there's a big
hole there.4

For many navigators, and potential users of the RemoteNav software,

global coverage is not a requirement. Many coastal and offshore vessels are

equipped with single-sideband radio (SSB). Data connections over SSB are

available through service providers, just as Internet access companies provide

service over telephone lines. Some SSB stations support text-messaging,

while others provide access to e-mail and the Internet. In many coastal areas,

especially around well-populated cities, local cellular phone service can often

handle the task of providing dial-up access.

There are many options for connecting a shipboard computer to a

networked computer on land. We leave the physical details of making a

network connection to the users of the GPServer software on the vessel.

b) RemoteNav Components

With the understanding that an Internet connection can be achieved on

board a boat, we began planning the components of the GPServer program.

The first step was to figure out the interactions between the vessel and the

clients. Given the sporadic nature of Internet connections at sea, influenced

greatly by geographic location, weather systems, and cost, we decided that

the clients should not rely on a direct connection to the vessel. A direct

connection would extend the problems of the wireless communication

systems to all users, severely reducing the reliability of the entire system. It

would also involve more data transfer over the wi.reless link, which would

incur unnecessary cost for the system's use.

We want the system to be reliable. By sending tracking information

to a remote computer for storage and processing when the vessel is

connected, we can achieve this goal. Clients can then connect to this proxy

server, a land-based networked computer running the ProxyServer software,

and obtain the tracking data current to the time of the vessel's last connection.

If the vessel happens to be connected at the same time as clients, the vessel

~ Rush Hambleton, Assistant Directior of Admissions, Williams-Mystic Maritime Studies
Program; Mystic, cr 06355. After graduating from Colby in 1997, Rush sail'ed around the
world and later captained for Ac;tionQuesl Teen Sail Training Programs.

has the option of streaming current navigation data to, and exchanging

messages with, the users.

In order to provide posltton information to the ProxyServer, the

computer on board the vessel must be running the GPServer program and

must be connected to a NMEA-compatible navigation device. In most cases,

Ihis will be a GPS receiver, but the use of the NMEA protocol will allow any

NMEA-compatible device, such as a Loran or other positioning device, to

provide navigation information. The GPServer program processes the

navigation data and stores the vessel's position, time, course, speed, and

heading periodically. When a user on board the vessel connects to the

Internet, he or she can connect to the ProxyServer. A cOTUlection to the server

begins with the most current line of navigation data (68 characters), and is

followed by an upload of the log file's data since the previous connection.

Given an update interval of 30 minutes, if a vessel were to send its data once

a day, the data in the log file would total approximately 3.3KB (48 data

entries, 68 characters each). In addition to navigation information stored in

the log file, any log messages would also be posted to the ProxyServer. Log

messages could include anything, but would most likely be used to denote

instances of course changes, sightlngs of other vessels, or any other event that

would normally be wrinen in the ship's log. In this way, the ship's log can be

made available to the remote clients. Every time a log message is entered on

the vessel, it is time-stamped with a line of navigation data from the GPS,

providing accurate time, position, speed, and heading when the message was

sent. White the vessel is connected to the server, it sees a list of clients that

are currently tracking its progress. Messages can be posted to and from

everyone connected to the server, similar to an Intemet chat environment.

The ProxyServer manages the data and messages that pass through.

This information is stored in the server's log file so other users can obtain an

accurate history of the vessel's progress. The GPServer software on the

vessel can't rely on the data in the server's log file (it may not be connected),

so it manages its own log in such a way that it can later be sent directly to the

ProxyServer. The only difference is that the server's log file holds data over

a long period oHime, whereas the vessel's log file can be cleared as long as it

has already uploaded its data to the server. When planning the log file

control mechanisms in the software, we needed to implement a way to check

11

the last line of data in the ProxyServer's log file, and compare it to the last

line of the GPServer's log file when connected. If they differ, then all

navigation data with a time and date more recent than the ProxyServer's last

logged line will be uploaded to the ProxyServer.

\Vhile designing the components, their layout, and interactions in the

system, we tested our ideas with prototypes. Developing software for a

design that wasn't fully specified helped to give us insight toward some of

the less-obvious design issues. Some of the software design details are

explored below. More information is also available in the prototype source

code on the CD-ROM in Appendix D.

l2

4. Development Environment

At the beginning of the project, we explored the different

programming languages and platfonns that could be used to write the

software, Preliminary research, conducted in September of 1999, led to

exploration of C++ in <l! Linl1X enyLronment. After exploring the environment

for several weeks, we decided that the combination of Linux and C-++

programming would limit the usage of the final product. We wanted the

system to be used by as many people as possible, with the least amount of

equipment costs. Although the server program could be implemented in this

environment, we decided the user program should be designed for computers

running a variety of operating systems. This led to the choice of Java as the

language to use. Previous experience with Java, and familiarity of the

Windows operating system, played a large part in our choice to make Sun's

Java Developer's Kit 1.2.2 running on the Windows 98 operating system our

development environment. Since we were writing the software on a

Windows machine, our prototype software was designed for the same

operating system. In addition, a Gannin GPSill handheld GPS receiver was

used to provide NMEA-0183 fonnatted navigation data.

The GPServer software relies on a connection to a NMEA talker

device through one of the computer's ports. In order to transfer data from a

talker to the computer (the listener) through a serial port, special Java classes

must be used that manage port connections. Due to the hardware-dependent

nature of serial ports on computers, the lower-level classes of the extension

package are platfonn-dcpendent. As of this Spring, the javax.comm5 classes

are only available for Solaris and Windows operating systems. There are

classes available for dealing with ports on other platforms, but this version of

the vessel's software will focus only on the Microsoft Windows environment.

Though the COM port classes are limiting for the GPServer software, the

ProxyServer and Client software can be run by a Java interpreter on any

platform. The requirements of the RemoteNav system, broken down into the

three components are listed below (see Table 2).

I Sun Microsysterns. "Java Communications API 2.0", java.suD.com/productsljavacornm

13

14

as a contmuous ote: y computer coan
Internel connection.

Table 2: Hardware and Software Requirements

5. Software Details

a) Handling Commands and Data

With any client-server software package, there must be a protocol

with which the devices interact. They must be able to understand the

commands they receive. The protocol we decided to use extends the NMEA­

0183 protocol, adding se\ler.al additjonal sentences to those specified in the

NMEA-Ol83 documentation (see Appendix A). By extending 'the NMEA

protocol, we were able to use the error checkfng providedl by NMEA, as well

as the same structure for parsing the fields of each sentence.

The NMEA compatible GPS rece~veJf we used outputs approximately

twelve sentences every two seconds. Of these twelve, we are concerned with

one of them: the one beginning with $GPRHC (GP for "GPS", and RMC for

"recommended minimum specific data"). The RMC Iline, as we'll refer to it,

contains the time, date, receiver status, pos~tion, speed, course, heading, and

magnetic variation. All this infom1ation is computed automatically by the

GPS receiver and output every two seconds.

In addition to the RMC lines, we created some new sentences to allow

bidirectional oommunication between the software components in a universal

format. These 'sentences begin with $ PJPS indicating they are proprietary

sentences for "JP"s System". We developed three types of sentences to

handle: server commands, client commands, and text messages (see Table 3).

Consider the following rnteraction between a client and the proxy

server: A client logs onto the server, with the name Jared. The server

acknowledges his 10~11. Jared then requests the log data starting from the last

date in his local fog file. The server begins streaming data from the date

specified to its most recent entry. After the log file has been uploaded from

the server to the client, GPServer logs onto the server as Navigatorl.

Immediately, Navigatorl's current position is sent to the proxy server, the

new log file entries from the vessel's log are appended to the server's log file

and also streamed to aU clients, so everybody's logs are current. Jared then

sends a message: "Hi Captain, how's the sailing?" which, along with the most

current RMC line, is sent to ProxyServer and forwarded to all connected

Clients. The RMC line serves as a time-stamp for the message. On the

vessel, Navigatorl receives this message and returns "Making good

16

SPJPSS, .

$PJPSC, .

$PJPSM, .

$PJPSC, avigacorl,hel:~,1~A3

SGPRMC,<current nay data fields>

Olient Commands

Text Messages

ProxyServer sends: S?JPSS, avigatorl, hello, O~ AS
P:m"yServer sends: SGPR_ C, <c ',rrent nay data fields>
(GPServe-r starts streaming RiMC lines to the proxy server. These new lines are sent to the
Client)

Client sends:' $PJPSM,l,l,Jared,Hi Cap' how's che t:rip?~7l

PToxyServerreplies: $PJPSM,l,l,Jared,Hi Cap! how's che t:rip?*71
ProxyServerreplies: $GPRHC, <nay data fields>
GPServer sends: SPJPS ,1,1, avigatorl, Making progress. Y8B
GPServcr sends: $GPRMC, <nav data fields>
ProxyServer rep~ies: $PJPSM, 1,1, Navigatorl, t-~aking progress. *S8
ProxyServer replies: SGPRMC, <nav data fields>
Client sends: SPJPSC, Jared, bye, 0* 4C
Server replies: $PJPSS, J"ia ed, Jared is disconnect:ed,O*B3

The NNfEA sentence [onnat is straightforward. The comma~

separated fields can be easily parsed to obtain the necessary information.

Here are descriptions of the sentences used in this software. Figures 3-6

describe the [our sentences used in the RemoteNav system.

Clientconnec~: SPJPSC,Jared,hel o,O*4F
ProxyServerreplies: $PJPSS,Jared,welco e,0"S6
Clienl reques~ data: SP" PSC, Jared, log, 0004 S201200*8E
(proxyServer then streams the Jog data from 4/15/00 at 8: 12 pm to the most recent entry)

GPServer connects:
GPServer seods:

progress." This is logged locally with a time-stamp RMC line and sent to the

server to be forwarded to all connected clients along with the current RMC

line. Jared logs off, and the server tells all connected users "Jared is

disconnected."

The client-server dialog between a Client (Jared) and someone using

GPServer aboard the vessel (NavDgator 1) descri,bed in words above, is shown

here as a sequence of sentences:

Figure 3: GPS Data (RMC line)
SGPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>7<12><LF><CR>

$GPRMC,205001,A,4'33.:~2,N,06939.751,W,OOO.O,214.8,0804OO,017.7,WW79<LF><CR>

205001 Time of fix 20:50:01 UTe"
A Navigation receiver warning A = okay~ v = warning
4433.782,N Latitude 44° 33.782' North
06939.751,W Longitude 69° 39.751' West
000.0 Speed Q<ver ground, 0.0 Knots
214.8 Course Made Good, 214.8 True
080400 Date of fix 08 April2000~ {according to UTe time)
017.7,E Magnetic varliation 17.7° East
*79 Mandatory checksum

·UTC time is calculated by the GPS receiver, which synchronizes itself with
the satellites' atomic clocks. It is the lime at the Prime Meridian, also known
as Greenwich Mean Time. Time-zone offsets ·can ibe calculated from thjs
data. (Eastern Standard Time is five hours behind GMT.)
~e NMEA protocol is not YO.IK compliant The rollover for the year
occurs every 100 years. This is something that the soft!\\'are needs to address.

Figure 4: Text Messages
SPJPSM,<1>,<2>,<3>,<4>*<5><LF><CR>

SPJPSM,2,1,Jared,Hello! I have a message to pass on *8D
SPJPSM,2,2,Jared,to the captain: "Sail faster!"*A3

<1> Total number o-f lines in the message: an integer between 1 and 9
(currently messages are limited to 9 lines of data)

<2> Current line number of the message (an integer betwen I and 9)
<3>	 Usemarne of the person sending the message (each user chooses a

name upon connection to the server; each name can be 1 to 8 letters
or numbers)

<4>	 Message body (maximum size is 52 characters per line, it can't
contain any backsFash (\) characters, or they might be treated as
contro1characters (see <LF>)

<5> Mandatory checksum
<LF> Linefeed control character denoted by \r in Java
<CR> Carriage return, or new,l~ne control character, denoted by \n in Java

Figure 5: Client Commands
SPJPSC,<1>,<2>,<3>*<4><LF><CR>

SPJPSC,Jared,hello,O*4F

<1> Usemarne (person sending the command)
<2> Command string
<3> Value, if any
<4> Checksum
<LD<CR> End-of-Iine characters

17

Figure 6: Server Commands
SPJPSS,<1>,<2>,<3>*<4><Lf><CR>

SPJPSS,Jared,welcome,O*S6

<1> Usemame to which the command is responding
<2> Command string
<3> Value, if any.
<4> Checksum
<Lf><CR> End-of-line characters

b) Server Details

The first thing the se:rver does when it receives a hne of data is test to

be sure the checksum is valid. It computes the checksum for the line and then

compares it to the value that was transferred. If they match, the line is valid,

otherwise, it has been corrupted and the server decides whether to ignore the

line (if it is just a streamed RMC line) or requests it to be retransmitted if it

were a command or message. After ten unsuccessful requests, the connection

is deemed too poor for reliable communication and the proxy server closes

the socket. When the server receives a valid line, it processes it. Processing

a line may include streaming it to the clients, storing it in a log file, or

sending an appropriate message to one or all clients.

ProxyServer is a Java application that must handle several tasks. It

needs to monitor client socket connections, listen to connected clients for

commands and messages, send navigation data, commands and messages .to

clients, read to and write from the log file, and listen for a vessel connection.

When GPServer or Cliell/s connect, ProxyServer must send appropriate

information based on the data it receives and status of connections. For each

task mentioned here, a separate thread of execution is necessary. Java's flow

of execution is usually sequential; when a method is called, it runs until

completion, then returns to the next line. Java allows for the creation of

separate threads of execution, which take turns using processor time, to

perform several tasks concurrently, or at least to keep a program from

freezing while it blocks (waits) for data. In the event of a connection error,

most likely caused by a poor wireless connection between GPServer and

ProxyServer> the proxy server wi 11 try to send a disconnect message to the

unresponsive user and will then close its socket connection.

18

ProxyServer starts several threads, which each perfoIID a unique task:

1) LogThread - manages writing to and reading from the log file.

2) ToSocketThread - monitors outgoing data and sends output to each
client.

3) SocketThread - a new SocketThread is started for each client that
connects. SocketThread's only task is to lis~en Ito Ithe
socket for incoming commands and messages.

4) ProxyServer - the main thread of execution, waits for a client to connect
and starts each newly connected client in a new
SocketThread.

5) CommandProcessorThread - looks at the incomingLines buffer and
processes all incoming lines, dispatching them to the
necessary output buffers.

Each thread contains a loop. As soon as its task is perfonned, the

cycle begins again. It may block while waiting for input or output; this cycle

generally continues until a condition (generally a boolean value tested inside

the loop) is changed. TIle booleans and buffers are embodied in a class called

Environment. The Environment class contains all the shared information and

parameters. It is passed as an argument to the constructor methods of all the

threads, so the threads can interact with each other by changing values in the

Environment object. The contents of the Environment class are described

below.

Configuration Infomlation:
Vessel Port Number the port to which the vessel will connect
Max Number of Clients the max. number of clients that can be

connected
Server Port Number the port to which the clients will

connect
Log File Name the name of the file on the proxy

server containing the log
Log File Update Interval number of minutes between logfile

updates

The log file update interval is an important control. By selecting a

larger interval, the GPServer sends less data over the wireless communication

lime This is a tradeoff between the precision desired by users of the tracking

system, and the availability or cost of transmitting the data from the vessel to

the proxy server.

Thread Management:
Array of ClientThreads holds CIientThreads so they can be

started when clients connect
Number of Threads Counter keeps track of how many clients are

connected
Free Thread A.rray contains a T or F, telling jf the

corresponding ClientThread array
entry is available to be assigned.

Thread Name Array stores the names of the connected
clients

Note that all the array indices are correlated. For example, a traversal

through the ThreadName array may indicate a client "Jared" is connected at

index 2. Therefore, when "Jared" logs off, freeThread[2] can be set to true

and c1ientThreads[2] can be set to null. The design of the arrays is not

object oriented. It evolved through the slow progress of our software testing

and prototype design. The organization of the arrays dealing with the client

threads will be one of the ftrst things considered when designing a new

version of the RemoteNav system.

Log File Transfers:
Get Log From Date the date from which to output log lines to a

specific client
Receiving Thread Index

the index (of ClientThreads array) of the
specific client who requested the logfile data

StringBuffers used to communicate between threads:
individualStream the data from the logfile requested by a client is

placed here by the LogThread
linesToStream anything placed in this buffer is sent to all

connected clients

commandsToProcess all commands, GPRMC lines, and messages are
placed in this buffer, which is read by the
commandProcessorThread

linesToLog anything that is to be written to the log is put
here

The String "currentRMCLine" holds the most recent GPRMC line to be used

for timestamping log messages when the vessel is connected.

Booleans for controlling the behavior of th.e program:
runServer will shut down the entire ProxyServer if false
processComrnands tells the commandProcessorThread to process

,commands

10gData turns on the logger

20

readLogFile retrieves data posted to the log after
"getLogFromDate," and puts it in the "indi­
vidualStream" buffer to be sent to the client
who requested it

clearLogFile clears the log file

In addition to this information, the environment also contains the method

"validChecksurn," which takes a line and tests to make sure it has not become

corrupted in the transfer. All threads check to make sure the checksum is

valid before writing data to a buffer or an va stream.

c) Processing Commands

The CommandProcessorThread IS really the heart of the ProxyServer

software. It takes each line sent by a Client or GPServer, and decides what

actions to take based on the current state of the environment. In most cases,

the sentence from "commandsToProcess" is placed in another buffer.

LogThread, ToSocketThread, and CornmandProcessorThread all check for

data in their corresponding buffers. If rheir buffer is empty. the thread loops

and checks the buffer again. This brings up a concern that processor cycles

will be wasted checking to see if data is available. To fix this, the threads can

use wai t and noti fy to prevent unnecessary checking of the buffers. A

thread can enter the waiting state when its buffer is empty; when another

thread puts data in a buffer, it can call notify on that buffer, and all threads

waiting on tha~ buffer win resume.

Another concem is synchronization. We don't want a thread reading

a line from a butler if the writer thread has not completed writing it to the

buffer. Fortilllately, Java's StringBuffer objects are synchronized internally,

so only one thread can access it at a time. Therefore, we can be sure that

when one thread writes, data to' the StringBuffer, no other threads will be able

to access it until the writing is complete, It works the same way if a thread

tries to write data \vhile another thread is reading from it. This eliminates the

need to explicitly impFement synchronization in the software.

The ProxyServer software requires little from the computer on which

it is running. When no clients or vessel are connected, the server does

nothing but lis~el1 to two ports for socket connections, When only clients are

connected, it may access the log file and stream some or all of its data. It

may also log and stream messages sent between connected clients. The

21

ProxyServer is most active when the GPServer is connected, but even in this

situation, the server spends most of its time waiting for IIO from the input

streams or file access.

d) Software Similarities

The Client, ProxyServer, and GPServer employ similar design

principles to accomplish their specific tasks. The graphical-interface

provided to users of both the client and vessel software can be almost

identical. The inajor differences are on a lower level, such that the GPServer

software can manage the hardware connection and process the data from the

navigation device.

The design of the Client software is similar to that of the GPServer.

The client can choose to store navigation data and messages in a log of its

own, for access when not connected to the proxy server. The client can

perfonn the [oHowing tasks:

I) connect/disconnect to server

2) view navigation data

3) view/send messages

4) download new log data

5) view the log file.

6) set preferences

Java's Swing classes can be used in the development of the Client

software. Swing is an improvement from Java's "AWT" environment. Its

use will enable the development of an effective, modem user interface.

The design of the GPServer software needs to differ only slightly.

There is a choice of streaming the GPS data and uploading the log to the

server rather than downloading the log data. Navigation data is piped directly

into GPServer's CommandProcessorThread from the GPSThread, instead of

relying on the server to send updated GPS lines (as done by Client).

The Client software is also multithreaded, and operates in a similar

manner. Client sets up the following threads, then reads the server's

incoming lines

guiThread sets up the graphical user interface (GUT)

logThread perfonns reading and writing to the log file

toServerThread sends outgoing messages and commands to the server

22

commandProcessorThread manages the incoming lines and user

commands

Environment is the shared object that the other threads access (similar

to Environment in ProxyServer)

Much of the structure for reading and processing dat..a, messages, and

commands is the same across the three systems. The command processor

thread must be able to handle different types of commands in different

situations. Though some customization is necessary, many of the classes

developed [or each component of the system can be re-used. A next step

would be to design the classes so they are more object-oriented and reusable.

e) Proposed CUI Design

The design of tbe GUT is an important part of tbe overall system. The

navigation window will require the most work when implementing this

design. We feel a graphical representation of the vessel is the best way to

display the ship's path and location. The latitude and longitude [or each line

of navigation data is plotted in the navigation window. When the mouse is

moved over the navigation window, the latitude and longitude of the mouse is

displayed. To measure distance or heading from any point on the plotter, the

user clicks and drags the mouse; the latitude and longitude, as well as bearing

and distance to the location of the pointer are shown at the top of the window.

Depending on the speed of the boat, or the range of its travel, the user

may wish to zoom in or out, or scroll the plotter. A toolbar at the top of the

plotter window will allow this type of graphical manipulation. In addition to

the navigation infonnation shown in the plotter window, at the bottom of the

appl.ication's main window is a status bar, which indicates whether the vessel

is connected, and displays the most current navigation data available,

including lat, lon, speed, course, time, and date.

All the time and date infonnation from the navigation data is in

Universal Coordinated Time (UTe). UTC, also known as Greenwich Mean

Time, is the time at 0° longitude. The vessel could be anywhere in the world,

as could the clients tracking the vessel. Deciding to keep all times and dates

to a standard, we kept the data in UTe. The client software can set the time

offset to avoid having to make the calculations between UTe and local time

when referencing the navigation information.

This design for a graphical user interface is currently only a prototype.

The actual software developed does not contain a graphical user interface

beyond that used to demonstrate the data-parsing capabilities of the NMEA

protocol.

For a lower-level explanation of the software design, see the source

code for the prototypes on the CD-ROM in Appendix D. The design process

of the prototype allowed us to experiment with many of the principles

outlined above. Though not a comple~e implementation of the RemoteNav

software, the prototype provides a simil1ar service, and is a helpful example of

the services the final software will provide.

24

6. Prototype Development

At fust, we wrote simple multithreaded programs, then client-server

software, then b~gan looking at the details of input and output streams, file

I/O, and serial port acc(>ss. Once we had gained an understanding of these

principles, we started developing the protocol, methods, and overall design to

help achieve the goal of producing .a simple, straightforward tracking

program that wiH minimize the effect of an often unreliable communication

link beh\'een the serVer and the \ressel at sea.

The primary goal of the software ,is to provide navligation information.

In. order to do this, we first developed a program that took data from a

connected GPS and printed it to the screen. Then, we modified it to send just

the GPRMC line to an output stream over a network to a client. This worked

well, until we realized that the client needed to send commands to the server.

A second thread was needed to manage incoming commands from the server.

With the multithreading came the need for a shared environment, so the

Environment class was developed. The simple solution was growing quickly.

The desire to keep the amount of data transferred from the vessel to

the client at a minimum led to the concept of a server on land, to which the

vessd could upload ,its data. We also had to develop a means of storing the

nav~gation data, which resulted iII! the log file and LogThread, which manages

the software's interaction with the log file. The desire to allow more than one

person to run the dient program at a time led us to create a multi-threaded

server with independent socket threads for each client.

The major~ty of the development time was spent on the server's

components. Due to the time constraints, we were forced to combine the

GPServer and ProxyServer impEementation as one package. The design is

such that it could be split into the two separate components with minimal

effort. Our prototype software, RemoteServer, normally implements the

situation where the vessel is constantly logged on to the server, and is

streaming its navigation data. Boolean values in the environment of

ProxyServer can be changed to simulate a break in the vessel-server

connection. When the connection is broken between the GPServer and

ProxyServer, the clients receive a message saying the vessel disconnected.

The proxy server cleans up after the GPServer, ensuring that the threads and

buffers are configured properly.

25

We designed a simple client interface for most of our testing.

TestClienl makes a connection to the server, starts a thread that listens to user

input to send to the server, and begins posting the server's output to the

client's output window. TestClient proved invaluable throughout the

development of the prototype.

Throughout the leaming process of implementing our design choices

in Java, it became apparent that we couM easily include text messaging into'

the software. This simple addition could allow users to communicate with

each other, or with the vesse~ being tracked. We chose to implement the chat

program and a basic navigation program, which each highlight features of the

actual interface. An example interface for the Client software was designed

(see Section 5.e: Proposed GtJI Design), but its features were not

implemented.

The project would never have evolved! to its current size, nor would it

have developed the structure presented in the "'Project Design" and "Software

Details" sections, without the consistent development and evolution of the

prototype. The prototype forced us to evaluate our desEgn decisions as we

were implementing them. Often, we carne up with improvements and new

ideas as a result of troubleshooting some aspect of our design. For example,

the use of StringBuffers to bold lines of code was chosen after experiencing

problems when we were using ordinary String objects.

The progression of the implementation from simple software to a

complicated design was a rewarding and frustrating experience. The

prototype is not a polished version of the design, but rather, a necessary

learning tool, which proved invaluable to the development of the software

and design solution we presented.

26

7. Conclusions and Future Work

We've discussed threads, sockets, and the user interface as

components of the project. We've discussed clients, servers, and data

interfaces. Now let's broaden our view, to see how these components

contribute to the overall goals of the project.

In today's computer4 savvy society, people use electronics to provide

automation, optimization, and organization in their everyday life. In a

business environment, the use of computers has helped to increase

productivity. In the maritime world, electronics have greatly increased the

safety and efficiency of vessels at sea.

The concept of globalization has spread as people's views and

worldwide experience have changed. The ability to be in constant

communication from anywhere on Earth further helps to make the world

seem like a smaller place, Though a telephone call from the middle of a

trans-oceanic crossing would most likely always be an effective way to assure

one's safety, it is not always the best method. The ability to post detailed

navigation infonnation and access a track of the vessel's progress is an

alternative to a standard telephone call or an e-mail. Our software solution

should fill the gap between traditional communication methods and costly

commercial tracking software.

We have addressed the issues and expect the final product to be a

reliable and affordable solution for tracking vessels at sea. Though we've

been discussing this software in the context of maritime tracking, it could just

as easily be used on land, or in the air, to provide a means of providing

navigation infonnation from a vessel to a larger audien,ce on land.

We've introduced the problem of creating a global vessel tracking

program, presented a solution, and provided prototypes with software

components for implementing the solution. What's next?

The software outlined above can be expanded to accommodate other

types of navigation data, as well as extended to further interpret the data. It is

a suggestion-a starting point for future programs to build on. The details of

the software may change, but the fundamentals of the tracking program will

remain the same.

Just as the prototype shows the features and principles of the proposed

software design, the proposed software design highlights the basic features of

27

a global tracking program. The possibilities for expansion of the project are

plentiful, and its applications could be further refined to provide more

infonnation. One feature we had hoped to implement in this project was a

moving map display on the navigation screen. This feature would have

allowed a map to be loaded based on the vessel's position, upon which the

track of the vessel could be superimposed. Another was to provide for the

storage of waypoints and other marks, so the clients courd download and

store positions of features such as racing marks, shipwrecks, ,channel markers,

and good fishing spots.

As designers of this software, we wi II be the first to acknowledge that

thjs is not the only solution. There are other ways of accomplishing what we

have done. We do feel, however, that our solution fuLfills the needs of a large

percentage of the maritime world. We envision this product in use by

yachting clubs to provide tracking of their fleet, by ocean racers desiring to

stay in touch with their families during long passages, or maybe by the local

pizza parlor that wants to keep track of its delivery personnel.

We hope this project doesn't fall into the forgotten realm of "things to

accomplish." There is great potential for a system following the

fundamentals described here. The further development of this system would

make a great "weekend hobby" for the next few years, or would provide a

great framework for a large independent study project.

8. The Experience

Is tills project almost over? In some ways, I hope so, but for other

reasons presented here, I hope it continues to develop. It is impossible to

count the number of hours spent reading, planning, discussing, designing, and

otherwise developing this project. What started out as a cool idea soon

became a great production, as the Senior Scholars Program will inevitably do

for any simple-sounding plan. I have had an exciting experience with thls

project over the past 13 months, seen many successes, failures, and changes

in both the design and implementation of the project. r realized my goals

were bigger than r expected-I had initially hoped to present a final product

by the Spring of 2000.

The most important thing I learned from tills project was not in the

final product, but rather in the entire process. The importance of setting

goals, staying focused, and trying not to be discouraged by setbacks were all

challenges I encountered along the way. r realized the importance of setting

goals, yet throughout the project, I struggled to achieve only partial success

with each goal. This frustration also reinforced the value of working with

others on large projects. Most of this work was completed on my own, and at

times when writing some of the software I found myself stumped for hours

on an aspect of the program, only to have it answered quickly by a fellow

computer science major.

Aside from the setbacks, there were many rewarding experiences,

often when I needed them most. These helped keep my interest in

completing the project. Unfortunately, because I set lofty goals early on, I

have trouble accepting my accomplishment to this point. I am confident,

though, that tlus project will be completed in my spare time, so that at some

point I can have the sense of closure and satisfaction of a successful

implementation of my design.

I'm sailing from Bermuda, to Manchester, Massachusetts, in the end

of June 2000. I hope to have a version of the software working by then, so

my friends and family can track my progress as we sail.

29

APPENDIX A: NMEA INFORMATION

The information contained in this appendix comes from the following two
sources:

Bennett, Peter. (2000). The NMEA FAQ. www.vancouver­
webpages.comJpetcr/nmeafaq.txt

Bennet, Peter. (1994). The NMEA Type. www.vancouver­
webpages.com/peter/nmeatype. txts

The full NMEA-OI83 standard is available from:
Cindy Ensley
National Marine Electronics Association
P.O. Box 3435
New Bern, North Carolina 28564-3435
Phone (919)637-7759
Fax (919)637-8136

NMEA data is in standard ASCII text form; the basic unit, a sentence,
is in the following form:

STKSEN,fieldl,field2, ... *XS<lf><cr>

Sentences are less than 80 characters in length.
$ starts every sentence.
The flISt two chars are the talker id, which tells what device sent this data.
The next three characters is an identifier for the format of the sentence.
A comma comes before every field of data.
The last field is followed by an optional checksum, in the form of *xs where

XS is the hexadecimal checksum computed by taking the exclusive or of
the characters between (but not including) the $ and * .

A linefeed and a carriage return are also included at the end of each sentence.

SOME TALKER IDE TI F ER MNEMONICS
Address Characcers 1 and 2)

TALKER DEVICE IDENTIFIER

AUTOPILOT: General *AG
Magnecic AP

COM.U ICATIONS: Digital Selective Calling (DSC) -CD
Saeelliee -CS

a 'o-Telephone (MF/HF) "CT
Radio-Telephone (VHF)
Scanning Receiver

CV
"ex

DECCA avigaeio DE
Direce'on Finder OF
Eleceronic Chare Display & Information Syseem (ECDIS) EC
Global Positioning System (GPS) GP
HEADIN SENSORS: Compass, Magnetic -HC

Gyro, North Seeking -HE
Gyro, Non­ orth Seeking H

Ineeg~2:ed :~s~~~~e~~2::~n II

30

nLegrated Navigat~on

LORAN:

OMEGA Navigation Syste
Proprietary Code
Radar and/or ARPA
Sounder, depth

IN
Loran-A LA
Loran-C LC

o
P

-R.ll.
-SD

ElecLronic positioning sys~em, other/general R
Sounder, scanning 55
Turn Rate Indicator *TI
TRANSIT avigat"on System TR
VELO ITY SE SORS: Doppler, ther/general TVD

Speed Log, Water, Magnetic
Speed Log, Water, Mechanical VW

TRANSDUCER YX
TIMEKEEPERS, TIME/DATE: Ato "c Clock ZA

Chronometer zc
Quartz ZQ
Radio Update, WWV or W H ZV

Weather I~s~=~~ents WI

TABLE 5 - APPROVED SE TENCE FORMATTERS

AAM - aypoint Arrival Alarm

ALM - GPS A_manac Data

APB - AutopiloL Sentence "8"

*ASD - Autopilot System Data
BEC - Bearing & Distance to WaypoinL,
BOD - Bearing, Origin to Destination
BWe - Bearing & Distance to Waypoint,
BWR - Bearing & Distance to Waypoint,
BWW - Bearing, Waypoint to Waypoint
DBT - Dept Below Transducer
DC - Decca Position

"OPT - Depth
*FSI - Frequency Set Information

Dead Reckoning

Great Circ e
Rhumb Line

GGA - Global Positioning SysLe fix Data
GLC - Geographic Position, Loran-C
GLL - Geographic Position, Latitude/Longitude
GSA - GPS DOP and Active Satellites
GSV - GPS Sate lites in View
GXA - TRA SIT Position

THDG - Heading, Deviation & Variation
HOT - Heading, True
HSe - Heading Steering Command
LCD - Loran-C Signal Data

W - Water Te perature
*MWV - Wind Speed and Angle

OL - Omega Lane Numbers
·OSD - Ow Ship Data

RMA - Recommend Minimum
RMB - Recommend Minimum
RMC - Recommend Minimum

TROT - Rate of Turn
TRPM - Revolutions

Specific Loran-C Data
av"ga ion Information

Specific GPS/TRJU1SIT Data

*RSA - Rudder Sensor Angle
sRSD - RADAR System Data

RTE - Ro tes
*SFI - Scanning Frequency Informat~on

STN - ultiple Data 10
TRF - TRANSIT Fix Data
~TTM - Tracked Target ~essage

"VBW - Dual Ground/Water Speed
VDR - Se and Drift
VHW - Water Speed and Heading

31

VLW - Distance Traveled through the Wa er
VPW - Speed, Measured Para Ie to ind
VTG - Track Made Good and Ground Speed
WCV - Wayp i t Closure Velocity
WNC - Distance, waypoint to Waypoint
WP - Waypoint Loacation
XDR - Transducer Measurements
XTE - Cross-Track Error, easured
XTR - Cross-Track Error, Dead Reckoning
ZDA - ime & Date
ZFO - UTC , Time from Origin Waypoint
ZTG - UTC & T'me to Des ination Waypoint

4.3 Sample Sentences Dissected
4.3.1 Standard Sentences

A talker typically sends a group of sentences at intervals
determined by the unit's update rate, but generally not more
often than once per second.

Characters following the .. ~ .. are a checks Checksums are
optiona for most sentences, according to the standard.

BWC - Bearing and distance to waypoint - great circle

BWC,225444,4917.24, ,12309.57,W,051.9,T,031.6,M,001.3,N,004*29
225444 UTC time of fix 22:54:44
4917.24,N Latitude of waypoint
12309.57,W Longitude of waypoin
051.9,T Bearing to waypoint, degrees true
031.6,M Bearing to waypoint, degrees magnetic
001.3, Distance to waypoint, Nautical iles
004 Waypoint ID

DBT - Depth below transducer

DBT,0017.6,f,0005.4,M
0017.6,f 17.6 feet
0005.,M 5. Metres

GGA - Global Posi ioning Syste Fix Data
GGA,123519,4807.038,N,01131.324,E,l, 8,0.9,545.4,M,46.9,M"T42

123519 fix taken at 12:35:19 UTe
4807.038, Latitude 48 deg 07.038'
01131.324,E Longitude 11 deg 31.324' E
1 Fix qua ity: 0 inva id

1 = GPS fix
2 = DGPS fix

08 umber of satellites being tracked
0.9 Horizontal dilution of position
545. ,M Altitude, Metres, above ean sea leve
46.9, Height of geoid (mean sea level) above WGS84

el ipsoid
(empty fie d) time in seconds since last DGPS update
(empty field) DGPS station ID number

G L - Geographic position, Latitude and Longit de
GLL,49 6.45,N,12311.12,W,225444,A

49l6.46,N atitude 49 deg. 16.45 in. orth
l2311.12,W Longitude 123 deg. 11.12 min. West
225444 Fix taken at 22:54:44 UTC
A Data va id

32

GSA - GPS DOP and active sate Ii es
GSA,A,3,04,05"09,12",24",,,2.5,1.3,2.1~3S

A A t selec~io of 20 or 30 fix (1'1 = anual)
3 30 fix
04,05. .. PR s of satellites used fo:- fix 's;:ace for 12)
2.5 PDOP (d:lution of precisio~l

1.3 Horizontal dilution of precision (HOOP)
2.1 Vertical dilution of precision (VOOP)

DOP is an indication of the effect of satel'ite
geometry on the accuracy of the fix,

4.3.2 Proprietary Sentences

The follo'Nlng are Garmin proprietary sentences. "P" de::::te-s
proprie a:-y, "GRM" is Garmin' s manufact.urer code, and "1'1" or
"Z" indicates the specific sentence type.

$PGRHE, 15. 0, l'~, 45,0, H, 2S. 0,1'1*22
15.0,~~ Estimated horizontal position error in metres

(HPE)
45. O,~f Estimated vertical error (VPE in metres
2.'5. , ~f Overall spherical equivalent: p~s'tion error

S? ~~·~z, 9 3, f, ~. 2
93,r Altitude in feet
3 Position fix dimensions 2 = user a titude

3 = GPS altitude
This sentence shows in feet, regardless of units shown on the
disp ay.

33

APPENDIX B: ACKNOWLEDGEMENTS

It is probably impossible to mention everybody who helped me

throughout this project. But, I'll try my best

Mom and Dad, thanks for your support, advice, and encouragement.

Thanks for everything you've done throughout the last 22 years.

Much of the testing of the GPS interface would not have been

possible without the geucrosity of Dean of the College, Earl Smith. Dean

Smith uDselfishly let me use [the much-coveted steeple office of Lorimer

Chapel for the second semester. The unobstructed views of the sky from the

high office provided the much-needed satellite reception at many times

throughout ·this project.

A majority of this thesis was written in the bucket of a John Deere

850, owned by the Warners, in Jackson, New Hampshire. On a beautiful 75°

day in April, I don't think I could have found a more perfect relreat than on

the back porch at Shadowbrook, with a chair, laptop, extension cord, and the

perfect table.

Allen Downey, Randy Jones, and Lenny Reich, thanks for your

advice, support, and help with my projects this past year.

I must also thank Janine Schwartz, for her motivation and

encouragement when I needed it most, and for teaching me that the Mobil

POtfUl Stop is exactly twelve miles from Colby.

Special thanks goes to Bill Barton for the opportunity to make the

voyage hack from Bermuda, and for his input on the software design and

satellite communication systems.

34

APPENDIX C: BlBLIOGRAPHY

Afergan, Michael M. (1996). Java Quick Reference. Que Corporation,
Indianapolis, IN.

Barton, William. Experienced Transatlantic Navigator and Ocean Racer. 279
Sagamore St., South Hamilton, MA 01982. www.tazzarin.com

Bennet, Peter. (1994). The NMEA Type. www.vancouver-webpages.comJ
peter/nmeatype. tx ts

Bennett, Peter. (2000). The NMEA FAQ. Version 6.3. www.vancouver­
webpages.com/peter/nrneafaq. txt

Chan, Patrick, Lee, Rosarma, and Kramer, Douglas. (1998). Tlte Java Class
Libraries -- Second Edition, Volume 1. Addison-Wesley, Reading,
MA.

Deitel, Harvey M., and Deitel, Paul J. (1999). Java: How To Program -- 3rd
Edition. Prentice-Hall, Inc., Upper Saddle River, New Jersey.

Downey, Allen B. (1999). How to Think Like a Computer Scientist.
www.cs.colby.edu/-downey/ost

Garrnin Electronics. "What is GPS?". www.gannin.comJgpsWhatisit.html

Hambleton, Rush. USCG Licensed Captain for ActionQuest. Personal
Interview. Williams-Mystic, 7500 Greenmanville Ave., Mystic, CT
06355. WW\V.bluewaterlogistics.com

National Marine Electronics Association. New Bern, NC. www.nmea.org or
www4.coastalnet.com/nmea

Oaks, Scott, and Wong, Henry. (1997). Java Threads. O'Reilly & Associates,
Sebastopol, CA.

Simp,son, Wayne. ''Understanding Marine Electronics Interfacing: The
Promise, the Problems". Mainsheet (the Catalina and Capri Owners
association magazine). May, 1991.

Trimble Navigation. (2000) GPS Tutorial. www.trimble.com/gps/index.htrn
Walrath, Kathy, and Campione, Mary. (1999). The JFC Swing Tutorial: A

Guide to Constructing GUls. Addison-Wesley, Reading, MA.

35

	Designing a Remote Navigation System
	Recommended Citation

	tmp.1230396465.pdf.5UBD_

