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Abstract

This project is motivated by an existing robot system for mapping unknown
environments and attempts to improve its effectiveness through the use of genetic
algorithms. Using a robot simulator, the mapping system is created using simulated
robots and a simulated environment. The robots are controlled by a supervisor agent that
makes the high-level decisions about tasks for individual robots to complete to
accomplish the mapping effort. This research investigates the ability of adding a genetic
algorithm learning component to the supervisor to improve its ability to coordinate the

robotic agents.
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1 Introduction

The goal of my research is to develop an efficient controller for multi-robot mapping of
unknown environments. | will take an existing mapping algorithm for multiple robots
and add a genetic algorithm (GA) learning component in order to improve upon the

algorithm and improve the efficiency of the mapping process.

1.1 Robots

Although once only the product of people’s imaginations, robots have started to become
commonplace throughout our lives. From the highly publicized Spirit and Opportunity
Mars rovers to the industrial machines used to assemble our automobiles, almost
everyone has had contact with robots in some way. It is this contact and the seemingly
limitless Jist of tasks that robots can be applied to that originally attracted me to working

in this sector of computer science.

In particular [ am fascinated with the ability of robots to do things that we as humans are
not able to do. For such a highly evolved organism we have a lot of limitations! For
instance, take a disaster like a large nuclear or chemical spill. 1t would be very difficult

to get scienfists to ground zero to catalog the scene because of the potential for serious
bodily harm. This is the perfect scenario for a robot system to take over. There are no
health hazards for a robot, and in the event of some tragic accident, there is no loss of life.
In addition to this benefit, the computers on board most robots can make calculations

hundreds of times faster than even the fastest mathematician.

In addition to hazardous waste management, robots are also being extensively used in the
military because of their ability to keep people out of dangerous combat situations.
PackBot by iRobot is a good example of such a robot [3]. It is a multipurpose machine

that can be used for surveillance, exploration, and possibly even weapons deployment in



the future. The robot is small enough to be carried on a soldier’s back and is rugged

enough to be tossed out of a building and continue to function.

The military also uses aerial robots to keep personnel out of the line of fire. Unmanned
Aerial Vehicles, or UAVs, such as the Predator {1] and Global Hawk {6] are being used
in combat today and can do various sorties from high-altitude reconnaissance to low-leve]
air to ground attacks. There are a number of reasons why these robots are so valuable to
the military. First, pilots are no longer put in the line of fire and are therefore safer.
Secondly and most importantly, because there is no human on board the aircrafi, it can
perform maneuvers that were otherwise impossible. This makes these weapons far more

efficient and far better than if they had a pilot aboard.

Today’s robots systems can not only go places people cannot go, but they can also take
on tasks that would be otherwise too tedious or too large in scope for humans to
undertake. One of these tasks is the detailed mapping of unknown environments.
Although this is a task that a human could eastly do, it is well suited to a machine that
isn’t exhausted by tedium or by lengthy hours of work. In some cases robots are the only
solution for mapping unknown areas, the ocean being a prime example. The oceans are
the last real frontier on our planet probably because we as humans are unable to visit their
depths unaided, and often not at all. This is a job for unmanned robots and 1t 1s this

ability that fascinates me more than anything.

1.2 Genetic Algorithms

Machine learning and specifically genetic algorithms have interested me from the
moment I leamed about them. The ability for a system to evolve into a better one and to
in a sense “learn” is fascinating. This is particularly exciting because it allows systems to
learn the best strategies for any given environment or problem set. Genetic algorithms
are an efficient way of improving a system because they don’t himit themselves to
enhancements that are clear to programmers without learning. (e.g. if there is a fire,
robots shouldn’t drive into it, etc.) That is, they can find improvements to systems that

humans might overlook or not even think of.



It is this aspect of genetic algorithms that influenced me to see what kind of effect they
would have on a coordinated mapping system. Although I can think of a good
coordinated mapping algorithm | wanted to see if it was possible for a genetic algorithm
to evolve an equal if not better system. The combination seemed to be a promising pair
and I was intrigued by the thought of mixing two relattvely new technologies together to

form something new and different.

1.3 Overview of Thesis

This paper will document this study from concept to implementation. I will first give the
background of robot mapping as well as a brief overview of genetic algorithms. This will
be followed by a section describing the tools used in this study inchuding the robots,
simulator and genetic algorithm software. The system itself will then be described in
terms of its creation and the addition of genetic algorithms. A results section will display

my findings and then be explained in the discussion.




2 Background

As robots become cheaper and more available, they are being used for more applications
and studies. One of the most common and promising uses for this new technology is the
mapping of unknown environments. This has been worked on using both single and
multi-robot strategies, the latter of which is a more recent development. In this chapter
I’ll give a brief background of the problem and discuss a specific multi-robot paper that

this research built on.

2.1 History of Robotic Mapping

According to Sebastian Thrun, a major contributor to the field of mobile robotics and a
co-author of the paper this study is based on, “robotic mapping addresses the problem of
acquiring spatial models of physical environments through mobile robots. ..[and
is]...generally regarded as one of the most important problems in the pursuit of building

truly autonomous robots.” [8]

Robot mapping dates back to the 1980’s and early 1990’s. Around then the field was
divided into two approaches; metric and topological. The metric approach sought to
represent the world with geometric figures such as grids and polyhedrons. These figures
model the occupied and free spaces of the environment and robot decistons are based on
these. The topological systems took a different approach in that they focused on the
connectivity of different “places™ or locations in the world. These places would be
connected by “arcs” which included information on how to move from one place to

another. [8]

The robot mapping systems in the 1990s focused on both “world-centric” and “robot-
centric” algonithms. World-centric algorithms are systems in which robot sensor

information is less important in relation to the global map being created. The focus is
therefore on the resulting map, not the measurements that lead up to that map. Robot-

centric algorithms on the other hand focus on the sensor information that robots get at




certain locations in the world. Although simpler in theory, robot-centric algorithms lost
favor due to a number of disadvantages including difficulty in extrapolating

measurements from multiple locations and difficulty telling similar locations apart. [8]

Since the 1990s, robot mapping systems have been mainly probabilistic techniques
incorporating both single and multi-robot strategies. The following sections summarize

these systems.

2.2 Multi-Robot Mapping Strategies

There are a number of groups currently studying multi-robot mapping strategies around
the world despite its relative novelty in the field. One of these studies is a joint effort by
three universities: Carnegie Mellon University (USA), The University of Freiburg
(Germany) and The University of Bonn (Germany). In a paper entitled Coordination for
Multi-Robot Exploration and Mapping (7] the authors, Simmons et al., describe thetr
system for mapping unknown environments using a central controller module and a robot

bidding system.

In the Simmons et al. system, there are two main assumptions: first, the world in which
the robots are mapping is static and cannot change during the mapping process; i.c. there
are no humans or other agents present in the system. Second, the robots begin in view of
each other and are given their relative location. The system consists of the robots doing

the mapping and a central controller module that coordinates the mapping effort.

The mapping system starts by sending the relative location information to the robots.
This information is then used in conjunction with the data obtained by the onboard laser
range sensors to determine exactly where the robot is in relation to its surroundings. This
is accomplished by calculating three factors. First, the estimate for the robot’s position is
determined by calculating the maximum likelihood of the supplied and sensor data. A
simtlar calculation is used to determine an estimation of the map (from what the robot
can see from its current position). Figure 2.1 shows a diagram of the maximum

likelihood estimation calculated by the Simmons et al. paper.
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Figure 2.1: A diagram showing the result of the maximum likelihood estimation ot the map 1n the Simmons
et al. [7] paper. The darker the dots, the smaller the likelthood of therz being an object present there

I'he third calculation done by the robots is a postenior density calculation charactenizing

its “true” location [7].

Once cach robot has determined its location and local map, this data is sent to the central
controller module where it combines all the robot local maps into a global map of the
world. Because each robots local map is created via a maximum likelihood estimate, the
central controller has to usc a similar algorithm to parse all the maps together with the
least amount of error. Once this map has been created, the robots can begin the bidding

process.

The bidding system consists of a process where robots make “bids™ on sections of the
world that they would like 10 explore and the central controller takes those bids and then
assigns tasks. In order for a system like this to exist, the world has to be divided into a
grid so that each bid can focus on a specific “ccll™ in that grid. In the Simmons et al.

system. the grids had a resolution of 13 em meaning that each cell was 15 em square.




The bidding process begins with cach robot identifving the “frontier cells™ in their lecal
maps. Frontier cells are defined as “clear” cells (cells with no obstacles within their
borders) that are adjacent to unexplored cells. By defimtion, frontier cells must be at
least 20 cm apart, which corresponds the average width of the robots used in the study.
The robots make bids only on these arcas because they are cells that need to be explored.

A map of an environment showing the frontier cells is shown in Figure 2.2,

£\

Figure 2.2: A view of the map created by the Simmons et al. system. Obstacle cells are black, clear cells
are white, unknown cells are gray and frontier cells are denoted by gray circles.

Once the frontier cells have been identified, bids are made to the central controller by
estimating the cost and information gain of cach cell. The cost is calculated by
computing the optimal path from the robot to the frontier cell, assuming deterministic
motion. Only clear cells are considered when calculating the optimal path so that no
extra time will be taken to avoid any obstacles. The information gain 1s found by
estimating the number of unknown cells that fall within the radius of the frontier ¢ell [7).
For efficiency a flood-fill algorithm is used, ending propagation either when a “clear or
obstacle cell is found or when the distance to the frontier cell is more than the sensor
range [7]. Figure 2.3 shows the information gain as a circular region around three

frontier ¢ells,



Figure 2.3: A diagram showing the information gain region for three frontier cell. Cross-hatched arcas
represent the imformation gan regions

Once the bids are created by calculating the cost and information gain for each frontier
cell, they are sent to the central controller. After waiting a short while until other bids
arrive, the central controller then finds the bid with the highest “net utility™ defined as
information gain minus cost. The robot that made this bid is told to navigate to this
frontier cell. The rest of the bids are then discounted by estimating the percentage of
overlap between the information gain regions of all the bids [7). Once the remaining bids
have been decremented, the bid with highest net utility is chosen and the cycle continues

until there are no bids or all bids” information gain is below a predefined threshold.

The Simmons et al. system results in a well defined map of the world that 1akes in 10
account separate rooms and other obstacles in the path. Figure 2.4 shows a map created
by this system.



Figure 2.4: A map created by the Simymons et al. system. Robot tracks are marked in blue and the circular
gray arcas represent the information gain areas mentioned above

2.3 Genetic Algorithms

A gencetic algonthm (GA) is an approach to solving problems that is inspired by the
biological process of evolution and natural selection. That is, over the length of the
experiment, solutions tend to get better and better following the “survival of the fittest”
principle. To start, for any given problem a set of random solutions are created. This sct
of solutions is called the “population”™. The solutions can be of any tvpe but because this
study uses a solution that consists of a set of rules, we will use this type while explaining

the algorithm.

As mentioned before, the initial population is a set of randomly created strings, cach
containing data for a number of rules for the system being evolved. Each string in the
population 1s evaluated and given a score by a “fitness function™ to determine its “fitness”,
In biclogical terms, a fitness is basically a success rating for an organism. The higher the
fitness. the more Jikely the organism will survive. Genetic algorithms function in a
similar fashion. After cach string is evaluated and given a fitness, the population
“reproduces™ 10 create a new population. The strings with the higher fitnesses are more

likely 10 pass on their data to the next generation and in theory as the generations




progress, the solutions to the problem get better and better. A diagram illustrating the

genetic algorithms process is shown in Figure 2.5.
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Figure 2.5: Diagram showing the process of a genetic algorithm.

The genetic algorithm mimics the biology that inspired it in another way as well in that

there are other factors that affect what rules or “genes” end up in the next generation.

“Mutations™ and “crossovers” can also have an affect. A mutation is a spot change where

a bit of the string is randomly modified. In the case of a binary string, a 1 might be

randomly changed to a 0, thereby changing the rule completely. A crossover is a similar

modification where portions of two strings swap to create two new strings, as shown in

the bottom right of Figure 2.5. Both mutations and crossovers can be controlled in the

algorithm in terms of their frequency, and often different combinations of these can have

significant changes on results.
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3 Tools

The goals of this study were twofold: first, we wanted to see if it was possible to recreate
a simplified version of the Simmons et al. system in a simulated environment. In doing
so, we wanted to see if it was possible to take a similar bidding system and attain similar
results for the mapping systemn created by Simmons et al. We then wanted to see if the
addition of a genetic algorithm learning component could improve the effectiveness of
the central controller. The goal was to recreate and then improve upon the coordinated

multi-robot mapping system created by Simmons et al.

There are a number of tools that were used in this experiment to help discover the effect
of genetic algorithms on a coordinated robot mapping system. Each one played an

important and specific role in the creation of the project and their details are listed below.

3.1 Khepera Robot

In order to reach these goals, a number of tools were used in this study. First, a robot was
needed to mimic the system created in the Simmons et al. paper. The Khepera robot [5]
was chosen for a number of reasons. Onc of the first énd most influential reasons for
choosing the robot was its cost. Being a miniature robot, it is relatively inexpensive
compared to its larger counterparts. This size also played into the choice of robot in that
we had limited Jab space and robot size was important. Had we decided to implement the
mapping system outside of the simulator, the size of the testing area would be directly
related to the size of the robot and therefore a smaller robot was preferred. Because we
had decided to work in a simulated world we wanted a robot that could be easily
represented in a simulator. The Khepera robot satisfied this requirement well in

conjunction with the Webots simulator. (Section 3.2)

The Khepera robot includes two wheels and 8 infrared sensors. The wheels are

independent of each other and can go forwards and backwards at a speed determined by

11




the user. Sensors can be set as either light or distance sensors. Figures 3.1 and 3.2 show

a sensor diagram from and a photo of the Khepera robot.

" -
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Figure 3.1: Dragram of the Khepera robot showing infrared sensors (in blue) and wheels (in green)
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Frgure 3.2: Front view of the Khepera robot showing infrared sensors 1 through 3. Photo courtesy of |3

Although not used in this study, Khepera robots also have the ability ¢ be expanded 10

include accessories such as cameras, grippers and additional input - output devices. This




expandability makes it a very powerful 100l and though we aren’t using these features,

they are worth noting.

3.2 Webots
Webots [ 2] was chosen as the simulation environment. The simulator creates an
extremely realistic model of the Khepera robot as well as the environment that it is in. A

screen shot of the simulator is shown in Figure 3.3.

Figure 3.3: A simulsted Khepera robot in the Webots simulator. Red lines show sensor veetors

There are number of characteristics that make Webots the ideal simulator for this study.
First and foremost, there is direct support for the Khepera robot and code generated for
the simulator can be put onto the robot with little or no modification. Webots also does a
convincing job at simulating noise and other real world environmental features that might
be experienced in a real-world situation. These include sensor noise, wheel slippage and
the requirement of robots to communicate via simulated radio emitters and receivers.
These factors are important should the system ever be applied to real robots in a real

environment,




In addition to the factors mentioned above however, the most important factor that makes
Webots the perfect system for this study is its supervisor feature. In addition to the

robots in the world, the system allows for another agent called a supervisor to be added.
This supervisor controls the world and can move / modify aspects of the environment that
the robots themselves have no control over. For instance, the supervisor allows
automatic teleportation of robots, should the experiment call for such a feature. (This
feature is used in this study and it will be explained in detail later on in the paper.) This
feature of Webots is essential for this kind of experiment because the robot needs to be

moved back 1o the starting point after each fitness analysis.

This supervisor ends up being an essential part of the system in that it acts as both the
supervisor in the sense mentioned above, but also as the central controller for the
mapping system. Without this functionality, the experiment would not have been

possible and 1t i1s for this that Webots was chosen as the simulator.

3.3 Genesis

The GENEtic Search Implementation System, or Genesis, is a system for easily
incorporating genetic algorithm solutions into programs. Genesis allows users to have a
powerful genetic algorithm component in their programs and it allows for simple user
contro] of this leaming system. It is a very modular system that allows users to test
multiple experiments with different genetic algorithms, combinations of mutation and
crossover rates, as well as number of other parameters. Genesis makes the incluston of
these learning components into programs easy by only requiring the user to supply an

evaluation function which returns the fitness for any given point in the search space [8].

Genesis was designed to make genetic algorithms easy to apply to almost any system and
because of this it was the right program for this study. In addition, because both Genesis
and the Webots/Khepera interface are written in the C programming language,

incorporating the former into the Jatter was very simple.

14



4 System

In this study there were two main objectives, as mentioned in the goals section: first,
recreate a simplified version of the Simmons et al. system, and second add the genetic

algorithms component to evaluate the contributions of a learning system,

4.1 Create the system
In reconstructing the Simmons et al. system we simplified a number of aspects so that

once the genetic algorithm was added, it would be casicr for the system to learn.

4.1.1 Simplifications

One of the first simplifications we made was to limit the size of the world to a known size.
Although what was in the world was unknown, the central controller and subsequently

the robots would know how mz.my cclls the world was made up of. This idea of a world
made up of “cells” was taken a little further by completely limiting the world to a grid
interface. That 1s, each cell in the grid could essentially be “on” or “oft”; clear or
obstacle. This way no cell could be partially open and also contain a wall. This allowed
the world to be stored as a two-dimensional array that could be easily updated and
accessed for bidding purposes. The array consisted of integers representing the different
states of each cell; unexplored, obstacle, clear and frontier cell. Figures 4.1 and 4.2 show

a world in the simulator and the corresponding two-dimensional array.

15



Figure 4.1: A Webots screenshot showing the gnd world. This particular map is a simulation of the Colby
College Linux Lab in the Mudd building.
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Figure 4.2: The two-dimensional array representation of the map. This particular map is of the world
represented in Figure 4.1
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This mapping simplification was important due to the fact that in this study the robots
were only allowed to move one cell at a time, 1n one of four cardinal directions. This was
done to eliminate as much confusion as possible during the mapping process and it would
pose a problem if there were cells that were only partly clear. Getting the robots to move
one cell at a time was far more difficult that it may seem. The Webots simulator, in an
attempt to create the most realistic environment for testing, includes a lot of “noise” in
the system. For instance, it is virtually impossible to have the robot move perfectly
straight because Webots will simulate motor speed inconsistencies that would happen in a
real environment.  This in combination with the fact that the Khepera robots don’t have
an on board compass or GPS, made programming the robots to move one cell at a time a
challenge. To overcome this, we attempted to override the noise and simulate a GPS

system that would help keep the robot on the right track.

4.1.2 Robot Movement

In a normal Khepera program, the robot will evaluate its surroundings, move one “step”
and then restart the process. In this scenaro, a step is a predefined “click” of the loop
and usually is a very small distance so as to allow the robot to make very minute changes
to its vector. The first thing we did to get by this was to figure out how many steps it
took to go from one cell to another (cardinal direction; no diagonals). This was
determined to be ~64 steps and therefore the robots were programmed to run for 64 steps
before they stopped and re-evaluated their surroundings. The 64 steps however was only
the closest estimate of how many steps it took to get to the next cell; it was not perfect
and if unchecked, after a number of moves, the robot was completely off kilter and no

longer moving from one cell to the next. A system had to be devised to correct this.

To solve this translation problem, the central controller doubled as a supervisor that
corrected the robots location when it was done with a move. By knowing the size of the
world, the number of cells in that world and the exact location of the robot, it can figure
out which cell it should be in and “teleport” it to the correct location. This teleportation
ends up only being a tiny amount, but it also allows the robot to always start jts next

move from the exact center of the cell it is in.

I



The translatton issue was only half of the difficulty in getting the robots to move one cell
ata time. Turning the robot dealt with the same limitations. In order to solve this we
followed the same technique and discovered that it took ~32 steps to make a 90° turn.
Therefore for each turn, the robots were programmed to begin turning and not stop until
32 steps had passed. This left us in a similar situation where the robot was close but not
exactly facing the right direction. Once again, the central controller became a supervisor
and corrected the robots rotation by finding which cardinal direction it was closest to and
setting the rotation to that degree. By using this system of supervisor correction the
robots were essentially “tricked” into moving one cell at a time. This simplification

would be helpful with the introduction of the genetic algorithm later on in the study.

4.1.3 Bidding

Our system starts off much the same as the Simmons et al. system. Robots are placed in
the middle of the world in view of each other. They first analyze their surroundings and
update their maps. Now that the maps are updated, the robots can begin the bidding
process. Each robot makes a bid for each frontier cell in its map . The bidding process is
similar to the Simmons et al. system but is slightly simplified once again to prevent

confusion once the learning component is added.

The bidding system, like that of Simmons et al., consists of two factors; the cost and the
information gain of each frontier cell. The cost is virtually the same in that it is a
calculation of the distance (Manhattan Distance) from the robot to the frontier cell. A
difference however is that because our world is a grid-based world, the distance is not an
estimate but the actual calculated distance. The information gain however is not quite as

complex as that of the previous system.

In the Simmons et al. system, the information gain was a complicated calculation that

basically estimated how many “unknown” cells would be discovered at any given frontier

" For the first bidding cycle of the system, the robots only have a local map, but this gets updated to the
global one by the next cycle.
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cell. Our information gain calculation was far simpler because of the grid world interface
and the two-dimensional array representation. For any frontier cell, the number of
adjacent cells that were unexplored were counted and returned. Although simplified, this
information gain serves the same purpose and relays the same information that the

information gain in the Simmons et al. study did.

Once the cost and the information gain for a given frontier cell was known, the bid was
created and sent to the central controller. In addition to scnding bids for all the frontier
cells in their map, the robots also sent their updated map so that the central controller

could update the global map for the next round of bidding.

4.2 Add Genetic Algorithms
Once the initial system was set up, the genetic algorithms component could be included.
As mentioned above, the GA string is a set of rules. How the GA string goes from a

binary string of numbers to a set of rules is demonstrated in Figure 4.3.

011010101001

011|010(101(0|01

3/2|5/0]1

gy \

_ alls = o[ target proximity favor close 1 step before
a=3|1b=2]|" g squares |/|targets (O=close) re-bid

71

Figure 4.3: A diagram showing how the GA string is converted from bits to rules
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In this system there are 5 rules consisting of 12 bits that together determine how the
central controller will react to the robot bids. The first 6 bits encode for two variables, a
& b, that control the weight of both the cost and the information gain of each bid. Each
of the two variables is represented by a 3-bit section and can code for a weight of 0-7

used to construct a bid value using the following formula:

bid value = @ * information gain - b * cost

The next 3 bits represent how close simultaneous targets of different robots can be, in
terms of the number of squares. The range is 1-8 squares using Manhattan distances; the .
effect of this rule is to eliminate some bids from consideration. This also prevents robots
from in a sense “over mapping” an area. It is a waste of resources to have all the robots
in one part of the world when there is a lot of unexplored space elsewhere. The third rule
is represented by | bit and contains the information on whether robots should favor
targets that are near or distant to their current location; the effect of this rule is to mitigate
fies. The fourth rule of the string contains information about how far the robot should
move towards the target before it must stop its current task and re-bid; 1, 2 or 3 steps
towards the target and then re-bid, or go all the way. This determines how often the
central controller will interrupt the robots duning a task and enables the system to be more
flexible. This is a change from the Simmons et al. system and it was hoped that this kind

of flexibility would allow for more efficiency.

As mentioned earlier, the genetic algorithms were implemented using Genesis (4). To
ready the expeniment, the GA string data was set in Genesis including the bit-string
length, number of rules, number of bits per rule, etc. The system began with a random
populatton of GA strings, or rule sets, being created. For string, the fitness was

calculated by sending it to the Webots program as shown in Figure 4.4,
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01101010010
01001110010
10011000100
00110011111
10011100010
01110010100

Figure 4.4: A diagram showing the relationship between the genetic algorithm (Genesis) and Webots

There, the robots would map the world and the central controller would make decisions
based on the parameters specified in the GA string. After a predetermined number of
robot moves. the mapping side of the system would stop, calculate the percent of the

world that had been mapped and return this percentage back to Genesis as the fitness.

The fitness returned to Genesis is the key to the genetic algorithms learning system. The
better the fitness, the more likely the string that created that fitness will pass its
characteristics on to the successive generation of strings, resulting and better and better
solutions. In this study, because the fitness was represented as the percent of the world
that was mapped, the higher the fitness value, the better. In order to make the learning as

specific as possible, the percentages were multiplied by 10,000 to compensate for

fractions of percents.

Rule (01001110010}

>
L4

¢
<

Fitness (47% Mapped)

Webots




5 Results

To test the system, a total of 10 expenments were run. For each experiment, the initial
population of strings was 20 and the number of trials was 50. Since different mutatton
and crossover rates were not being tested, they were set to about mid range, .01 and .6
respectively. Each robot was given a total of 50 steps before the mapping effort stopped
and the percent mapped was returned to Genesis. For each experiment, all the new best
fitness values were recorded and as well as the generation that they were found in. The

results of the 10 experiments are shown below.

Experiment 1
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Experiment 6
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Experiment 9

g &

Percent of World Mapped
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Peroent of World Mapped

On almost all of the 10 experiments, the system mapped about 60 % of the world.
Although this number seems low, it is important to keép in mind that this is the percent of
the world that was mapped in the number of steps allotted. As it tumns out, when each
robot is given 50 steps, 60 % of the world is about the most that can be mapped. In this

respect, the study was a success in that the system successfully organizes multiple robots

to map an unknown world.

Despite the aforementioned achievement, the study was not a complete success. This
was because although the system was able to coordinate multiple robots to map an

unknown environment, there was little or no learning in the process. On almost every
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experiment the best solution was found in the first generation, before any reproduction
could take place. This means that the best solutions were being randomly created. If one
or two solutions were randomly created this would be acceptable, but since almost all of

the best solutions were being randomly created this means that there was no learning.

This is most likely due to the short length of the GA string and the relatively small
number of rules contained in that string. There were too many combinations of rules that
resulted in good solutions. Had more rules been incorporated resulting in a longer GA

string, there might have been more learning.

Despite the lack of learning demonstrated in most experiments there were some

interesting patterns in the strings that resulted as shown in table 5.1.

Table 5.1: The best GA strings for each of the 10 experiments.

Experiment Best GA String % Mapped
1 27200 58.8842%
2 27172601 58.8842%
3 36302 57.0247%
4 37281 58.8842%
S 47200 48.3471%
6 15203 58.8842%
7 17001 58.0578%
8 27200 58.8842%
9 71301 41.5289%
10 14200 | 58.8842%

In almost all of the experiments, the second parameter (weight of b) was far larger than
the first parameter (weight of @). Both these parameters play important roles in the
bidding function as shown in the formula given in Section 4.3. The value a determines
how much to count the information gain in the fitness function and the value b
determines how much to decrement the cost in the fitness function. These results show a
tendency to pay less attention to the cost (as shown by the large b value) and

subsequently pay more attention to the information gain. The only experiment that bad a
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GA string that didn’t follow this pattern was experiment 9 which had a best percentage of
only 41.5 %. Although it is perplexing why this experiment didn’t evolve a better string,
it might have had to do with a bad initial populiation of solutions or that the GA wasn’t

run for a long enough number of generations.

The target proximity values, represented by the third parameter, varied but tended to stay
low which allowed robot targets to be closer to one another. This is most likely because
the robots started out close together. Because of this, if the target proximity was a value
higher than the Manhattan distance between the two robots, the initial bids would be too
close to each other and one of the robots’ bids would not be accepted, leaving itidle. The
fourth parameter, which told the system to favor close or far targets if there were more
than one good possibility, always favored close targets. This is to be expected in that if
there are two targets with the same information gain, and one is far closer than the other,
there 15 no point in going the extra distance to the far one. This might have had some
cffect on the high values of b in that if the robots were already favoring close targets, it

was in their best interest to discount b as much as possible.

An interesting factor of these results is that there are a number of different strings that
resulted in the same fitness, or percent of the world that was mapped. These strings are
marked in blue in Table 5S.1. Although the strings are different, there are a number of
important similarities. First of all in all 6 strings, the target proximity was all equal to 2,
meaning that at any point no two target cells could be with in 2 cells of each other. Also,
in all six cases the system favored close targets, as mentioned above. The biggest
difference lies in the first two parameters. However, though the numbers are different,
the relationship of a low o value and a high b value isn’t. This meant that the cost of each
bid was decremented a lot and the information gain was the prime focus. Although the

specific numbers are different, the effect on the bidding outcome is similar.
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6 Conclusions and Future Work

The study successfully created a multi-robot mapping system however the results of
adding learning are inconclusive. This was mainly because of the small search space and
the fact that because of this a genetic algorithm really can’t help. In order for learning to
make a difference, 2 much larger search space would have to be created and subsequently
far more parameters in the GA string. Some of these new parameters could be different
strategtes for obstacle avoidance, more complicated bidding function, etc. A larger more

complicated world for the robots to search would also help.

There were a number of aspects of this study that I did not pursue due to time constraints.
First and foremost, the system should be evaluated using more than two robots. Group
behavior would be better analyzed and coordination results would be far stronger.
Another detail of the study that was left out was the abtlity to test each rule set on
multiple worlds. At the moment only one world is mapped to determine the fitness and
the more maps the rule set can be tested on, the more rugged and efficient the final
evolved rule set will be. Once these aspects are included, the result of the system would

have to be compared to the non-learning version of the system.

This study also lays the foundation for a myriad of future work. One of the first things
that would be interesting to do would be to implement the system without the limitation
of the grid world. This systemn limits the robot to moving from one grid location to
another. It would be extremely interesting to remove this limitation and see how the
system fares in a more realistic, “grid-less” environment. This would tend to be the case
in a real world environment and therefore to be able to easily function in such an

environment would be a system virtue.

Another addition to this project would be to implement the system on real robots, rather
than just on simulated ones. Due to the fact that Khepera robots were used in this system,
the robot code could be directly sent to the robots, but new questions would arise in the

sense that there would be no supervisor to correct rotation and translation. In order for
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this adaptation to work, the grid limitation would first have to be removed. This would
also bring up the question of whether a supervisor is more or less advantageous than a

system where robots communicate between each other only.

The idea of having the robots communicate without the use of a supervisor also brings up
the issue of specialized robot roles. That is, the system could also evolve specialized
roles for robots so that each one doesn’t do the same task. It might be the case for
instance, that without a supervisor, one or morc robots eventually do not do any of the
mapping themselves, but instead coordinate the mapping effort. This would be
particularly interesting because it would show the cvolution of a administrative hierarchy

in the robots and would relate directly to real-life behavior.
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