
Colby College Colby College 

Digital Commons @ Colby Digital Commons @ Colby 

Senior Scholar Papers Student Research 

2004 

A Genetic Algorithms Approach to Learning Communication and A Genetic Algorithms Approach to Learning Communication and 

Coordination in Simulated Robots Coordination in Simulated Robots 

Chris Sotzing 
Colby College 

Follow this and additional works at: https://digitalcommons.colby.edu/seniorscholars 

 Part of the Computer Engineering Commons 

Colby College theses are protected by copyright. They may be viewed or downloaded from this 

site for the purposes of research and scholarship. Reproduction or distribution for commercial 

purposes is prohibited without written permission of the author. 

Recommended Citation Recommended Citation 

Sotzing, Chris, "A Genetic Algorithms Approach to Learning Communication and Coordination in 

Simulated Robots" (2004). Senior Scholar Papers. Paper 242. 

https://digitalcommons.colby.edu/seniorscholars/242 

This Senior Scholars Paper (Open Access) is brought to you for free and open access by the Student Research at 
Digital Commons @ Colby. It has been accepted for inclusion in Senior Scholar Papers by an authorized 
administrator of Digital Commons @ Colby. 

http://www.colby.edu/
http://www.colby.edu/
https://digitalcommons.colby.edu/
https://digitalcommons.colby.edu/seniorscholars
https://digitalcommons.colby.edu/student_research
https://digitalcommons.colby.edu/seniorscholars?utm_source=digitalcommons.colby.edu%2Fseniorscholars%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.colby.edu%2Fseniorscholars%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages


A Genetic Algorithms Approach to Learning Communication and 
Coordination in Simulated Robots
 

Chris Sotzing
 

Senior Thesis
 
Advisor: Clare Bates Congdon
 

Department of Computer Science
 
Colby College
 

Spring 2004 



Abstract 

This project is motivated by an existing robot system for mapping unknown 

environments and attempts to improve its effectiveness through the use of genetic 

algorithms. Using a robot simulator, the mapping system is created using simulated 

robots and a simulated environment. The robots are controlled by a supervisor agent that 

makes the high-level decisions about tasks for individual robots to complete to 

accomplish the mapping effort. This research investigates the ability of adding a genetic 

algorithm learning component to the supervisor to improve its ability to coordinate the 

robotic agents. 
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1 Introduction 

The goal of my research is to develop an efficient controller for multi-robot mapping of 

unknown environments. I will take an existing mapping algorithm for multiple robots 

and add a genetic algorithm (GA) learning component in order to improve upon the 

algorithm and improve the efficiency of the mapping process. 

1.1 Robots 

Although once only the product of people's imaginations, robots have started to become 

commonplace throughout our lives. From the highly publicized Spirit and Opportunity 

Mars rovers to the industrial machines used to assemble our automobiles, almost 

everyone has had contact with robots in some way. It is this contact and the seemingly 

limitless Jist of tasks that robots can be applied to that originally attracted me to working 

in this sector of computer science. 

In particular I am fascinated with the ability of robots to do things that we as humans are 

not able to do. For such a highly evolved organism we have a lot of limitations! For 

instance, take a disaster like a large nuclear or chemical spill. It would be very difficult 

to get scien tists to ground zero to catalog the scene because of the patenrial for serious 

bodily harm. This is the perfect scenario for a robot system to take over. There are no 

health hazards for a robot, and in the event of some tragic accident, there is no loss of life. 

In addition to this benefit, the computers on board most robots can make calculations 

hundreds of times faster than even the fastest mathematician. 

In addition to hazardous waste management, robots are also being extensively used in the 

military because of their abi lity to keep people out of dangerous combat situations. 

PackBot by iRobot is a good example of such a robot [3]. It is a multipurpose machine 

that can be used for surveillance, exploration, and possibly even weapons deployment in 
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the future. The robot is small enough to be carried on a soldier's back and is rugged 

enough to be tossed out of a building and continue to function. 

The military also uses aerial robots to keep personnel out of the line of fire. Unmanned 

Aerial Vehicles, or DAVs, such as the Predator [l] and Global Hawk (6J are being used 

in combat today and can do various sorties from high-altitude reconnaissance to low-level 

air to ground attacks. There are a number of reasons why these robots are so valuab Ie to 

the military. First, pilots are no longer put in the line of fire and are therefore safer. 

Secondly and most importantly, because there is no human on board the aircraft, it can 

perform maneuvers that were otherwise impossible. This makes these weapons far more 

efficient and far better than if they had a pilot aboard. 

Today's robots systems can not only go places people cannot go, but they can also take 

on tasks that would be otherwise too tedious or too large in scope for humans to 

undertake. One of these tasks is the detailed mapping of unknown environments. 

Although this is a task that a human could easily do, it is well suited to a machine that 

isn't exhausted by tedium or by lengthy hours of work. In some cases robots are the only 

solution for mapping unknown areas, the ocean being a prime example. The oceans are 

the last real frontier on OUf planet probably because we as humans are unable to visit their 

depths unaided, and often not at all. This is ajob for unmanned robots and it is this 

ability that fascinates me more than anything. 

1.2 Genetic Algorithms 

Machine learning and specifically genetic algorithms have interested me from the 

moment I learned about them. The ability for a system to evolve into a better one and to 

in a sense "learn" is fascinating. This is particularly exciting because it allows systems to 

learn the best strategies for any given environment or problem set. Genetic algorithms 

are an efficient way of improving a system because they don't limit themselves to 

enhancements that are clear to programmers without learning. (e.g. if there is a fire, 

robots shouldn't drive into it, etc.) That is, they can find improvements to systems that 

humans might overlook or not even think of. 
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It is this aspect of genetic algorithms that influenced me to see what kind of effect they 

would have on a coordinated mapping system. Although I can think of a good 

coordinated mapping algorithm I wanted to see if it was possible for a genetic algorithm 

to evolve an equal ifnot better system. The combination seemed to be a promising pair 

and I was intrigued by the thought of mixing two relatively new technologies together to 

fonn something new and different. 

1.3 Overview of Tbesis 

This paper will document this study from concept to implementation. I will first give the 

background of robot mapping as well as a brief overview of genetic algorithms. This wiJl 

be followed by a section describing the tools used in this study including the robots, 

simulator and genetic algorithm software. The system itself will then be described in 

terms of its c.reation and the addition of genetic algorithms. A results section will display 

my findings and then be explained in the discussion. 
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2 Background 

As robots become cheaper and more available, they are being used for more applications 

and studies. One of the most common and promising uses for this new technology is the 

mapping of unknown environments. This has been worked on us'iog both single and 

multi-robot strategies, the latter of which is a more recent development. In this chapter 

I'll give a brief background of the problem and discuss a specific multi-robot paper that 

this research built 00. 

2.1 History of Robotic Mapping 

According to Sebastian Thrun, a major contributor to the field of mobile robotics and a 

co-author of the paper this study is based on, "robotic mapping addresses the problem of 

acquiring spatial models of physical environments through mobile robots ... [and 

is] ... generally regarded as one of the most important problems in the pursuit of building 

truly autonomous robots." [8] 

Robot mapping dates back to the 1980's and early 1990's. Around then the field was 

divided into two approaches; metric and topological. The metric approach sought to 

represent the world with geometric figures such as grids and polyhedrons. These figures 

model the occupied and free spaces of the environment and robot decisions are based on 

these. The topological systems took a different approach in that they focused on the 

connectivity ofdifferent "places" or locations in the world. These places would be 

connected by "arcs" which included information on how to move from one place to 

another. [8] 

The robot mapping systems in the 1990s focused on both "world-centric" and "robot

centric" algorithms. World-centric algorithms are systems in which robot sensor 

information is less important in relation to the global map being created. The focus is 

therefore on the resulting map, not the measurements that lead up to that map. Robot

centric algorithms 00 the other hand focus on the sensor information that robots get at 
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certain locations in the world. Although simpler in theory, robot-centric algorithms lost 

favor due to a number of disadvantages including difficulty in extrapolating 

measurements from multiple locations and difficulty telling similar locations apart. [8] 

Since the 19905, robot mapping systems have been mainly probabilistic techniques 

incorporating both single and multi-robot strategies. The following sections summarize 

these systems. 

2.2 Multi-Robot Mapping Strategies 

There are a number of groups currently studying multi-robot mapping strategies around 

the world despite its relative novelty in the field. One of these studies is a joint effort by 

three universities: Carnegie Mellon University (USA), The University of Freiburg 

(Germany) and The University of Bonn (Germany). In a paper entitled Coordination/or 

Multi-Robot Exploration and Mapping [7] the authors, Simmons et aI., describe their 

system for mapping unknown environments using a central controller module and a robot 

bidding system. 

In the Simmons et al. system, there are two main assumptions: first, the world in which 

the robots are mapping is static and cannot change during the mapping process; i.e. there 

are no humans or other agents present in the system. Second, the robots begln in view of 

each other and are given their relative location. The system consists of the robots doing 

the mapping and a central controller module that coordinates the mapping effort. 

The mapping system starts by sending the relative location infonnation to the robots. 

This information is then used in conjunction with the data obtained by the onboard laser 

range sensors to determine exactly where the robot is in relation to its surroundings. This 

is accomplished by calculating three factors. Firs~ the estimate for the robot's position is 

detennined by calculating the maximum likelihood of the supplied and sensor data. A 

similar calculation is used to detennine an estimation of the map (from what the robot 

can see from its current position). Figure 2.1 shows a diagram of the maximum 

likelihood estimation calculated by the Simmons et al. paper. 
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progress, the solutions to the problem get better and better. A diagram illustrating the 

genetic algorithms process is shown in Figure 2.5. 
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Figure 2.5: Diagram showing the process ofa genetic algorithm. 

The genetic algorithm mimics the biology that inspired it in another way as well in that 

dlere are other factors that affect what rules or "genes" end up in the next generation. 

"Mutations" and "crossovers" can also have an affect. A mutation is a spot change where 

a bit of the string is randomly modified. In the case of a binary string, a 1 might be 

randomly changed to a 0, thereby changing the rule completely. A crossover is a similar 

modification where portions of two strings swap to create two new strings, as shown in 

the bottom right of Figure 2.5. Both mutations and crossovers can be controlled in the 

algorithm in terms of their frequency, and often different combinations of these can have 

significant changes on results, 
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3 Tools 

The goals of this study were twofold: first, we wanted to see if it was possible to recreate 

a simplified version of the Simmons et al. system in a simulated environment. In doing 

so, we wanted to see if it was possible to take a similar bidding system and attain similar 

results for the mapping system created by Simmons et al. We then wanted to see if the 

addition of a genetic algorithm learning component could improve the effectiveness of 

the central controller. The goal was to recreate and then improve upon the coordinated 

multi-robot mapping system created by Simmons et al. 

There are a number of tools that were used in this experiment to help discover the effect 

of genetic algorithms on a coordinated robot mapping system. Each one played an 

important and specific role in the creation of the project and their details are listed below. 

3.1 Khepera Robot 

In order to reach these goals, a number of tools were used in this study. First, a robot was 

needed to mimic the system created in the Simmons et al. paper. The Khepera robot [5] 

was chosen for a number of reasons. Onc of the first and most influential reasons for 

choosing the robot was its cost. Being a miniature robot, it is relatively inexpensive 

compared to its larger counterparts. This size also played into the choice of robot in that 

we had limited Jab space and robot size was important. Had we decided to implement the 

mapping system outside of the simulator, the size of the testing area would be directly 

related to the size of the robot and therefore a smaller robot was preferred. Because we 

had decided to work in a simulated world we wanted a robot that could be easily 

represented in a simulator. Tbe Khepera robot satisfied this requirement well in 

conjunction with the ~ebots simulator. (Section 3.2) 

The KJlepera robot includes two wheels and 8 infrared sensors. The wheels are 

independent of each other and can go forwards and backwards at a speed determined by 
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In addition to the factors mentioned above however, the most important factor that makes 

Webots the perfect system for this study is its supervisor feature. In addition to the 

robots in the world, the system allows for another agent called a supervisor to be added. 

This supervisor controls the world and can move / modify aspects of the environment that 

the robots themselves have no conlrol over. For instance, the supervisor allows 

automatic teleportation of robots, should the experiment call for such a feature. (This 

feature is used in this study and it "'ill be explained in detail later on in the paper.) This 

feature of Webots is essential for this kind of experiment because the robot needs to be 

moved back to the starting point after each fitness analysis. 

This supervisor ends up being an essential part of the system in that it acts as both the 

supervisor in the sense mentioned above, but aJso as the central controller for the 

mapping system. Without this functionality, the experiment would not have been 

possible and it is for this that Webots was chosen as the simulator. 

3.3 Genesis 

The GENEtic Search Implementation System, or Genesis, is a system for easily 

incorporating genetic algorithm so)uti'ons into progrnms. Genesis allows users to have a 

powerful genetic algorithm component in their programs and it allows for simple user 

control of this learning system. It is a very modular system that allows users to test 

multip Ie experiments with different genetic algorithtns, combinations of mutation and 

crossover rates, as well as number of other parameters. Genesis makes the inclusion of 

these learning components into programs easy by only requiring the user to supply an 

evaluation function which returns the fitness for any given point in the search space [8]. 

Genesis was designed to make genetic algorithms easy to apply to almost any system and 

because of this it was the right program for this study. In ad4ition, because both Genesis 

and the Webots/Khepera interface are written in the C programming language, 

incorporating the former into the latter was very simple. 
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4 System 

In this study there were two main objectives, as mentioned in the goals section: first, 

recreate a simplified version of the Simmons et al. system, and second add the genetic 

algorithms component to evaluate the contr,ibutions of a learning system. 

4.1 Create the system 

In reconstructing the Simmons et al. system we simplified a number of aspects so that 

once the genetic algorithm was added, it would be easier for the system to learn. 

4.1.1 Simplifications 

One of the first simplifications we made was to limit the size of the world to a known size. 

Although what was in the world was unknown, the central controller and subsequently 

the robots would know how many cells the world was made up of. This idea of a world 

made up of "cells" was taken a little further by completely limiting the world to a grid 

interface. That is, each cell in the grid could essentially be "on" or "off"; clear or 

obstacle. This way no cell could be partially open and also contain a wall. This allowed 

the world to be stored as a two-dimensional array that could be easily updated and 

accessed for bidding purposes. The array consisted of integers representing the different 

states of each cell; unexplored, obstacle, clear and frontier cell. Figures 4. I and 4.2 show 

a world in the simulator and the corresponding two-dimensional array. 

15
 





This mapping simplification was important due to the fact that in this study the robots 

were only allowed to move one cell at a time, in one of four cardinal directions. This was 

done to eliminate as much confusion as possible during the mapping process and it would 

pose a problem if there were cells that were only partly clear. Getting the robots to move 

one cell at a time was far more di.ffioub that it may seem. The Webots simulator, in an 

attempt to create the most reailistic environment for testing, includes a lot of "noise" in 

the system. For instance, it is virtually irnposs1ible to have the robot move perfectly 

straight because Webots will simulate motor speed inconsistencies that would happen in a 

real environment This in combination with the fact dlat the Khepera robots don't have 

an on board compass or GPS, made programming the robots to move one cell at a time a 

challenge. To overcome this, we attempted to override the noise and simulate a GPS 

system that would help keep the robot on the right track. 

4.1.2 Robot Movement 

In a normal Khepera program, the robot will evaluate its sUITOlmdings, move one "step" 

and then restart the process. In this scenario, a step is a predefined "click" ofthe loop 

and usually is a very small distance so as to allow the robot to make very minute changes 

to its vector. The first thing we did to get by this was to figure out how many steps it 

took to go from one cell to another (cardinal direction; no diagonals). This was 

determined. to be -64 steps and therefore the robots were programmed to run for 64 steps 

before they stopped and re-evaluated their surroundings. The 64 steps however was only 

the closest estimate of how many steps it took to get to the next cell; it was not perfect 

and if unchecked, after a number of moves, the robot was completely off kilter and no 

longer moving from one cell to the next. A system had to be devised to correct this. 

To solve this translation problem, the central controller doubled as a supervisor that 

corrected the robots location when it was done with a move. By knowing the size of the 

world, the number of cells in that world and the exact location of the robot, it can figure 

out which cell it should be in and "teleport" it to the correct location. This teleportation 

ends up only being a tiny amount, but it also allows the robot to always start its next 

move from the exact center of the cell it is in. 
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The translation issue was only half of the difficulty in getting the robots to move one cell 

at a time. Turning the robot dealt with the same limitations. In order to solve this we 

followed the same technique and discovered that it took -32 steps to make a 90° turn. 

Therefore for each tum, the robots were programmed to begin turning and not stop until 

32 steps had passed. This left us in a similar situation where the robot was close but not 

exactly facing the right direction. Once again, the central controller became a supervisor 

and corrected the robots rotation by finding which cardinal direction it was closest to and 

setting the rotation to that degree. By using this system of supervisor correction the 

robots were essentially "tricked" into moving one cell at a time. This simplification 

would be helpful with the introduction of the genetic algorithm later on in the study. 

4.13 Bidding 

Our system starts off much the same as the Simmons et al. system. Robots are placed in 

the middle of the world in view of each other. They first analyze their surroundings and 

update their maps. Now that the maps are updated, the robots can begin the bidding 

process. Each robot makes a bid for each frontier cell in its map'. The bidding process is 

similar to the Simmons et a1. system but is slightly simplified once again to prevent 

confusion once the learning component is added. 

The bidding system, like that of Simmons et aI., consists of two factors; the cost and the 

information gain of each frontier cell. The cost is virtually the same in that it is a 

calculation of the distance (Manhattan Distance) from the robot to the frontier cell. A 

difference however is that because our world is a grid-based world, the distance is not an 

estimate but the actual calculated distance. The information gain however is not quite as 

complex as that of the previous system. 

In the Simmons et al. system, the information gain was a complicated calculation that 

basically estimated how many "unknown" cells would be discovered at any given frontier 

For the first bidding cycle of the syslem, the robols only have a local map, but this gelS updated to the 
global one by the next cycle. 
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cell. Our infonnation gain calculation was far simpler because of the grid world interface 

and the two-dimensional array representation. For any frontier cell, the number of 

adjacent cells that were unexplored were counted and returned. Although simplified, this 

infonnation gain serves the same purpose and relays the same infonnation that the 

infonnation gain in the Simmons et al. study did. 

Once the cost and the infonnation gain for a given frontier cell was known, the bid was 

created and sent to the central controller. In addition to sending bids for all the frontier 

cells in their map, the robots also sent their updated map so that the central controller 

could update the global map for the next round of bidding. 

4.2 Add Genetic Algorithms 

Once the initial system was set up, the genetic algorithms component could be included. 

As mentioned above, the GA string is a set afrules. How the GA siring goes from a 

binary string of numbers to a set of rules is demonstrated in Figure 4.3. 

011010101001 

I
 
101 ~I 01ll 010 1 

l
 

Figure 4.3: A diagram shov.':ing how the GA string is convened from bits to rules 
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In this system there are 5 rules consisting of 12 bits that together determine how the 

central controller wll1 react to the robot bids. The first 6 bits encode for two variables, a 

& b, that control the weight of both the cost and the information gain of each bid. Each 

of the two variables is represented by a 3-bit section and can code for a weight of 0-7 

used to construct a bid value using the following formula: 

bid value =a * infonnation gain - b * cost 

The next 3 bits represeot how close simultaneous targets of different robots can be, in 

terms of the number of squares. The range is 1-8 squares using Manhattan distances; the 

effect of this rule is to eliminate some bids from consideration. This also prevents robots 

from in a sense "over mapping" an area. It is a waste of resources to have all the robots 

in one part of the world when there is a lot of unexplored space elsewhere. The third rule 

is represented by I bit and contains the information on whether robots should favor 

targets that are near or distant to their current location; the effect of this rule is to mitigate 

ties. The fourth rule of the string contains information about how far the robot should 

move towards the target before it must stop its current task and re-bid; I, 2 or 3 steps 

towards the target and then re-bid, or go all the way. This determines how often the 

central controller will interrupt the robots during a task and enables the system to be more 

flexible. This is a change from the Simmons et al. system and it was hoped that this kind 

of flexibility would allow for more efficiency. 

As mentioned earlier, the genetic algorithms were implemented using Genesis (4]. To 

ready the experiment, the GA string data was set in Genesis including the bit-string 

length, number of rules, number of bits per rule, etc. The system began with a random 

population of GA strings, or rule sets, being created. For string, the fitness was 

calculated by sending it to the Webots program as shown in Figure 4.4. 
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5 Results
 

To test the system, a total of LO experiments were run. For each experiment., the initial 

population of strings was 20 and the number of trials was 50. Since different mutation 

and crossover rates were not being tested, they were set to about mid range, .01 and .6 

respectively. Each robot was given a total of 50 steps before the mapping effort stopped 

and the percent mapped was returned to Genesis. For each experiment, all the new best 

fitness values were recorded a.nd as well as the generation that they were found in. The 

results of the 10 experiments are shO\\>n below. 
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On almost all of the 10 experiments, the system mapped about 60 % of the world. 

Although this number seems low, it is important to keep in mind that this is the percent of 

the world that was mapped in the number ofsteps allotted. As it turns out, when each 

robot is given 50 steps, 60 % of the world is about the most that can be mapped. In this 

respect, the study was a success in that the system successfully organizes multiple robots 

to map an unknown world. 

Despite the aforementioned achievement, the study was Dot a complete success. This 

was because although the system was able to coordinate multiple robots to map an 

unknown environment, there was little or no learning in the process. On almost every 
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experiment the best solution was found in the first generation, before any reproduction 

could take place. This means that the best solutions were being randomly created. If one 

or two solutions were randomly created this would be acceptable, but since almost all of 

the best solutions were being randomly created this means that there was no learning. 

This is most likely due to the short length of the GA string and the relatively small 

number of rules cont.a~ned in that str1ing. Tbere were too many combinations of rules that 

resulted in good solutions. Had more rules been incorporated resulting in a longer GA 

string, there might have been more learning. 

Despite the lack of ~earni,ng demonstrated in most experiments there were some 

interesting patterns in 1he strings tbat resulted as shown in table 5.1. 

Table 5.1 : The best GA strings for each 0 f the I0 experiments. 

EIprl'imrnt Brst, GA Siring ·1. ~1apped 

1 2 7 2 0 0 ~8_8842% 

2 2 7 201 ~8.8M2% 

3 3 6 3 0 2 57.0247% 

4 3 7 201 58.8842% 

5 4 7 200 48.3471% 

6 15203 58.8842% 

7 1 7 001 58.0578% 

8 2 72 0 0 58.8842% 

9 713 o 1 41.5289% 

10 14200 58.8842% 

In almost all of the experiments, the second parameter (weight of b) was far larger than 

the first parameter (weight of a). Both these parameters play important roles in the 

bidding function as shown in the fonnula given in Section 4.3. The value a detennines 

how much to count the infonnation gain in the fitness function and the value b 

determines how much 10 decrement the cost in the fitness function. These results show a 

tendency 10 pay less attention to the cost (as shown by the large b value) and 

subsequently pay more attention to the in fonnation gain. The only experiment that had a 
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GA string that didn't follow this pattern was experiment 9 which had a best percentage of 

only 4 t ,5 %. Although it is perplexing why this experiment didn't evolve a better string, 

it might have had to do with a bad initial population of solutions or that the GA wasn't 

run for a long enough number of generations. 

The target proximity values, represented by the 'th,ird parameter, varied but tended to stay 

low which allowed robot targets to'be closer to one another. This is most likely because 

the robots started out close Itogether. Because of this, if the target proximity was a value 

higher than the Manhattan distance between the two robots, the initial bids would be too 

close to each other and one of the robots' bids would not be accepted, leaving it idle. The 

fourth parameter, wh~ch told the system to favor dose or far targets if there were more 

than one good possibibty, al'ways favored close targets. This lis to be expected in that if 

there are two targets with the same infomlation gain, and one is far closer than the other, 

there is no pomt in going the extra distance Ito the far one. ThilS might have had some 

effect on the hDgh values of b in Ithat if the robots were already favoring close targets, it 

was in their best interest to discount b as much as possib1e. 

An interesting factor of these results is that there are a nwnber of different strings that 

resulted in the same fitness, or percent of the world that was mapped. These strings are 

marked in blue in Table 5.1. Although the strings are differen~ there are a number of 

important similarities. First of al\l in a1'l6 strings, the target proximity was all equal to 2, 

meaning that at any point no two target cells could be with in 2 cells of each other. Also, 

in all six cases the system favored close targets, as mentioned above. The biggest 

difference lies in the first two parameters. However, though the numbers are different, 

the relationship of a Iowa value and a high b value isn'l This meant that the cost of each 

bid was decremented a lot and the infonnation gain was the prime focus. AJthough the 

specific numbers are different, the effect on the bidding outcome is similar. 
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6 Conclusions and Future Work 

The study successfully created a multi-robot mapping system however the results of 

adding learning are inconclusive. This was mainly because of the small search space and 

the fact that because of this a genetic algorithm really can't help. In order for learning to 

make a difference, a much larger search space would have to be created and subsequently 

far more parameters in the GA string. Some of these new parameters could be different 

strategies for obstacle avoidance, more complicated bidding function, etc. A larger more 

complicated world for the robots to search would also help. 

There were a number of aspects of this study that I did not pursue due to time constraints. 

First and foremost, the system should be evaluated using more than two robots. Group 

behavior would be better analyzed and coordination results would be far stronger. 

Another detail of the study that was left out was the ability to test each rule set on 

multiple worlds. At the moment only one world is mapped to determine the fitness and 

the more maps the rule set can be tested on, the more rugged and efficient the final 

evolved rule set will be. Once these aspects are included, the result of the system would 

have to be compared to the non-learning version of the system. 

This study also lays the foundation for a myriad of future work. One of the first things 

!.hat would be interesting to do would be to implement the system without the limitation 

of the grid world. This system limits the robot to moving from one grid location to 

another. It would be extremely interesting to remove this limitation and see how the 

system fares in a more realistic, "grid-less" environment. This would tend to be the case 

in a real world environment and therefore to be able to easily function in such an 

environment would be a system virtue. 

Another addition lo this project would be to implement the system on real robots, rather 

than just on simulated ones. Due to the fact that Khepera robots were used in this system, 

the robot code could be directly sent to the robots, but new questions would arise in the 

sense that there would be no supervisor to correct rotation and translation. In order for 
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this adaptation to work, the grid limitation would first have to be removed. This would 

also bring up the question of whether a supervisor is more or less advantageous than a 

system where robots communicate between each other only. 

The idea of having the robots communicate without the use of a supervisor also brings up 

the issue of specialized robot roles. That is, the system could also evolve specialized 

roles for robots so that each one doesn't do the same task. It might be the case for 

instance, that without a supervisor, one or more robots eventually do not do any of the 

mapping themselves, but instead coordinate the mapping effort. This would be 

particularly interesting because it would show the evolution of a administrative hierarchy 

in the robots and would relate directly to real-life behavior. 
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