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Abstract

Developing successful navigation and mapping strategies is an essential part of
autonomous robot research. However, hardware limitations often make for inaccurate
systems. This project serves to investigate efficient alternatives to mapping an
environment, by first creating a mobile robot, and then applying machine learning to the
robot and controlling systems to increase the robustness of the robot system. My
mapping system consists of a semi-autonomous robot drone in communication with a
stationary Linux computer system. There are learning systems running on both the robot
and the more powerful Linux system.

The first stage of this project was devoted to designing and building an
inexpensive robot. Utilizing my prior experience from independent studies in robotics, [
designed a small mobile robot that was well suited for simple navigation and mapping
research. When the major components of the robot base were designed, I began to
implement my design. This involved physically constructing the base of the robot, as
well as researching and acquiring components such as sensors. Implementing the more
complex sensors became a time-consuming task, involving much research and assistance
from a variety of sources.

A concurrent stage of the project involved researching and experimenting with
different types of machine leamning systems. I finally settled on using neural networks as
the machine learning system to incorporate into my project. Neural nets can be thought
of as a structure of interconnected nodes, through which information filters. The type of
neural net that | chose to use is a type that requires a known set of data that serves to train
the net to produce the desired output. Neural nets are particularly well suited for use with
robotic systems as they can handle cases that lie at the extreme edges of the training set,
such as may be produced by “noisy” sensor data. Through experimenting with available
neural net code, I became familiar with the code and its function, and modified it to be
more generic and reusable for multiple applications of neural nets.

The next stage of my project involved implementing my neural net system on my
robot. My first task for the robot involved creating a system that would allow the robot to

track a light source. The next application of neural nets was a system that interpreted the



data returned by a ranging sensor, putting this distance information in terms of units
relative to the robot. These two networks proved to be very successful and useful.

The third and largest application of neural nets in my system was a system that
would determine the best way for the robot drone to map an unknown environment. I
implemented a system that would generate a number of possible paths for the robot to
pursue to gather information about the environment, and then upload that information to
the robot. The third neural net is the system that chooses which of those possible paths is
would be the useful to pursue. This net examined a representation of each path, and
output a measure of the projected usefulness and success of the path.

At this point I also created an environment in which to run my robot and test the
mapping system. This is also when I discovered a problem with the compass on my
robot. This sensor problem prevented the robot from consistently knowing which
direction it was moving in for more than a minute or two, and essentially crippled the
useful functions of the robot. This prevented testing the third neural net, as well as the
overall mapping system.

Due to these hardware issues, it is impossible to draw any overriding conclusions.
However, 1 completed most of the project with positive results. The robot I built turned
out to be very successtul, despite the issues with one sensor. I was able to apply neural
nets to two aspects of controlling the robot, and the software system for controlling the
robot is quite large and extensive. Overall the project has promising results, and was a
tremendous experience. There are also many areas that remain for future research,
including testing the remainder of my mapping system, and introducing more variables

such as multiple robots, and implementing other machine learning systems.
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CHAPTER 1
INTRODUCTION

The pnmary goals of this project are to design and build a robot, and to apply machine
learning to a robotic navigation and mapping system, with the hope of creating an efficient
mapping system for inexpensive small robots. Many small robots are created with less than perfect
hardware systems, as quality is often sacrificed for considerations of size and expense. Due to
these hardware limitations, it is often challenging to create mapping systems for these robots. My
robot is largely homemade, and therefore incorporates many of these hardware issues. Through the
application of neural networks to several aspects of the robotic mapping system, I have created
effective solutions to some of these problems.

My system is composed of a homemade semi-autonomous robust robot, controlled by a
simple on-board computer. The robot includes a navigation system composed of an electronic
compass and a shaft encoder, which serves as an odometer. The robot also uses a series of light
sensors in a light tracking system, which allows the robot to return to a known location, signified
by a light source, in the event of becoming lost. The robot also incorporates a series of touch
sensors, as well as an infrared ranging sensor for obstacle detection and mapping purposes. The
robot serves as a drone that reports back to a more powerful Linux computer. A fully autonomous
robot is one which is entirely under its own control. I consider my robot to be semi-autonomous as
it receives instructions from and reports data back to a second computer system.

The Linux machine is included due to its powerful computing and processing abilities. The
Linux computer serves as a central controller and an information processor and data repository.
The goal of the software running on the Linux computer is to collect enough data to successfully
map the environment. Furthermore, the Linux software also evaluates and improves upon the
general strategy of mapping an unknown environment.

In general, the Linux software generates a number of possible paths for the robot to pursue,
and picks what it determines to be the most useful path based on the amount of data that will be
collected. The robot then executes this path, gathering information about the environment as it
goes. This information is then reported back to the Linux machine, which examines it, incorporates
it into the map, and updates the strategies of choosing paths for the robot. This process is shown in

more detail in Figure [.1.



In an effort to maximize the robustness of this system. machine learning is applied in
several areas. The type of learning system used is a neural network. First. a neural network is

incorporated as part of the light tracking system. The network takes readings from three light
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Figure 1.1 - General process
sensors as its input, and outputs a direction for the robot to turn in order to move towards the light
source. This network runs on the robot itself. as light tracking only occurs when the robot is
operating in autonomous mode, and is not in communication with the Linux computer.
Next. the Linux software runs a network that interprets readings from the robot’s infrared
sensor. The robot uploads information from this sensor. including the location of the sensor
reading as well as the reading itself. The network then interprets this information as a distance that

is relevant to the map. This interpretation net converts sensor readings into distances relevant to

to



the robot. A non-leaming system then converts these distances into locations on the map by
resolving the distance 1o an object, heading of the robot at that point, and the location of the robot
at the time of the reading.

The third application of ncural nets is to the general strategy of how to map an environment.
This net has a series of inputs that includes a representation of the portion of the map that is
relevant to the path in question. As more data-gathering excursions are made by the robot, this net
is trained to accurately identify which paths of travel are the best to pursue, in order to map the
environment in the least amount of time.

Many challenges and unexpected problems were encountered during my pursuit of this
project, making it a tremendous leaming experience. Implementation problems with one of the
sensors [ used held up the testing stage of the neural net for designing a mapping strategy. 1
successfully implemented and completed all other aspects of the project, including building my
robot, designing and implementing the neural networks and extensive systems for controlling the
robot and utilizing the networks, and testing all systems but the s&ateéy forming network in an
actual environment.

This document will describe the design and implementation of all aspects of this project.
Chapter 2 provides a relevant background in robotics, machine learning, and navigation. Chapter 3
covers the design and implementation of the hardware that comprises my robot. Chapter 4
describes the software that I used and constructed for this system. Chapter 5 provides a discussion
of the experiments that I performed with neural nets. Chapter 6 offers some of my reflection upon

this project, and my thoughts for future work to continue this research.



CHAPTER 2
BACKGROUND

2.1 Introduction

Before I could begin to create a robot, I needed to experiment and research robotics and
current topics in the field. My iﬂﬁal-expeﬁence with robots consisted of experimenting with the
Handy Board (a compact computer designed at MIT for small robots) and custom Lego sets. This
introduction steered me towards interest in a navigation and mapping system. Research into these
areas revealed how important and fundamental the topics are.

Another aspect of my project is machine learning. Prior to designing and creating the
learning systems that my project utilizes, I needed to experiment with different types of learning
systems. This involved research and using available code to get a feel for the strengths and
weaknesses of the options available to me. My efforts in this process finally amounted to choosing

neural networks as the system that I implemented in the project.

2.2 Robots

My introduction to robotics began with two independent studies during the second half of
my junior year. These independent studies covered basic concepts and simple reactive robots such
as Braitenburg vehicles'. Braitenburg vehicles are some of the simplest robots that can be created,
and involve reactive systems with very simple control structures. These studies were performed
using special Lego kits designed for small robot experiments. The Lego system applied to small
robots works very well on a prototype level, however the robots do not really stand up to long-term
or realistic rough handling. This fact introduced a number of hardware issues by itself, but there
were many other issues encountered during these studies.

One of the more basic operations that is necessary for many of the possible systems is a
navigation system. A navigation system allows a robot to maneuver through an environment
safely. The inclusion of a mapping can allow a navigation system to operate in a more intelligent

fashion, by affording knowledge of the environment. A mapping system gives a robot the ability to

: Braitenburg, Valentino, “Vehicles, Experiments in Synthetic Psychology”



actually map the environment on its own. The process of navigation and mapping became much
more challenging than | expected, due to the various hardware problems that [ encountered with the
Lego system. Creating a system for navigation and mapping became topics of interest to me, and I
chose to pursue these topics as the main focus of my Senior Scholar project.

Navigation is a topic that is useful and required by virtually every mobile robot system,
from academic and research robots to commercial and industrial robots. Many of these units also
rely on some sort of mapping system, whether it be the process of mapping an environment, or
using a map to navigate in an environment. A source of inspiration for me in regards to robotics in
general as well as the topics of navigation and mapping is a Somerville, MA based robot company,
IS Robotics®. Much of the research done at this company is performed with the support of military
and government funding. Many of these projects require a robot which is capable of maneuvering
in unknown hostile environments, and many require the robot to serve as an autonomous
reconnaissance robot, reporting back information about the environment the robot is infiltrating.
Also, many of these robots must create some sort of map of the environment that they encounter,
both as information gatherers, and to provide a way for the expensive robot to return back to home
base and be saved for future use. These projects and others on IS Robotics’ web site were great
sources of inspiration for me in thinking of my own project.

A more public example of a navigation and mapping system in use is apparent in the much-
publicized Mars Pathfinder mission®. While this robot is far more complicated than my system, the
concepts and necessity for a robust navigation system are very important for this system. The
Sojourner robot received a substantial amount of instructions from Earth-bound controllers. The
design of the Sojourner robot is very similar to my own, as both systems are composed of a centra)
controller and a robot drone. The Sojourner robot was also equipped with vartous sensors to detect
obstacles, and ways of handling situations related to maneuvering. The importance of an intelligent
navigation system is very clear given the limited life span and extreme expense of such a robot.

There are many other useful projects where a robust navigation system is required. One of
the major areas of research focuses on constructing robot systems to function in an office
environment. Indeed, Nils Nilsson has issued a challenge® to mobile robot researchers to create an

autonomous system for use in an office environment. This challenge relies heavily on an effective
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system of mapping and navigation, and “will be met only when a robot functions in an unmodified
office building environment, on-the-job, for a full year.”® Similar challenges and competitions
incorporating issues of navigation are offered from organizations such as the American Association
for Artificial Intelligence®,

It is fairly obvious how navigation and mapping are important issues for autonomous
mobile robots. The task of creating a robust and effective system for navigation and mapping is a
deceptively difficult task. There are the obvious issues that apply to all autonomous mobile robots,
such as computation and memory restrictions on an on-board computer. However, the primary
issues for navigation seem to be caused more by hardware deficiencies than software and
computational [imitations. The largest issue is that of giving the robot the ability to keep track of
its location. Even with this capability, the robot will probably need some sort of reference to verify
its actual location. There are many vanables, many of which are out of the range of control of the
robot, which could interfere with the course of a robot. Any errors or deviations in location
tracking are cumulative, and could cause the actual location of the robot and the location that it
believes it is at to be very different. It is obvious how inefficient and inaccurate sensors could
magnify this issue. One might expect that more expensive sensors could easily solve this problem,
however “some experimenté have shown that using higher resolution sensors introduces more
varjation, not less...”’. While there are many viable options, there is not an ideal solution as of yet,
and the topic is still being researched.

There are various options for helping a robot to keep track of its position. One of these is to
allow the robot to have a map of the environment. However, this is only useful if the robot can
utilize the map to recognize locations, and thus constantly verify its position. This would require
some sort of landmark recognition, or a “feature-extraction” system, as in the InductoBeast at
Carnegie Mellon®. This type of solution will not take into account dynamic factors that might be
introduced. In the model of an office environment, these might include doors being opened or
closed, and the presence of people or other mobile robots. Another option is to introduce some sort
of intelligent system to control the robot for navigation or mapping purposes. I chose to apply

artificial intelligence to the mapping portion of this issue.

$ Knofts, Ryan, et. al, “NaviGates: A Benchmark for Indoor Navigation”
® hup://wwav.aaai.org
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2.3 Machine Learning

Similar to robotic navigation, the application of machine learning systems to robotics is a
current research topic. As hardware and sensor systems may at times perform somewhat erratically
and return noisy data, applying learning systems to deal with these issues is a logical step.
Swarthmore College’s Carbot robot, implemented by Lisa Meeden, uses a neural network system
to control its movement®. Input to the net is in the form of readings from light sensors, and output
from the net consists of instructions to control the robots motors. A further example of machine
learning applied to robotics lie§ within the same project. Meeden also utilizes Genetic Algorithms
in the controlling system. In this case Genetic Algorithms are used to alter the net by choosing the
weights that are assigned to links between nodes.

Similarly, neural networks have been applied to many other robotics systems. Meeden and
Deepak Kumar of Bryn Mawr have performed numerous experiments in this field". Among these
are networks applicd on a commercially available Khepera robot to perform such tasks as learning
to recharge a simulated battery system by moving to a specific location in an environment, and
performing simple trash collecting tasks. Another interesting example is NAVLAB; an
autonomous vehicle of larger size than other systems examined. This system leams to use camera
images to stay on a set path or road.

All of these systems incorporate machine learning into the robot controller system. Most of
these also tie in issues of navigation to the learning system. These are merely a few examples of
some of the machine learning systems that could be applied to robotics.

When I was determining which systems to implement in my project, [ examined several
different types of machine leaming concepts. Many of the problems I hoped to solve relied on
hardware which was not consistent in its performance. Therefore I needed a system which was
robust enough to handle this sensor noise, both within the training data, and within the normal
operating conditions that the robot was intended to operate in. Another consideration when | was
choosing leaming systems was to choose one for which I had initial code available. Many systems

are complex enough that designing and implementing my own system would be very time

® Meeden, Lisa, “An Incremental Approach to Developing Intelligen Neura} Network Controllers for Robots”
'® Meeden, Lisa, and Kumar, Deepak, “Trends in Evolutionary Robotics”



consuming, and not necessarily what I was most interested in. Most of the systems researched

were avatlable in code in one form or another.

2.3.1 Possible Machine Learning Systems

I entertained a handful of machine learning systems as options for use in my project. One
of the methods researched was Genetic Algorithms (GA’s)''. A Genetic Algorithm system is one
that relies on selection to weed out the less successful solutions, and encourage better solutions.
GA's cycle through a series of generations of solutions, selecting what it determines to be “good”
options at the end of each generation, by choosing from a population of possible solutions by way
of a function that identifies promising characteristics. These then become likely candidates to be
allowed to serve as “parents” for the next generation, thus passing on some of their traits to
offspring. The process further allows for mutations to be introduced into the population, and
ensures that many options will be examined before the final population is reached.

Another system I examined briefly is called AutoClass IT'>. This system is a Bayesian
classification system. This type of classification involves classifying objects based on the
statistical layout of the entire data set, and determining the probability of each object being
included in a particular class. This system offers the advantage that objects are not placed into a
classification absolutely. The statistical analysis offers the ability to examine all attributes of
objects simultaneously, and does not make arbitrary assignments to classes if more than one class is
represented.

The third system examined is called COBWEB". This is a conceptual clustering system.
Objects are classified so as to offer the best ability for inferring other information about the object
based on how it is classified. This is not a pre-trained or supervised learning system, but rather an
observational systcm. The systermn classifies objects based on criteria that emerge as the best
descriptors of the class. This system offers the clear advantage that it is unsupervised, that is, it
determines for itself the important points in a data set, and does not require a user to offer

information or opinion.

" Congdon, Clare, "A Comparison of Genetic Algorithms and Other Machine Leaming Systems on a Complex
Classification Task from Common Disease Research”

12 Cheeseman, Peter, “AutoClass: A Bayesian Classification System”

¥ Fisher, Douglas, A., “Knowledge Acquistion Via Incremental Conceptual Clustering”



The final approach examined is Neural Networks. This system takes a series of inputs in
numerical form, runs it through a structure of nodes and weighted links, and then outputs one or
more numbers. The neural nets that | examined are all supervised Jearning systems, so they require
a training set to be run in order to train the network. Neural nets are very good at generalizing,
such that a net trained on a representative subset of the expected information can then successfully
operate with the entire data set'. I ultimately decided to use Neural Networks as the machine
learning system in my project. This was largely due to initial success I had when experimenting
with a neural net package, the time put into learning this system, and the ability of neural nets to
successtully learn based on a subset of the data, and the ability to generalize through the type of
“noisy” information I expected to encounter with less than perfect sensors and hardware systems on

the robot.

2.3.2 Neural Networks

As with many machine learning approaches, there are many different variations of neural
networks. Generally, artificial neural networks are loosely based on biological neural networks.
Biological neural networks are composed of many neurons interconnected by synapses. A generic
neural net has a similar structure, consisting of a grouping of nodes interconnected by weighted
links. Each node takes some number of inputs, which could be sensor output or connections from
other nodes, and uses these input values to create its own output value, which could then be used as
the input for other nodes or the output from the network. Each node is connected to other nodes by
way of weighted links that affect the value of connected nodes.

A simple structure of a neural net can be thought of mathematically as a directed acyclic
graph. This architecture consists of several layers: an input layer, some number of hidden layers,
and an output layer. The signal flows into the input nodes, trickles through the network, and ends
up in the output [ayer. A simple connection structure has each node in one layer connected to each
node in adjacent layers. This type of system is said to be fully connected. A traditional neural
network consists of the three layers, although different nets may utilize the node and link model as
necessary, with many layers and different link structures. More radical systems abandon the formal

layer structuring and have much more extensive connections between nodes. All of the neural

" Neural Nerwork FAQ, fip://fip.sas.com/neural/FAQ.htinl



networks I use in this project follow the standard model, consisting of an input layer, a single
hidden Jayer with many nodes, and an output layer. This type of structure can be seen in Figure
2310,
One notable addition to my networks is the existence of an extra input node as advocated by
@ @ @ Input Layer Tom Mitchell'>. This node serves to ensure that
the values of the two hidden nodes are less

likely to equal zero. The value of node i is

@ @ Hidden Layer always one, and the weights from i, are set to
\ / random values along with the other weights.
Ontput Layer Values of nodes are set by using a very simple

Figure 2.3.§ equation. Clearly the input nodes are simply set
to whatever the input to the network

is, and i, is set to one. The values of the hidden nodes are determined by the values of the input

nodes and the weights between the two layers, and values of output nodes are determined by the
values of the hidden nodes and the weights between hidden nodes and output nodes. First I must
establish a general notation. The values of a node will be referred to simply as the node itself, such
that the value of node i, is simply notated as i,. The weights between any two nodes A and B,
where A,js at a higher level than B,in the net, is notated as W( A , B,). In the example offered in
Figure 2.2.1, the process is easy to follow through. The values of i, i, and i,are set by the input
values. hy issetto i, *W(iy, hy) + §*W(i, hy) + 5,*W(i,, k). hjissetto i*W(ig, )+ i*W(i, k)
+ L*W(L,h). o, then becomes hy*W(hy,0,) + 1 *W(h,,0,). The output from the net is then
available for whatever purpose it was intended for. This is a very simple and elegant process to
understand, and is also not computationally difficult.

Beyond the architecture of a neural network, there is also the issue of how the net actually
learns. The neural nets that I use learn by example. The type of process that I use is called a
supervised learning system. My networks must be given some training data on which to base its
internal structural adjustments. How these adjustments are made is the interesting part about neural
nets. In general, a net learns by adjusting the weights between nodes, by either incrementing or

decrementing their value. In this type of net, the correct outcome is known for some subset of the

¥ Mitchell, Tom. “Machine Learning”
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data that is expected to be run through the net. This is known as the training data. On a high level,
the net takes each case of the training set and runs it through the nodal structure. The output is then
examined and compared to the desired output. The structure of the net is then changed by a
correction process.

The correction process that I use is called backpropagation. This is known as a feedback
system, as the system examines the output, then backtracks up through the net, correcting the
weights of links appropriately. When the training data is run through the network, the output
values are compared to the desired output, based on the training set. The backpropagation
algorithm then works back up through each node and link, comparing the value of a node to the
value that it should have been to determine the error. This is done for the hidden and output nodes,
and then the algorithm adjusts the weights of the links connecting the nodes. After training the
network, there may be the opportunity to test the network on data that was not included in the
original training set, depending on the nature of the data being used. For instance, in a net that is
trained to recognize a function such as XOR, it is not possible to test the network with data that is
not included in the training set. However, in a network which has learned to recognize a pattern or
a more general function, the network can be tested with data that was not part of the training set to
test the generalizing capabilities and success of the net.

A strength of neural networks lies in their ability to generalize to the desired function. That
is, a network can learn a function that is present in the training data and successfully apply it to data
that has never been encountered before. The type of data and function being represented by the
network will have some effect on the networks™ ability to generalize well. In general, the one
important restriction is that the training data must actually represent what the network is supposed
to learn. If the training data includes some sets that are on the extreme edges of the average input
data, the network will not perform as well. The flip side of this is that a well-trained network will
perform very well on abnormal data after the training stage is completed, and can in fact include
some abnormal examples in the training set. This is of particular importance to robotics
applications, as sensors frequently return noisy readings. Under these conditions, a robot could
receive a strange sensor reading, and still perform the proper response to the situation.

To learn more about neural nets, [ used some examples of code. The first was a network

that learned to recognize the exclusive OR function'®. The exclusive OR function, or XOR, is a

¢ code from Patrick Ko Shu-pui,



bitwise operation that takes two binary input values. The function is satistied if one but not both of
the input values is one. So, the four possible scenarios are as follows: 0,0 > 0;0,1 > 1;[,0->
1; 1,1 > 0. The next coded example of a neural net that I examined was designed to perform face
recognition in simple images'’. This neural network package contained a great deal of code that
was specific to the problem of face recognition. Most of this was not essential to the neural net
itself, and could be removed. 1 used this code base to create another example of a net to perform
the XOR function, based on the operation of the first net used. The XOR function is an interesting
example to use. The entire data set must be used as the training set, as there is no way to generalize
this function. This is due to the fact that the XOR function is non-linear in nature. While there is
not way to test the generalization capabilities of the net using this function, it is a very good
illustration of the capabilities of a neuvral net, as it is difficult to learn a non-linear function. Once
this task was completed, | had a working neural net structure that I could apply to other problems.
Once [ had an XOR tunction working on the Linux computer, the next step was to move
this code over to the Handy Board and run it there. There were a number of changes that needed to
be made to the code in order to compile and run it through Interactive C, due to some limitations of
Interactive C. Once these changes had been made, I began to run neural networks on the Handy
Board. I quickly determined that running any sort of complex or large net on the Handy Board

would be extremely time consuming, due to the memory and CPU limitations of the Handy Board.

17 code from Tom Mitchell



CHAPTER 3
HARDWARE

3.1 Introduction

I put much time and thought into the design and construction of a sturdy robot. A reliable
base that is not prone to breakdown or erratic behavior is desirable for both practical and research
applications. Likewise the sensors and attachments to the robot base must also be consistent in
performance. While there are commercially available bases that are well designed, these units are
often too costly for a research project such as this. I chose instead to design and build a homemade
base. This yielded complete control over mounting custom sensors, in addition to a relatively low
cost. This also allowed me to experience building a robot, which was a challenging and
educational experience. Along a similar line, I used commercially available parts to build sensors
rather than purchasing more expensive prefabricated sensors. There were many issues and

problems that I encountered during this process.

3.2.1 The Robot Base

My preliminary robot research entailed using Lego pieces designed for robot
experimentation. Using Legos offers several advantages over other materials. Primarily, Legos are
reusable, whereas materials such as wood or metal are often more permanent. This makes Legos
an excellent option for prototyping robots, and even better for an initial introduction to robotics in
general. While there are some restrictions based on limitations of the Lego pieces, such as the
rectangular nature of most pieces, and the inflexibility of Lego pieces, in general they are a good
tool, as well as fun to play with.

After experimenting with the Legos however, [ determined that a Lego base would not be
appropriate for long-term use. The ability of Lego pieces to be disconnected and reattached also
means that they are more likely to break apart, and therefore are not able to provide a sturdy base.
Options for the material of the base included plywood, Plexiglas, and a combination consisting of
Legos glued to either plywood or Plexiglas. Afier my experiences with gluing Lego components to
other materials I quickly dismissed this option, as the glue would typically be knocked loose during

normal operation of the robot. Plywood was eventually chosen due to availability.
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The robot base is a 9 3/8" diameter circle of 1/4" plywood. Using 1/4" plywood instead of a
thicker grade offers the benefit of easy artachment of hardware, as there is a relatively small
thickness of material to drill through. In addition to the 1/4" plvwood being relatively lightweight,
being able to use shorter screws to attach hardware also helps to keep the overall weight of the unit
down. Centered on the centerline of the circle and located symmetrically across from each other
are two oval holes cut out of the wood on the outside edge of the circle. These holes are designed
so that the drive wheels do not stick out bevond the edge of the circular base, and so that the wheels
will stick up through them, thus decreasing the overall height of the robot (Figure 3.2.1). Keeping
the height of the robot down is important as it helps to keep the weight of the robot closer to the

ground. This unit does not have a wide wheel base. and so cannot support a top-heavy design.

Figure 3.2.1 — Robot base showing placement of wheels Figure 3.2.2 — Rabot base showing placement of

motors

The motors are mounted on the underside of the robot base. The motors are aligned
symmetrically along the centerline of the robot base. As the drive shaft leaving the gearbox is not
centered. the larger part of the motor unit is facing upward toward the robot base. This gives the
robot a higher ground clearance, and creates more space underneath the robot for sensors to be
mounted (Figure 3.2.2). The two motors are attached with a strip of brass. The strip is placed
across the motor. and then screwed upwards into the base. The holes in the brass strip needed to be
pre-drilled. as it was not possible to start a hole with just a screw due to the thickness of the brass
strip. At the inside end of the motor unit, a pair of thin brass wires is placed over the motor. These

wires are doubled against each other, and then go up through the robot base, where they are twisted



together on the top of the base (Figure 3.2.2). This was done to prevent the motors from loosening
in the brass strips. I found that when the robot would begin to move, the effort expended to
overcome the initial friction of the wheels was enough to move the motors. This was serving to
loosen the brass strips that bind the motors to the base in such a way that the motors were no longer
mounted symmetrically and straight. As the motors cannot touch anything metal, there is
insulation between the motors and the brass wires and strips. | used tubes of plumber's foam
insulation. Meant to be slipped over a hot water pipe. these tubes were easily cut to size to be
placed against the motors. This is not an ideal situation. as the foam will eventually compress
enough to loosen the motors' attachments to the base. However, occasionally adding more foam
and then retightening the brass pieces serves to fill in the gaps caused by compression.

As the two motors are positioned in the middle of the robot. and as the ground clearance of
the robot is so high, it is very important to have some method of stabilizing the base so that it does
not tip forward or back. My original design called for a castor wheel on each side of the base.
located at the edges of the base, ninety degrees off from the drive wheels. After some
experimentation, ] discovered that trving to push a castor wheel in front of the robot was too
difficult. due to the amount of force required to swivel the castor wheel. The castor would often
not swivel. which would cause the robot to either not turn when it was supposed to, or sometimes
to not even move at all. This was solved by removing the front castor wheel. leaving only the
trailing castor wheel. This solved the movement problems. and did not create any noticeable
balance problems. To be sure that the robot would not tip
over. [ mounted the Handy-Board over the rear castor wheel.
as added insurance. As the castor is not as tall as the ground
clearance of the robot. I needed to add a spacer between them
when | mounted the castor wheel. To do this I took a piece of
3/4” plywood and a 1/4” piece of scrapwood. The castor
wheel has four holes for mounting the unit. [ used two of

these. opposite each other diagenally. This is still a very

strong mounting system. and serves to save some weight by

dropping out two screws. The castor screws into the plywood.

Figure 3.2.3 — Robot base with c: . . .
‘gure 3.2.3 - Robot base with castor 4 then into the base of the robot, with the scrapwood as a

wheel mounted B
spacer. The spacer was then removed as the screws held the



castor attached very securely even without the spacer being there (Figure 3.2.3).

3.2.2 Shaft Encoder

In order for the robot to keep track of its location in the environment, it must have some
mechanism for recording how far it has moved. This requires some form of odometer. In my
previous independent studics in robotics, I attempted to create an odometer from Lego components.
This proved to be troublesome on many different levels.

My initial Lego design was a physical shaft encoder, where a touch sensor would be tripped
with every rotation of one of the drive wheels. This was difficult to maintain, prone to breaking

Light Sensor _ frequently, and required constant supervision {o
Light Source

ensure that the encoder did not exert too much
pressure on the drive wheel and prevent motion
of the robot. My next design involved a

Shielding

spinning disk attached to the drive system of the

Open Hole robot. There was a light on one side of the disk,

Connection to
Drive System

and a light sensor on the other side. The disk

containe ee t h the light sensor
Figure 3.2.4 - Light Based Lego Shaft Encoder entained hrcatioles, such bt Ligh ©

would only detect the light when the disk was positioned so that light could travel through it
(Figure 3.2.4). This was more successful, but was not very accurate, as the robot traveled a
== Signal | significant distance before the odometer would
increment. This system was also susceptible to
missing light and not incrementing the distance

traveled when it should have.

+S volts i ;
My next design involved a modified
computer mouse. This design used the existing
Signal 2 small-scale quadrature encoding system of a

mouse, and incorporated it into my robot. Most
Figure 3.2.5 - Schematic of Mouse Quadrature Shaft mice use a series of break-beam infrared sensors

Encoder Design to encode movement. I had initial difficulties in
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interacting with the existing infrared sensors. so 1 opted for a physical system. This involved
attaching conductive strips of metal to the quadrature system, and writing code that would
increment a variable whenever the mouse ball made a complete revolution. This offered the
capability to keep track of four directions of travel, but also was limited by the physical nature of
the system. which was prone to breaking. and difficult to repair due to the small scale and fragility
of the components.

Given these options and my experience with them, I opted to purchase a commercially
available shaft encoder. The unit I chose is the S| model. made by US Digital. Information about
this unit js available in Appendices A and B.

The space in between the two drive motors was intentionally made large enough to house
the shaft encoder. The encoder is mounted in the center of the robot base, so that the only
movement recorded is that of the robot moving forward or backward, and not when the robot
performs a rotating turn to the left or right (Figure 3.2.6). The shaft encoder has a sturdy brass wire
wrapped once around the shafl, close to the housing of the
encoder, secured with a nut screwed down tightly against the
encoder housing. This forms a strong vet flexible system for
holding the shaft encoder in place. The wire comes up on either
side of the shaft. roughly forming a ninety-degree angle. Each
end of the wire then goes up through the robot base, where each
1s bent over towards the closest outside edge of the base. The
wire ends are then secured with additional wires. so that they are

held down tightly. but can still be easily removed or adjusted.

The wires were adjusted until the shaft encoder was positioned

igure 3.2.6 — Robot base with ~ - - . . .
Fig firmly against the floor. The securing wires are designed to have

mounted Shaft Encoder
enough spring in them so that the shaft encoder wheel can deal
with a slightly uneven floor surface without missing revolutions of the drive wheels. Not only can
the wires move up and down, they also allow the shaft encoder assembly to move side to side. |
anticipated that this would not be utilized during normal operation, but it decreases the chances of

the assembly becoming broken if the robot is handled roughly or bumped.



3.2.3 Light Sensors

The robot must always return to a known home coordinate. This is necessary as the robot
needs to report its findings about the world to the Linux computer which is located at this home
coordinate. It is also necessary because the robot may need to reorient itself in the environment
should it become lost or get off track. Should the robot become lost. it will no longer be able to
rely on its interpretation of the coordinate svstem to find its way back to the home coordinate.
Therefore it becomes necessary to have some sort of backup svstem for locating and reaching the
home coordinate. My solution to this was 1o incorporate a light source at the home coordinate and
a series of light sensors on the robot.

The three light sensors are mounted on top of the robot. facing forward. The sensors are
mounted on a small piece of wood, which serves to raise them above other sensors mounted on the
front of the robot. The sensors are attached by gluing them to
the piece of wood on which they are mounted. The sensors are
located in a line. with the middle sensor facing directly
forward, and the two sensors to its left and right facing forty
five degrees away from the center sensor. My original robot

design called for the light sensors to be mounted on the rear of

the robot, facing behind the robot. This would allow the robot

to back into position at the home coordinate. and be facing the

Figure 3.2.7 — Robot base with light

correct direction when it came time to execute the next path.
However, the previously mentioned problems with the castor
wheel prevent this from being an option, as the robot would
SEnsors

have to drive the remaining castor wheel ahead of it if it were
to move in reverse. | decided to mount the light sensors on the front of the robot. and have the
robot perform a simple one hundred eighty-degree turn once it was in position at the home
coordinate. This allowed for accurate light tracking and maneuverability. This system was
sometimes not sufficient to realign the robot in the environment. and occasionally required some
interaction on my part to ensure that the robot was reoriented properly. Due to hardware problems

I was unable to fine-tune this system to operate successfully without user interaction.



3.2.4 Touch Scnsors

In order for the robot to know when it bumps into an obstacle, there must be some sort of
sensor that interacts with the environment. Due 1o the size of the robot, this sensor system must be
large enough to encompass the entire leading edge of the robot. vet must be composed of enough
individual sensors so that the location at which the robot hits an object can be determined with
some degree of accuracy.

The natural solution was to utilize simple touch sensors. These sensors are homemade and
customized for my robot. There are four sensors mounted on the front half of the robot. The touch
sensors consist of two brass strips nailed into the edge of the plywood base. The two strips are on
the left and right sides of the leading edge of the robot. Suspended over these are four brass wires.
These springy wires are attached in the top of the robot base by way of drilled holes and glue.
Each wire is bent so that it hangs in front of the brass strip on
the front of the robot base (Figure 3.2.8). In this way the brass
wire can touch the brass strip when it encounters an object.
This completes the circuit. and the robot then knows there is a
solid object in 1ts way.

The decision to place the light sensors on the front of
the robot reduces the number of touch sensors that are

necessary on the robot. With the light sensors located on the

front of the robot, the robot does not need to travel in reverse.
This eliminates the necessity of having touch sensors on the

' 9 R p—— .
Figure 3.2.8 — Robot base with touch rear edge of the robot.

sensors

3.2.5 Electronic Compass

While the shaft encoder allows the robot to keep track of how far it has moved, this
information is useless without the knowledge of which direction the motion of travel was in. The
robot is not reliable enough on its own to be able to move in a straight line at all times. Therefore
some other sort of check of the direction of the robot is necessary. My solution for this problem

was to purchase and integrate an electronic vector compass.



The wiring of the compass is complex. and the unit must be positioned carefully so as to

avoid bending wires and jeopardizing the integrity of soldered connections. There were also

several other issues that influenced the positioning of the compass on my robot. | wanted the

compass to be centered in the middle of the robot. so that errors due to the relative positioning of

the robot as compared to the compass would be minimized. The compass itself is mounted on a

perf-board with mounting holes at the four corners. both for ease and safety of wiring, easier

repairs to the wiring, and for the ability to mount the compass onto the robot without having to

actually attach the compass unit itself.

Another major issue that impacted the Jocation of the compass was that of magnetic

Figure 3.2.9 — Robot base with

clectronic compass

fields. Magnetic fields have a large impact on the successful
operation of the compass. so the unit needed to be mounted
away from sources of magnetic fields, such as the motors, the
Handy Board. and to some extent perhaps the unshielded wires
connecting the Handy Board to hardware components. While
the compass has a built in calibration system to compensate for
the effects of magnetic interference. this system is run when
the compass is first initiated, which occurs only once during
operation. Therefore any magnetic sources with fluctuating
strengths, such as the motors, could conceivably have an effect
on the operation of the compass. To position the compass as
far away as possible from these sources, [ mounted the
compass onto a 3" long piece of wood. and positioned it above
the robot base. As it was also necessary to have the compass

located in the center of the robot, the compass is fastened to

the wood on only one side, such that it projects forward over the approximate center of the robot.

Also. in order to ensure proper operation of the compass, the unit needs to be held completely level

at all times. To accomplish this, | made sure that the wood on which the compass is mounted is

held upright securely. This wood is not permanently fastened to the robot base as I need to access

the compass on a regular basis. and must be able to detach and reattach the unit easily.
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3.2.6 [nfrared Ranging Sensor

While the touch sensors are sufficient for navigating and successfully moving about the
unknown environment, using only these touch sensors for mapping the entire environment would
not be the most efficient method. Using only touch sensors would require the robot to attempt to
physically travel to every coordinate on the map. This would require a large amount of time. as the
test environment that I created was ten feet by ten feet in size. In previous studies [ had used
inexpensive infrared sensors for tasks such as obstacle detection. So for this project I purchased
and Integrated a slightly more expensive infrared ranging sensor. This allows the robot to detect
objects from a distance. and perform sensor sweeps that create a picture of the objects surrounding
the robot within the radius defined by the maximum range of the sensor.

The infrared sensor, like the compass. is mounted onto a
piece of wood. approximately three inches high. The sensor is
mounted facing forward. and is mounted above the top surface of
the robot base so as to eliminate interference from obstructions
such as the other sensors mounted on the front of the robot. This
sensor has both an effective maximum range of 80 ¢cm (31 1/27),
as well as an effective minimum range of 10 cm (3 9/107).
Therefore. while this sensor does not need to be located at the
center of the robot. it does need to be set back from the leading

edge of the robot base to ensure that the sensor does not report

back erroneous readings that lie outside of its effective range. So
the sensor is located approximately four inches back from the
front of robot. This eliminates the possibility of an obstacle

Figure 3.2.10 — Robot base with

2 eing betwex Sens its mini range. sensor is

Tuhuesd Ruoging Sensor being between the sensor and its minimum range. The sensor is
screwed into the mounted wood by way of two mounting holes in

the infrared sensor’s housing (see Figure 3.2.10).

3.2.7 - The Handy Board
The biggest component to be mounted onto the robot base was the on-board computer. The

computer used was a Handy Board. The Handy Board is a small three MHz computer. equipped



with thirty-two kiJobytes of RAM. More complete information and specifications of the Handy
Board can be found in Appendix B.

The Handy-Board needs to be attached to the top of the robot. positioned so that all sensors
can be plugged in without straining the connections. The board
must also be fastened securely enough so that jt would not be in
danger of falling off or being damaged. The way I chose to do this
was to have the board held in place by a series of nails hammered
into the surface of the base (Figure 3.2.11). The board lies within
these nails. and is prevented from sliding or moving around while
allowing it to be accessed and removed easily. The board is
mounted at the rear of the robot, just forward of the castor wheel.
In this way the relatively heavy board serves as a counter balance
to ensure that the robot does not tip forward. and also keeps the

board out of the way of the forward mounted sensors. Enough of

' the weight is focused on the center of the robot that there is not too

much weight placed on the castor wheel. which would prevent the
Figure 3.2.11 — Robot base with

Hisisdy Baard wheel from turning freely.

3.2.1 Constructing Sensors

All of the sensors used. including those that were purchased commercially, required some
degree of construction and wiring to be performed. Information was sometimes not immediately
available for the wiring schematics for these sensors. Every component of the robot that required
wiring to be done had some common issues.

For all wiring and connections [ used flexible stranded ribbon cable. In previous robotics
projects I had used solid copper wire. This proved to be too stiff due to its thickness and strength.
In addition, soldered connections made with the thick copper wire were more likely to break under
normal usage. especially if this included any sort of rough handling of the robot. The ribbon cable
is very flexible, and comes connected in strips. so that the desired number of wires can be torn off

as necessary. Also, the wire inside the plastic insulation consists of strands of small diameter

wires. Soldered connections made with these wires are more Jikely to retain conductivity if
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mishandled, as there are many more connections present than with a single copper wire. One
drawback to using these stranded wires is that if a connection does become loose, it is very likely
that one or more strands may touch other connections, creating contact points where no contact is
desired. This has the potential to damage the Handy Board or sensor equipment. The Handy
Board is equipped with detection routines that shut the board off in the event of overloaded circuit,
however it is still possible to damage expensive sensors. [ used two solutions to overcome this.
First, | used shrink tubing whenever possible. This entailed putting unshrunk tubing on the wires
before soldering a connection, and then shrinking this tubing after soldering. The tubing is shrunk
by a heat gun, which operates at a relatively high temperature (approximately seven hundred
degrees Fahrenheit). As this temperature is often above the safety threshold of many electronics
components, it was often not possible to use the shrink tubing due to the proximity of sensitive
electronics. The second solution was to pre-treat the stranded wire with solder. This involved
twisting the strands of wire together, heating them with a soldering iron, and allowing a small
amount of solder to be drawn into the strands. This helps to hold the wire together both during the
process of connecting the wire to an electronic component as well as after the connection is
soldered. This also makes the soldering process easier by already having solder present when the
wire and electronics component are heated 10 make the final connection.

Most sensor connections to the Handy-Board are made with male strip header, which is
composed of a series of metal posts embedded in a plastic holder. Wires are soldered to the top
part of the post, and the bottom part of the post plugs into the corresponding female strip socket on
the Handy Board. Both male posts and female sockets are spaced at a regular and standard distance
from each other. The Handy Board has nine digital input ports, and seven analog sensor input
ports. The Handy Board also contains other options for sensor input, and the Expansion Board
increases these options even more. More information about the Handy Board and Expansion Board

can be found in Appendix B.

3.3.2 — Constructing Sensors: The Expansion Board

The Expansion Board is a recent addition to the world of small robots. The Expansion
Board is designed to plug into the Handy Board, and offers several more options for sensor input
and output. While the Handy Board was pre-assembled, the Expansion Board came in the form of

a kit, with no instructions or directions for constructing it. While the Expansion Board (Figure
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3.1.1) does not contain any very complicated wiring. it does consist of some sensitive electronic

components. I constructed the Expansion Board by examining pictures of a completed Expansion

Figure 3.3.1 — Handy Board and Expansion Board
% . 8 o8 4 " ‘ A .
Board found on-line'®. While this was ultimately successful. it is not the ideal method. as I had no
real way to test every component of the Expansion Board to determine if everything was wired

correctly, so I simply tested the simple input ports that | could experiment with.

3.3.2 Constructing Scensors: Shaft Encoder

Similar to the Expansion Board. the shaft encoder (Figure 3.3.2) did not arrive with any
directions or instructions for construction. However. the
pins for the sensor were very clearly labeled. and it was a
simple task to determine the proper wiring for the unit. As
the unit had posts that fit into the strip socket that [ used. |
did not solder connecting wires directly to the sensor, but

used a piece of female strip socket as an interface to the

sensor. Whenever possible | attempted to avoid soldering

wires directly to sensors, as | did not have temperature

Figure 3.3.2 — Shaft Encoder

control of the soldering iron, and heat can have a devastating effect on electronic components. The
connection to the Handy Board is a simple one. The shaft encoder takes only two analog input
ports to connect to the Handy Board, and only one of these is actually necessary. This sensor was
very simple to wire and implement.

The only other issue remaining with this sensor was that of interacting the sensor with the

environment. As I was not going to connect the shaft encoder to the drive system in any way. |

* http:/‘el. www.media.mit.edu/groups/el/ Projects/handy-board hbexp30



needed to have some way of turning the shaft on the encoder. My solution was to attach a wheel to
the shaft. I used a Lego wheel of relatively small diameter. ] needed to make the hole in the wheel

M a bit bigger to accept the 1/4" shaft from the
3

encoder housing, and used a drill to do this. As

I had neither the 1/4” drill bit nor a drill press to
drill directly down into the wheel, I used a small
drill bit. T held the drill perpendicular to the flat

side of the wheel, and circled it around a number

of times, slowly stripping plastic out until I had

an even, larger hole to accept the shaft of the

Figure 3.3.3 - Shaft Encoder with Lego Wheel encoder.

3.3.3 Constructing Sensors: Light Sensors

The light sensors are some of the easiest sensors to wire and implement. The light sensors
are composed of a simple photoresistive cell. There are only two
connections to be made for these sensors to work. One of the wires of the
sensor goes to the signal port, and the other goes to the ground port of an

analog input on the Handy Board. Electricity comes into the resistive

cell, and the amount of light present determines how much of the
Figure 3.3.4 - Light

Sensii ool s Mibot electricity is allowed to continue through back to the Handy Board.

These sensors are fairly standardized, and there is little variation in performance between them.
Ordinarily I would shield the soldered connections with shrink tubing, however, for the light

sensors, it was easier to wrap the connections in electrical tape.
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3.3.4 Constructing Sensors: Touch Sensors

Similarly to the light sensors, the touch
sensors were also very easy to wire. The touch
sensors are a very simple design, which relies on
a circuit being either opened or closed. When
the circuit is completed. the touch sensor returns
a signal that it has been triggered. 1
implemented my touch sensors such that there

are two sources of power for four touch sensors.

as 1s shown in Figure 3.3.5.

Figure 3.3.5 - Robot Touch Sensors

3.3.5 Canstructing Sensors: Electronic Compass

The most difficult sensor to wire and implement was the vector compass. While this sensor
did come with documentation and schematics. the information given was at an advanced level that
was not of much help to me or my peers. Eventually, through several sources. enough information
was gathered so that [ could create a wiring schematic that would allow the compass to function.

There were several jssues that went along with wiring the electronic compass. The first was
my reluctance to solder wires directly to the pins on the compass itself. The heat involved would
certainly have damaged the sensitive electronic components on the compass. This called for
mounting the compass on a small piece of perf-board. [ initially used the same strip socket that
used for all other sensors for the compass to plug into. However. as the pins on the compass are
flat and the strip socket is designed to accept

square pins, this did not guarantee a constant

connection. Until I was able to locate and

:L =
ARBSRAHA

integrate sockets designed for flat pins. |

decreased the size of the square holes by

nane.
§
L g

inserting a piece of brass wire into each hole to

._\ mmsragmsns= 1 &Y

secure the connection between the pin and the
Figure 3.3.6 - Electronic compass metal connectors inside the socket. This was no

longer a problem once I rewired the system with sockets designed for flat pins.



The next major issue in the wiring was that of the connection to the Handy Board. The
compass connects to a synchronous serial port for communications, which on a Motorola system
such as the Handy Board is the SPI port. When the Expansion Board connects to the Handy Board,
it plugs into the available SPI port. While the connections continue through to the Expansion
Board, there are no sockets on the Expansion Board to utilize the SPI port, and it is a very difficult
task to connect female strip socket to the top of the Expansion Board, as this would involve
attaching the posts of the strip socket to the tops of the posts sticking up through the Expansion
Board. Due to this, connections were made directly onto the tops of the posts that are used to
connect the Expansion Board to the Handy Board. This is a difficult task, and as the space
involved is extremely limited, it is easy to have unwanted connections. I would frequently have to
check the connections using a voltmeter to check for conductivity. Stray solder, loose wires, and
loose pieces of metal would often be culprits in bad or unwanted connections.

Upon examining the schematic of the Expansion Board, [ found it to be possible to access
all pins of the SPI port through other locations on the Expansion Board. Some of these locations
were no more accessible than the original ones, but using a combination of these pins made it easter
to wire the connections, and easier to track down and repair problems.

Another issue with wiring for the compass was that a wire needed to be connected to a pin
on a chip on the Handy Board. Not wanting to solder directly to a chip, I wrapped the wire around
the pin and secured the connection that way. While this seemed to work, there were too many
ways for the connection to fail. Upon examining the schematic of the Expansion Board, another
connection was found to be possible, and the wire was soldered directly to the Handy Board this

way. More information is available in Appendix B.

3.3.6 Constructing Sensors: Infrared Ranging Sensor

The infrared ranging sensor was very easy to wire. This unit came both with instructions
and additional parts, such as wires, a pre-made socket to plug into the sensor, and a transistor
necessary for use with the Handy Board (Figure 3.3.7). The infrared sensor plugs into a digital
input port on the Handy Board, but also requires one of the digital output ports on the Expansion

Board. This particular sensor is an active sensor, in that it emits a signal in the infrared
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Figure 3.3.7 — Infrared

Ranging Sensor

wavelength, waits for a return signal to bounce off of some object.
and then determines the distance based on the time it took to receive

the reflected signal.



CHAPTER 4
SOFTWARE

4.1 Introduction

I put a tremendous amount of time and planning into the software that would make this
entire system work. There are a large number of components that work together to form the bigger
mapping and navigation system. Each component is in tum comprised of still smaller parts. I view
the software in two groups: the software on the robot, and the software running on my Linux
system. This is simply a way of breaking up the code to make it easier to examine. The two
groups of software cannot perform independently of each other, as they rely on components of each
other in order to produce any useful results. For the purposes of this discussion the software will
be broken up into subsystems, so as to simplify the task of examining the systems and the design

decisions behind them.

4.2 Robot

4.2.1 Robot Software — Communications

Periodically throughout the operation of this system, the Linux system and the Handy Board
need to communicate. Communication with these two systems requires a serial link between them.
Both computer systems check the serial line for communications. Communication over this serial
link requires a non-trivial amount of time, and also requires periodic checks to ensure that data is
actually being received on the other end of the communications link. Another issue with this
system is that communication from the Handy Board to the Linux computer takes a significantly
smaller amount of time than communications going in the other direction, probably due to the
significantly faster processor speed of the PC.

There were a couple of ways to establish this serial communications link. The first
possibility was to use the infrared transmitter and receiver located on the Handy Board in
conjunction with a similar hardware system built for a PC. The second option was to use the
already established telephone wire interface between the Handy Board and an RS232 serial port on

aPC. AsT would have had to create the Linux component of the infrared system, I opted for the
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direct physical connection. This meant that whenever the robot and Linux machine wanted to
communicate, | would have to connect and disconnect them at the proper times.

Using publicly available code for the Handy Board and a modification of code'” for a Linux system
I created a reliable system of communication that caters to the needs of this project. This system
can send integers over the serial line. My solution includes a way to acknowledge messages sent
between the two computers. This is necessary as the communication line is not infallible, and as
the line is broken and reattached periodically, which could easily lead to miscommunication.

The communications requirements of this system consist of transmitting paths of travel and
a representation of the map from the Linux machine to the Handy Board, and returning the results
of the data collection trip from the robot to the Linux machine. Due to the large amount of data
that must pass between the robot and the Linux machine, I opted not to acknowledge every
transmission of data between the two computers. This meant that more data was sent in between
acknowledgments, so more data would have to be resent if a transmission failed. When sending
communications from the Linux system to the Handy Board, I discovered that I needed to introduce
a delay between each transmission, as the Handy Board was unable to receive information at the
rate that the Linux system was sending it.

The code required for the Handy Board to transmit and receive data over the serial line is
available from the code repository on the Handy Board web site™. All of the necessary methods
are provided. In general, the serial link to a controlling compiler such as Interactive C must be
overridden, by disabling the pcode, the low-level interface on the Handy Board. Transmissions can
then be handled by transmitting a character at a time over the serial link. T used a function that
would loop through the digits in integers larger than one digit in order to speed the process and
decrease the code that needed to be written. Similarly, receiving information on the Handy Board
is handled by taking a character at a time off of the serial line. It is important to note that all items
sent through the serial line are characters, represented by ascii numbers, and not actual integers.
This fact can easily go unnoticed. All characters that are meant to be integers must be converted
from characters to integers. It is also important to note that a controlling program and compiler,
such as Interactive C, must be shut down or disconnected from the serial line before attempting

communication between the Handy Board and Linux machine. The first system to take control of

1% Thomas Heidel — theidel@advis.de
2 hnp: "el.www.media.mit.eduw/groups/el/projects/handy-board/software/contrib/drushel/serialio.c
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the serial line has control until it releases it. Should either the Handy Board or Interactive C
attempt to send signals to the wrong system, either system could easily misinterpret characters sent

over the serial line, and exhibit unexpected behavior.

4.2.2 Robot Software — Interacting With Sensors

All of the software necessary to interact with and utilize the sensors used on the robot is
available from various locations on the Handy Board web site. This includes both the assembly
code necessary to interface the hardware systems together as well as the code to activate and get
data from the sensors.

The first sensor that I implemented was the shaft encoder. The assembly code®' for the
shaft encoder is available with a couple of options, namely the speed at which the encoder operates,
and which input port the user desires the sensor to be connected to. The speeds available are fast
and slow. I experimented with both and determined that the fast speed was the most accurate and
appropriate for my robot. The versions of the assembly code for different input ports are included
as the assembly code must explicitly specify which port to access in order to increment the counter
variable. [ arbitrarily chose the encoder to be connected to input port six. The user has the
capability to set the thresholds at which the total count from the encoder will increment. The user
can also access and reset a variable representing the number of times the encoder has incremented,
and access a variable representing the current velocity of the encoder. These variables are integers,
and thus are limited in size.

The next sensor | implemented is the infrared ranging sensor. This code® provides the
necessary subroutines and interfaces to control the IR sensor. The user must first call a function to
enable the sensor before using it. Similarly, when use is completed, or if the user wishes to free up
processor cycles being used by the process controlling the IR sensor, there is also a disable function
available. Getting the current sensor reading is done by accessing a variable that contains the most
recent reading from the sensor.

The final sensor that required special software is the vector compass. The code® for this
sensor again provides all necessary subroutines and interfaces to control the compass. The

compass software must also be enabled, and can likewise be disabled. The current heading is

- 2! htp://el. www.media.mit.edw/aroups-el/projects handv-board/software/encoders.homl

= http://reality.sgi.com’barry_detroit GP2D02 1.hunl (linked from Handy Board site)
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stored in an integer variable, and can be accessed at any time. During proper operation of this
particular implementation of the compass, the reading should always be between zero and three
hundred fifty nine, signifying the current compass heading.

The code for all three of these sensors is somewhat taxing on the processor. Each software
system is constantly updating and interacting with the sensor, which chews up time and processing
capabilities that affect the other sensors as well as other computations being performed. The

ultimate effects of this are discussed in following sections.

4.2.3 Robot Software — Measuring the World

Having the robot interact with the environment created some issues and problems that
needed attention. In my representation of the coordinate system, 1 split up the world into a grid of
one inch squares. The most obvious problem was that the Linux software and Handy Board to this
point have dealt with paths of travel and locations as if the robot were one grid square in sizc, and
haven’t compensated for the fact that the robot is significantly larger than this. So the first problem
was to interface the robot to the world by putting grid squares in some sort of unit that was useful
to the robot. As the robot measures distance with the shaft encoder, it made sense to determine the
size of a grid square in terms of clicks on the odometer, and I established the number of odometer
clicks per grid square by performing experiments. These experiments included mcasuring certain
distances, running the robot over these distances, and then dividing the number of clicks of the
odometer by the number of inches that the robot had moved. I did this for various lengths, and at
varying speeds of travel. This seemed to work well and consistently, and I found that a grid square
was about equal to two hundred clicks of the shaft encoder. However, once I began running the
fully implemented software package for the robot that I had written, this was no longer true. It
seems that once [ enabled the infrared sensor and the compass, and had my own code running
constantly, enough cycles of the processor were taken away to significantly decrease the number of
encoder clicks that covered an inch in distance. I repeated the experiments with all of the software
running, and found that an inch was then covered in one hundred clicks of the encoder. It is
difficult to know if this number will now be consistent or not, given more or less computationally
intense periods on the Handy Board, and varying power levels as the robot is run more and more.

This is a significant problem, and one which is difficult to solve due to uncontrollable variables.

B hap://el. www.media.mit.edu/groups/el/proiects/handv-board 'software/contrib/tomb
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Future systems would need to compensate for this, perhaps by running each sensor in its own
thread, and ensuring the consistency of sensors such as the shaft encoder.

Due to the size of the robot, it covers just over nine grid squares in width. The software on
the robot is designed 1o incorporate this fact as it records its movements and keeps track of its

location.

4.2.4 Robot Software — Travel

Moving the robot through the environment is a major issue. The vector compass is the
essential component of this portion of the system. The robot cannot even move in a consistent
straight line by itself, due to hardware limitations of the motors and unknown qualities of the
environment, such as dirt on the floor. The addition of the compass allows the robot to know
which direction it is heading in, and correct for any errors that may occur during travel.

To help this system and to reduce the probability of error, as well as simplify the task of
coding, the robot was restricted to four directions of trave]. These directions are determined when
the robot is first activated, and is guaranteed to be oriented in the correct direction. When the robot
is still sitting in its starting position, it first checks for normal operation of the compass, and then
sets the primary direction, which is considered to be north. The other three directions are set by
incrementing the heading by ninety degrees. These numbers are then checked to ensure that they
do not exceed the upper boundary of three hundred fifty nine degrees. In this event, the number is
decremented by three hundred sixty degrees to bring it back into the proper range. Whenever the
robot needs to change direction, it 1s done in terms of moving in the direction of north, east, south,
or west.

When the robot does need to turn, there is a function that turns to this new heading. The
robot turns in the direction that brings it from the current heading to the target heading in the least

amount of time. The algorithm behind this turn is quite simple, and is as follows:
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X = Current Heading
Y = Target Heading

if | X—Y|>= 180, and X >=7Y = Twn Right

else if 'X-Y| <180, and X <Y > Turn Right
elseif X-Y >=180 and X <Y = Turn Lefi
else if \ X~Y <180, and X>=Y - Turn Left

This function will turn the robot to within five degrees accuracy. The accuracy of the compass
does not allow for an exact system that would turn the robot to within one degree of accuracy. Five
degrees seemed to be the best amount of accuracy that I could achieve.

The same algorithm is applied in function to keep the robot travelling in a straight line. The
function is constantly called when the robot is in motion, and makes small adjustments to the
power of each motor in order to keep the robot moving in a straight line. If the current heading of
the robot is more than ten degrees off from the desired heading, the robot stops all forward motion
and calls the function to turn to within five degrees of the desired heading. The combination of

these two functions keeps the robot on course with a very good degree of accuracy.

4.2.5 Robot Software — Obstacle Detection

Obstacle detection plays a large role in the navigation and mapping system. When the robot
is travelling around the environment, the forward-mounted touch sensors must constantly be
checked for contact. I created a function that checks each sensor, and returns the number of the
sensor that had contact. The four touch sensors must be distinguishable as the system needs to
know where the robot encountered an obstacle, for the purposes of mapping. Having only four
touch sensors makes this an approximation, but this is sufficient. The function to detect obstacles
is called during normal travel, when the function to correct for the proper heading is called.

Once the robot successfully reaches the proper location, it calls a function to perform the
sensor sweep. This function slowly rotates the robot around three hundred sixty degrees. At every
ten degrees it takes an IR sensor reading and stores it in an array. As the likelihood of the robot
being able to stop at every tenth degree is relatively low, I implemented this system so that it

doesn’t bother to attempt to achieve the precise heading, but rather rotates slowly and takes a
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reading once the tenth degree is achieved or passed. This way the robot only has to download the

heading that began the sensor sweep, and the thirty-six sensor readings taken.

4.2.6 Robot Software — Light Tracking Network

The light tracking network is the only neural net actually implemented on the Handy Board.
I had to make some changes to the code in order to bring my neural net code from the Linux system
to the Handy Board. The first is that Interactive C neither requires nor accepts prototyping the
functions used, as is possible on the Linux system. The next change is that the "main" function
needs to be declared as "void." Next, Interactive C does not accept "#include” statements. Some of
the functions that used calls to "math.h" also needed to be changed at this point, to make them
compatible with math functions built-in to Interactive C. The next change to be made was that all
variables and functions declared as "float" needed to be changed to "double.” These were the
primary changes that needed to be made in order to have a neural net work on the Handy Board.

The final structure of the net contains two input nodes, two hidden nodes, and one output
node. The structure was such that it took the leftmost light sensor reading as the first input, the
rightmost light sensor reading as the second input, and the output was the direction that the robot
should turn to. As the robot is only allowed to tumn to the left or right, the third and middle light
sensor on the robot is not necessary, and was left out so as to simplify the learning process. This
middle light sensor is left on the robot in the hopes of creating a more comprehensive light tracking
system that will incorporate all three sensors. The light tracking net will be discussed in more

detail in Chapter 5.

4.2.7 Robot Software — Infrared Interpretation Network

The peural network for interpreting infrared sensor readings is actually located on the Linux
system. This was due to the size of the network. The net was trained on the Linux machine, and it
was just as easy to upload sensor readings from the robot as it would be for distances, so [ decided
to have the Linux machine hold the network and perform the calculations.

However, the robot was the source of the data for the training set, and this simple data-
gathering task is worth mentioning. I would position the robot a set distance away from a large
object, usually a wall. The robot would then move slowly towards the object, and record the

distance traveled by the shaft encoder every time the infrared sensor reported a change in reading.
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When the robot ran into the obstacle, it would stop. The robot would then download the sensor
reading and corresponding distance to the object. The distance was determined by subtracting the
distance traveled by the robot at the change in infrared sensor reading. This process took a
significant amount of time due to frequent acknowledgment of transmissions. This information

was then stored on the Linux machine for the process ot training the network.

4.3 Linux Software System

4.3.1 Linux Software — Communications

The communications process and requirements were discussed in the previous section about
the robot software. The code on the Linux machine is fairly simple. There are standardized
routines for accessing a serial line on a PC, and this code merely utilizes these routines. Reading
and writing to or from a device such as a serial line is basically the same as reading or writing to or
from a file. The major difference is that the program needs to be run as root in order to access the

device.

4.3.2 Linux Software — Map Representation

The map is represented in a grid coordinate system. While the system works under the
theoretical premise that the unknown environment is very large, this premise is not practical for
several reasons. The first is that the physical space available to me was very [tmited, and
increasing the size of the environment would have increased mapping time considerably.
Additionally, I was limited by the memory and computational capabilities of the computer being
used. A large map would take a very long time to process and would inefficiently use up memory
resources. While a very large environment would be possible with a more powerful computer
system and a larger environment, in light of the restrictions placed on me, ] had to limit the possible
size of the map to a two hundred by two hundred grid. Each grid square is a component in a two
hundred by two hundred array in the Linux software.

Each grid square represents a number of components. As each grid square can either be
occupied or free of obstacles, there must be some way of keeping track of the status of a grid
square. As the robot is expected to retum some “noisy” data and data that conflicts with previously
recorded information, | deemed it necessary to assign levels of confidence to the current status of a

grid square. This is determined by the number of times the square was visited, and the status of the

36



square as it was found during that visit. The status is determined by the greater number: the
number of visits the square was found to be empty versus the number of times it was found to be
occupied. In the event of both numbers being the same, the system assumes that the square is
filled. In my system the map is assumed to be static. That is, there are no moving obstacles, and
the environment never changes. The confidence level is determined by dividing either the number
of visits that showed the square to be empty or the humber of visits that showed the square to
contain an obstacle (whichever is larger) by the total number of times the square was visited. For
instance, consider a square that has been visited ten times. Say that the square was found to be
empty two times, and found to be occupied eight times. This means that the square is considered to
contain an obstacle and has a confidence level of 0.8, as yielded by dividing eight by ten. A grid
square is not considered to be mapped until the confidence is greater than point five, and the total
number of visits to the square is at least nine. This is done to ensure that erroneous data is
discovered by comparing multiple trips to the same location. While primarily serving to guarantee
that the correct map is discovered, this also affords the machine leamning system enough
opportunity to gather a sufficient training set.

Another component of a grid square is whether or not the square is on the horizon of the
known map. For this mapping system, the horizon is defined as the outer edge of a mapped region,
and is used in the large learning system as an indication of the unknown area traversed by the robot
in a given path. The horizon is an expanding region of areas that are considered to be mapped.

The area is contained by consecutively mapped squares or an outer wall. Outside the horizon is
considered to be completely uncharted territory, regardless of how close to being mapped the area
1s. An area that is contained within the horizon is considered to be known and safe for the robot to
traverse without difficulty. If this is not true, the area has been incorrectly mapped. Assuming
normal operation of hardware system, these errors will eventually be discovered, and if the area is
traversed enough times, will be corrected on the map. The map may contain islands of mapped
areas and therefore many different areas with horizons, due to the mapping strategy and the random
nature of creating goal locations for the robot to achieve.

Each grid square is represented as a structure in an array of structures. This structure
contains variables to convey all necessary information:

1. The number of times the square was visited, either through the robot physically moving to

the space, or by a sensor sweep, and found to be empty
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2. The number of times the square was visited and found to contain an obstacle

3. The status of the square (zero being empty and one being filled)

4, The level of confidence in the current status of the square

5. Whether or not the square is on the horizon
These variables are set at various times, and are all set to a dcfault state in the initialization of the
map. All of the values are set to zero, meaning that the square has not been visited, is not on the

horizon, and is assumed to be clear of obstacles with zero confidence.

4.3.3 Linux Software — Unreachable Areas

As the environments created will contain obstacles of notable size, and as it is likely that the
theoretical outer edges of the environment will not be reached, it is necessary for the location-
generating system to recognize the existence of solid objects, so as not to enter into infinite
attempts to reach an unreachable area of the map. This is a deceptively difficult task. The outer
edges of these objects are the only parts of the obstacles that will be discovered. However,
depending on the accuracy of the sensory equipment and the generation of random locations to
visit, it is possible that the outer edges will not be exactly determined until much time and many
paths have occurred. However it would be much more efficient to realize and recognize these solid
objects early in the mapping process, so that time is not wasted attempting to reach unobtainable
areas.

The method for recognizing the existence of solid objects is rather time and
computationally intensive. The process examines every known grid square in the map. If a square
is filled, the system attempts to follow the path of filled squares parallel to the x-axis, if there is
such a path. When the end of this path is found, the process then moves along the y-axis, again
following the filled grid squares. This continues, alternating between x and y-axes. [f the starting
coordinate is reached again, then the area inside the boundaries of this outer rectangle is marked as
being occupied by an obstacle. This is a simple iterative process, which assigns values to the
number of times visited and the status of the square in order to designate these squares as filled.
This system is redundant, but the repetitive nature of the system helps to ensure that objects will be
recognized by the system.

Obstacles with large boundaries are recognized as being the outer edges of the actual

environment, and are treated as such, marking the area outside of these edges as filled. This system
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is not ideal in that it may not be likely that the robot will accurately determine the exact outer edges
of an obstacle. The concern here is that the system may be able to trace the outside of an object,
but may not end up exactly at the same coordinate that the process started at. Also, if there are
obstacles up against the walls of the environment, this system may have a difficult time identifying
these objects. Unfortunately this system was not tested with any real data, due to the problems
with the vector compass. The extent of the limitations of this process is not known. The full
system to recognize the outer walls of the environment is not yet fully implemented, due to the

problems with the compass.

4.3.4 Linux Software — Random Number Generation

At several points I needed to make a random decision or choose values randomly in order to
create possible locations to travel to. For decision making I only needed two possible values, but
for creating locations for the robot to travel to I needed to be able to create numbers that covered
the entire range of the size of the map. So I combined these requirements into a system that
generates a random number between O and 199, inclusive.

[t is difficult to create numbers that are actually random, but programming languages offer a
number of options that can serve as solutions to this problem. While systems exist to generate
random numbers, I did not have any viable options when I needed one, so I chose to implement my
own system. My solution was to get the current microsecond and store it in a variable as the
number of microseconds so far in the current second. I then take the sixth digit from the right (the
one hundred thousands place) and store this value. I then take the third digit from the right (the one
hundreds place) and store this number. [ then take the second digit from the right (the tens place)
and store this value. I then place these three digits into a new variable which gets returned to the
calling function. The digits are put into place by multiplying each by one, ten, or one hundred.

The resulting integers are then added together. The magnitude by which the three digits are placed
varies on a rotating basis, such that one will take the hundreds place, one the tens place, and one the
ones place, but they will not take the same position until five more random numbers have been
created. This prevents two random numbers called in rapid succession from being related or close
to each other, in most cases. Any of the three digits taken from the current microseconds value can

be zero, so the system actually does cover the range of zero to nine hundred ninety nine. One
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drawback to this process is that it takes more computation time than is desired. This system has

proven to be sufficient, and is certainly good enough for the requirements of this research.

4.3.5 Linux Software — Path Generation

The system that generates possible paths for the robot to take creates a number of options
for the neural net to choose from. In the interests of speeding the leaming process, and thus the
mapping process in general, the system is guaranteed to produce some desirable options. The
systemn will create seven completely random locations to travel to, regardless of whether or not
they’re already mapped or even if they are filled. The remaining three paths are guaranteed to go to
an unmapped location on the map, as long as there are unmapped locations to go to. This is done
by checking to make sure that the target location chosen is not yet considered to be mapped. This
does not mean that one or more of the random locations will not be a better choice than one of
these three “good” choices, but it means that there will always be somewhere desirable to go to, so
that when the machine learning system has been trained sufficiently, there will be a good option for
it to recognize and choose.

A variable between possible paths for the robot to take, besides simply the coordinate
traveled to, is the number of waypoints within the path. For this project I have defined a waypoint
to be a point where the robot changes its direction of travel. This allows the robot to move to
locations by avoiding known obstacles and to gather more data per trip by covering more ground. |
decided that 1t would be pointless to have a waypoint where the robot does not change direction, so
there are special cases, such as when the starting coordinate and goal coordinate are aligned along
an axis of travel, which need to be handled separately.

Note that if a path is not possible due to obstacles, the path generator will move the variable
coordinate component successively closer to the starting coordinate in the hopes of achieving a
clear path. Should this fail, the attempt to generate a path with that particular number of waypoints
will also fail. If a path for a particular number of waypoints cannot be generated, there will be one
less in the total number of paths that the neural network has to choose from.

The function to generate a path with zero waypoints is the only function that actually
changes the stored path that the robot will follow. The functions to create paths of one to five
waypoints all call the function to create a path with zero waypoints. In addition, each of these

generators also calls the function for the next smallest number of waypoints. That is, the function
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to generate a path with n waypoints makes a call to the function to create a path with zero
waypoints, and then calls the function to create a path with n — 1 waypoints. The function forn - 1
waypoints then calls the function for zero waypoints, and then the function for n — 2 waypoints, and
so on, until the function call reduces to n + 1 calls to the function for zero waypoints, thus creating
a path with n waypoints and n + 1 transitions between them.

Each function for creating a path with more than 0 waypoints makes a random decision
about the initial direction of travel. As it is pointless to have a waypoint in line with the start and
goal coordinates, this possibility is excluded by overriding the random choice of direction in the
subcalls. The end result of this is that only the direction of travel from the starting coordinate to the
first waypoint is random, and the remaining movements alternate between x and y, depending on
the initial movement. A more complete version of this system will allow for initial movement in
one of four directions. Given the current system of path generation, this is neither required nor
possible.

The functions for creating paths with certain numbers of waypoints takes a number of
parameters. These consist of the starting x coordinate, the starting y coordinate, the goal x
coordinate, the goal y coordinate, the randomization override value, the index into the list of
commands, the number of waypoints currently being attempted for that index, and the number of
the point that is currently being attempted. The starting and goal coordinates are self-explanatory.
The randomization override value will only be zero, one thousand, or negative one thousand. This
value is added to the result of a call to the function that creates a random value between 0 and 199
such that if the override is zero, the value remains random; if the override value is one thousand,
the random value is skewed to force the function to move 1n the x direction; and if the override
value is negative one thousand, the random value is skewed to force the function to move in the y
direction. This prevents the case where a path could contain waypoints that lie in line. The index
into the list of commands and the number of waypoints being attempted keep track of which values
in the array of possible moves are currently being altered. The number of the current point keeps
track of the order of the waypoints.

For example, the call to create a path with three waypoints would contain the start and goal
x and v coordinates, a value of 0 as the override value, the current index into the list of commands,
a value of three for the number of waypoints, and a value of zero to indicate that the first waypoint

is being created. After the initial direction of travel is chosen, a call for a path with zero waypoints

41



is made for the first waypoint, and a call to create a path with two waypoints is made, after
incrementing the current point being created.

Each of these functions has some built-in capability for dealing with waypoints that cannot
be reached. If an attempt to create a path between a set point and some attempted waypoint fails,
the function can alter that waypoint within a specific range in an attempt to find a more viable
coordinate. For example, if a path with two waypoints fails on the first waypoint, the path
generator will move the first waypoint closer to the original point. If the waypoint gets too close to
the starting point, the system will cease its attempts to create that path and report a failed attempt.
This system is not ideal in that it is not exhaustive; that is, it does not seek out every possible path
with three waypoints before reporting that it is not possible. However, this system is only a tool
through which to focus on the learning system, so [ deemed this path generator sufficient for
creating paths.

The first path calls for zero waypoints. This path is simply a straight line from the home
coordinate to the goal coordinate, and thus is only possible if either the x or y components of both
locations are in line. A path with zero waypoints is not always possible, regardless of the density

of the map and the placement of obstacles. The function first checks to ensure that either the x or y

N coordinates are in line, and then checks to make sure that the
'l 0 ] path is clear between the two locations. The system checks to
see if the path is clear between two points by projecting the
: Key. path of the robot between the points. It does this by centering
[ Starting Location a line on the two points, and then examining the area on either
|| M Goal Location side of that line, in a width equal to the radius of the robot.
0 | | @Waypoint This ensures that any space the robot will occupy is clear of

obstacles. Figure 4.3.1 shows the two possible paths from

Figure 4.3.1 — Possible paths with zero . .
. potint A to point B.
waypoints

Like straight-line paths, paths with one waypoint are also not difficult to create. These

paths are formed by two straight lines. This path can move first along the x-axis, that is, remain on
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o—m | Bl the homey coordinate while travelling out to the x component of
| the goal, or move first along the y coordinate. Thus if the starting
0 | O—— ® coordinate represents the bottom left corner of a rectangle and the
goal coordinate represents the upper right coordinate, the waypoint
Figure 4.3.2 — Possible paths with  wi]| be either of the remaining comers of the rectangle, depending
ome. Wyl on if the path moves first along the x or y-axis. This rectangle
concept is the premise behind all paths that are created. Figure 4.3.2 shows the possible paths from
point A to point B with one waypoint.

Paths with two waypoints introduce some more difficult issues to be dealt with. In the

m @—m where the starting coordinate and goal coordinate are in

| | line, whether it be along the x or y-axis of travel, the function
|._. | should still be able to create a path with two waypoints. To
0 | 1—e accomplish this, the function will make the first waypoint out

from the starting coordinate some random distance away, along
Figure 43.3 — Possible paths with two
the opposite axis of travel from the direction which is in line

waypoints
between start and goal coordinates. If the start and goal
coordinates are not in line, the function makes the first waypoint in line with either the x or y
component of the starting coordinate (where the initial direction is determined randomly), and out a
value of half the distance between the respective coordinates of the start and goal. The second
waypoint is created by moving along the other axis of travel so that the second waypoint is in line
with the goal. Figure 4.3.3 shows the possible paths from point A to point B with two waypoints.

Creating paths with three waypoints entails difficulties similar to those encountered in

o—nu| N creating paths with two waypoints. If the start and goal

| | coordinates are in line, the first waypoint is again chosen
-0 | @ somewhat arbitrarily by a random value. Otherwise, the three
él | O— L waypoints are determined by a distance of half the distance

between the respective coordinates of the start and goal. This
Figure 4.3.4 — Possible paths with ] . ) ] ) L
means that, in the ideal situation, the second waypoint will lie at

three waypoints
the center of the rectangle bounded by the starting and goal
coordinates, as shown in figure 4.3.4.

Paths with four waypoints are slightly easier create. In the event of the start and goal
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N @M coordinates being in line, the function forces the first
| waypoint to still be in line with both the start and goal

PRIPA | —@ coordinates. The function then calls the process to create a
| | path with three wayvpoints, which will handle the situation of
L 0—@ the coordinates being in line as previously described.
Figure 4.3.5 — Possible paths with four  OQthcrwise, the first waypoint is determined by randomly
waypoints

moving in the x or y direction a distance of one third the
distance between the respective components of the start and goal coordinates. The rest of the path
is determined by the creation of a path with three waypoints. The paths of four waypoints are

shown in figure 4.3.5.

Paths with five waypoints are handled in the same way as paths with four waypoints. The

(= | B only difference lies in the fact that the path is created by a
_g | o—0 path with zero waypoints, and then a path with four
® | ° g waypoints. These possible paths are shown in figure 4.3.6.
' |. | | This solution for generating paths with various
O 0@

numbers of waypoints is not the ideal one. There are
Figure 4.3.6 — Possible paths with five  arguments to be made for changing many aspects of the
waypoints system. A more robust system would allow for travelling in
more directions, and for maneuvering around obstacles. However, as this project merely calls for

creating a variety of options for the strategy system to choose from, this system is sufficient.

4.3.6 Linux Software — Primary Learning System

Ornginally, I intended that the primary machine learning system on the Linux system was to
be a different type of machine learning. I ultimately decided that the large scale learning system on
the main Linux computer would be a neural network, in order to conserve the overhead of time
involved in implementing a new machine learning system, and to be consistent with the rest of the
project. The decision to remain with neural networks created a need to recast the representation of
the system so that [ could feed it into a neural net in a meaningful and useful way.

The neural network is given a number of different paths on which to send the robot for data
collection. A representation of these paths is put into the net, and the system compares the output

of each path to see which path will theoretically produce the most useful information. When a path



1s chosen, it is uploaded to the Handy Board. The robot then proceeds along this path and retumns
data from its trip. This data is used to update the current picture of the environment. The actual
usefulness of the path is then determined based on the information gathered. This value of the
actual usefulness, along with a measure of the success of the trip, becomes part of the training set
for the net, and the net adjusts itself accordingly. Clearly there will be a correlation between a
failed trip and low level of usefulness. However, the difference lies in paths that have high

expectations for success, yet different values of usefulness.

Input 1: Input 2: Tnput 3: Tnput 4: | There are several aspects of a path that
Total Travel I)islan;e from Density ol Number of .
__Distance Horizas [ 2 Arex Weypants need to be input to the network. These are
~— \ o broken down into four major categories that
- ™~ 4 / -

compose the input nodes. The first aspect is the
HIDDEN LAYER

/ \ distance from the starting coordinate to the goal
//'

coordinate. This is measured by the distance

Output 1: l Oulr 12: ‘ & ¥ -
Usefilnass of | e that the robot will need to travel. While it can be

Trip L Trip - ) \
argued that a straight-line distance would also

Figure 4.3.7 - Input and Output of the Primary Neural i .
€ P L v be appropriate, this measurement does not

Network
necessarily convey the information that would
have an effect on the success or failure of the trip. It would also undermine the usefulness of the
path, as a larger travel distance entails covering more ground, and presents more opportunity to
gather useful information. Determining this distance is a very simple task, and involves simply
adding up the distances between the waypoints, including the start and goal coordinates.

The second input is a similar measure of distance. This measurement is from the horizon to
the goal coordinate. For the sake of simplicity, if the robot crosses the horizon more than once, the
distance is measured from the first crossing. The system assigns an initial horizon to the area
immediately surrounding the starting coordinate, as the robot occupies this space to begin with.
This also guarantees that the robot will cross the horizon. This input represents the amount of
uncharted territory that the robot is travelling in. The distance covered in this measurement is the
area that will be most useful to the system, as it has not been mapped yet, and may have a large
impact on the accuracy of the mapping excursion. This is also a relatively simple value to

compute, and involves adding the distances between the first place the robot crosses the horizon,

any remaining waypoints, and the goal coordinate.
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The third input to the net is 2 measure of the density of known objects in the area covered
by the proposed path. The density of the area clearly can have a direct impact on the number of
waypoints necessary to maneuver around obstacles, and can also have an effect on the estimate of
success of the path in general. This information is included as a path through an area with high
density may be less likely to be successful, due to the larger number of chances for the robot to run
into an object where it doesn’t expect one. This could serve to lower the predicted success of the
path. The density for a particular path is determined by examining the ratio of filled grid squares to
the total number of grid squares over the relevant area. The relevant area in this situation is defined
as the rectangle formed by making the starting coordinate the lower left hand corner, and the goal
coordinate the upper right hand corner. To make sure that this actually includes some information,
a buffer of ten grid squares is added all around that rectangle. This process includes much error
checking to ensure that the system does not try to step outside the boundaries of the map. The
function iterates through each square contained in the rectangle, and increments a counter,
depending on whether or not the square is occupied or empty. Finally the function returns the ratio
determined by dividing the number of filled squares by the total number of squares in the rectangle.

The fourth input to the net is the number of waypoints contained in the path. This is
important as it, in combination with the density of the area to be covered, may have an impact on
the success of the path. A path with a large number of waypoints may introduce more opportunity
for the robot get off track and become lost. The number of waypoints also has a direct correlation
to the amount of data that can be collected, and hence affects the usefulness of executing that path.

While the actual training of this network could not take place due to the problems with the
vector compass, [ had a plan for this part of the project that should receive some attention.
Whenever the robot returned to the Linux machine, it would report back information that the Linux
system would then interpret. Part of the interpretation was to add the results of the trip to the
training data for the network, by adding the input and the actual result to the training set. The
usefulness of the trip is determined by taking a scaled value of the number of grid squares visited,
and dividing this number by the number of seconds that the robot was on the excursion. The time
spent on the trip is measured from the time the last element of the path to be traveled is uploaded to
the Handy Board, until the Handy Board re-establishes a communications link with the Linux
machine. This means that I need to be quick and consistent in attaching and detaching the serial

link between the two computers. The number of squares visited is determined by counting all of
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the squares that the robot passed through on the path, including those covered by the width of the
robot. The number of squares covered by the sensor sweep at the end of the path would be
determined by counting every square within range of the sensor. Those squares that were already
counted by the robot physically moving through them are subtracted from the count created by the
sensor sweep. Every square encountered, through either travel or the infrared sensor, would have a
value assigned to it, based on how useful it was to map that square. If the square was not
considered to be mapped yet it would be more useful than rechecking a square that had already
been mapped, and would receive a higher rating of usefulness. This is computed simply by
assigning a larger number to the usefulness rating for mapping an unmapped square as opposed to
re-mapping a square that had already been mapped. Squares that lay behind an obstacle in a sensor
sweep were subtracted from the total number of squares visited. This would avoid the situation of
rewarding a trip for squares that were not actually mapped, and also avoid reducing the usefulness
of the trip simply because there were squares that could not be seen.

The success of the trip is fairly simple to determine. If the robot achieves its goal location
and performs the sensor sweep, the trip is assigned the highest success value. If the robot
encounters an obstacle and cannot achieve its goal location, the success is determined by dividing
the number of grid squares that were actually visited by the number that would have been examined
had the target location been achieved, including those covered in the sensor sweep.

If the trip was not one hundred percent successful, that trip will still be added to the training
set. A second trip will also be added to the training set as well. This fictitious data set is the trip
that would have performed had the target location where the robot encountered an obstacle. The
input for this trip is determined using the same processes applied to actual trips, and the outcome is
assumed to have successfully examined all possible grid squares, including all those that could be
covered in a sensor sweep, and have taken the same amount of time that the failed tnp actually

took.

4.3.7 Linux Software — Light Tracking Network
The final version uses two tnput nodes, two hidden nodes, and one output node, as

previously described. Output for this node is binary, where a 0 signifies turning left, and a 1
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signifies turning right. While the network is used on the Handy Board, the network was pretrained,
tn that the starting weights were hardcoded from the results of a network run on the Linux machine.

This net will be discussed in greater detail in Chapter 5.

4.3.8 Linux Software — Infrared Data Interpretation Network

The neural network to interpret infrared sensor readings is similar in structure to the light
tracking network, except that this net runs exclusively on the Linux system, and uses more hidden
nodes. The net contains one input node, twelve hidden nodes, and one output node. The input
value is the reading from the infrared sensor. The output value is the distance in terms of clicks of
the shaft encoder. The structure, results, and experiments associated with this net will be discussed

in greater detail in Chapter S.
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Chapter §

Experimentation

5.1 Introduction

There were three neural networks that I designed and implemented in this project. All of
the nets utilized the same underlying code, and varied only by the number of nodes used in each
layer, and the number of iterations of pre-training. The first net served as a light-tracking system
for the robot, the second was a system for interpreting the data returned by the infrared ranging
sensor, and the third net was a system for creating a strategy for cfficiently mapping an unknown
environment.

Each of these networks had its own design and implementation issues that | had to confront.
There were some overlapping issucs and problems that applied to the nets, however the solutions
were generally unique to the specific situation. Successfully completing these nets involved some

degree of trial and error and experimentation.

5.2 Light Tracking Neural Net

5.2.1 Structure of the Net

The light tracking neural net is the only network that was run on the Handy Board. It is also
run on the Linux machine however, in a pre-training process. The structure of the network is the
same on both computers, despite the necessary implementation differences. On both machines the
final version of the net consists of two input nodes, being the left and right light sensors, two
hidden nodes, and a single output node, consisting of the direction to turn.

Earlier versions of the net, however, utilized all three available light sensors. These
versions of the net had three input nodes, one for each light sensor with the left sensor being the
first node and moving to the right. The network at this point had more hidden nodes as well to
allow the three input values to be fairly represented. The number of hidden nodes ranged from six
to twelve. T also experimented with the number of output nodes. 1 toyed with the idea of having
the network output a binary number signifyving the direction to turn, followed by a second output,
which was the number of degrees to turn in that direction. However as the compass was not yet

implemented I could not pursue this approach. Another structure of output nodes that I attempted

49



was a system that would have two outputs, which would represent power sent to the two motors.
As it turned out, the structure of the output nodes may have been viable options for a two-input

‘ system, but the three-input node system turned out to be too complex to train. This was due to
reasons of the training set involved, and will be examined in more detail.

In the final version of the net, with two input nodes, two hidden nodes, and one output
node, 1 also varied the number of hidden nodes during the experimentation process. I started this
version of the net with more than two hidden nodes, and gradually worked my way down through a
process of experimenting with the structure of the net. Clearly a smaller network is preferable to a
larger one due to memory and computation limitations. I was fairly surprised to observe that it was
actually easier and faster to train a network that contained two hidden nodes as opposed to some

larger number.

5.2.2 Pre-Training

Running the net on the Handy Board took a large amount of time. I initially started training
the net with a very idealistic view of the system. I planned to run the robot through many actual
scenarios, providing a supervised learning system by telling the robot which way to turn by
utilizing the start and stop buttons on the Handy Board. I did this for both the three and two-input
node versions of the net. With the three-input version, the robot had three options for travel: left,
straight, or right. With the two-input version I limited the options to either turning left or right.
While not perfect, the robot does not turn very far in a single move, such that the robots inability to
go straight is not problematic.

The process to this point had been to place the robot in the environment, let it take readings,
tell it the direction to turn, Jet it loop through the training [oop a few times to speed up the training
process, and then have it run the input through the net and turn in the direction prompted by the
output, regardless of its correctness. The robot would then move a short distance in that direction.
[ rapidly got tired of waiting for the robot to tum and move, so I cut this part out of the system, and
chose instead to place the robot in realistic positions to create the training set.

My hope was that this process would quickly begin to reveal that network was learning
which direction to turn in, and that [ would observe a shift towards the robot making better
decisions about which direction to turn in. It quickly became clear that this process would take

much too long to be useful. As a time-saving innovation, [ opted to pre-train the network. I did
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this first on the Handy Board, but it became clear that the Linux system could perform this pre-
training much faster than the Handy Board was capable of. When I did pre-training on the Linux
machine, I needed to get the final weights from the Linux system to the Handy Board. As the
communications software was not yet fully implemented at this point, I did this by hand, entering
the weights on the Handy Board as the initial values of the weights for the Handy Board’s net. 1
could also test the net on the Linux machine, and did so by running through a series of input
scenarios. Once I had a working network, I experimented with the system by starting the training
process over and reducing the pre-training that was done. Finally I had a net that was pre-trained
as little I found to be necessary, and I put this less extensively trained net on the Handy Board.
From there I continued training on the robot, and was then able to see improvement in the decisions

that the network made.

5.2.3 Training Set

The original training set consisted of actual data gathered by the robot. As previously
discussed, this proved to be much too time consuming. The next training set that I used was
generated by the robot, by placing the robot in realistic positions and recording the sensor readings
at those points. I quickly realized that this wasn’t really necessary, and began to generate my own
data points by extrapolating from the real points. This was necessary as it became clear that I was
going to need more than a handful of data points in my training set.

Eventually it seemed as though this was not going to be sufficient. At this point I
introduced a series of completely fictitious data points to the training set. This began when I was
still using three input nodes instead of the final version consisting of just two. [ abandoned my
actual data points, and replaced them by looping through a series of artificial data points. I did this
by looping through possible input values with various increments between the input values. For
instance, for a series of points with an increment of ten, the data points that would have the robot
turn left would look like 20, 10, 0; 30, 20,10; and so on. Points having the robot go straight would
look like 0, 10, 0; 10, 20 10; and so on. This was done for values within the range of zero to two
hundred fifty five (the output range of a light sensor), and for increments of ten, twenty, and thirty.
This worked very well for the cases where the robot had to turn either left or right. However, in

more than half the scenarios where the robot needed to move straight ahead, the net would tell it to
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turn one way or the other. This was troublesome and time consuming to attempt to track down.
Therefore I moved to the two input node version of the net.

[ also used my same incremental pre-training model on the two input version of the net as
well. This obviously involved only two inputs, and so it was much easier to produce the training
set and train the net. Upon examining actual data from the light sensors however, it appeared that
the angle between the left and rightmost sensors was such that there would not usually be a
difference as small as ten between the two readings. Therefore I changed my training set to run in

increments of twenty, thirty, and forty. This version seems to work very well.

5.2.4 Training the Net

Training the actual network took a surprisingly small amount of time. In the versions of the
network and training set that ] came up with prior to the final version, I increased the number of
iterations through the training set in an attempt to gain better results. However as | approached the
final version of the net, I was surprised to observe that the number of iterations needed to train the
network was much lower than I thought would be necessary. With each iteration I would run
through the entire training set once. This is a sizable amount of information. Eventually though, I
determined that it was only necessary to run through one hundred iterations of the training sect to
train the network. Any larger number of iterations would only serve to reinforce the function that
the net had already learned. To put this in perspective, one hundred iterations through this training
set would take less than a minute, which is substantially less than other networks that I was running

in this project.

5.3 Infrared Sensor Interpretation Neural Net

5.3.1 Structure of the Net

This network served the purpose of interpreting infrared ranging sensor data by putting if in
terms of a distance in units of clicks of the shaft encoder. With this in mind, it is clear that there
would be one input node; the value of the IR sensor, and one output node; the distance in terms
useful to the map. With the experiments of the previous net showing that fewer hidden nodes can
often be preferable, I used this approach to begin with. However, due perhaps to the complexity of
the function, lower numbers of hidden nodes did not seem to generate better results for this

network. This function is made complex by the extremely noisy nature of the data. The training
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set is not a one-to-one relationship at various points, although the network is attempting to create a
one-to-one function during the training process.

Once I determined that fewer nodes would not provide the solution that I needed, I focused
my experiments on slightly larger numbers of hidden nodes. My experiments ranged from ten to
twenty hidden nodes. The final version uses twelve hidden nodes. My procedure consisted of
training the net, and then running a test set through the network. I then compared the outcome of
this test set with a sample of the training set to see how close the two were. I did this by graphing
both together, and comparing the lines graphed. The actual training set would contain some noisy
data, and some conflicting data. My measure of success of the net was based on how close together
the two graphs were. Where the training data became noisy and contained conflicting data, I
looked for the trained net to follow the average of this data.

It is difficult to draw conclusions based solely on varying the number of hidden nodes. The
number of iterations at which it was necessary to train the network was such that it took anywhere
from three to eight hours to train the network and have data that was worth graphing. Due to this, I
was unable to vary one parameter at a time with every attempt at running the net. Fewer numbers

of hidden nodes meant a shorter training time, however often not significantly so.

5.3.2 Pre-Training

Like the light tracking net, this network is pre-trained. However, unlike the light tracking
net, this net is entirely pre-trained. In the light-tracking system I allowed for the robot to continue
the training process during real-world situations, whereas this net is pre-trained with the training set
and then thought to be entirely static. [ assume that both the IR sensor and the shaft encoder will
present constant findings over time. However, it is necessary to note that this process must utilize
the original findings of the size of a grid square. This system was run with no other sensors
enabled or running, and little other code running to take up processor time and memory space. As
previously discussed, the rate of clicks returned from the shaft encoder is about halved when the
complete system is running on the robot. But the data collection for this network was performed
without the complete system running, as it hadn’t been implemented yet. Therefore it is important

to remember to use the original size of a grid square when using the output from this net.
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5.3.3 Training Set

The training set for this net was gathered by using the robot. 1 gathered quite a bit of
information for the data set, and most of it was fairly consistent. The IR sensor has an effective
maximum range, which is fairly apparent when examining a graph of sensor readings versus
distance as measured by the shaft encoder (Figure 5.3.1). As can be seen in the
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graph, the data is fairly consistent through an IR sensor reading of about seventy. That is the point
at which the sensor data becomes consistently noisy and difficult to interpret. As [ attempted to
train the network, I found that the results were being shifted up the graph, and I attributed this to
the fact that the data set was not representative of the area that I cared about the most. This was
due to the way that I gathered data.

[ gathered the data by having the robot record the distance traveled every time the IR sensor
changed its reading. However, the sensor changed quite a bit more often in the noisy range, so
there were many more data points in this range. The sensor gathered more data in the noisy range
as 1t would often recetve many different readings when located at the same distance away from an
obstacle. As the robot moved into the range where the sensor started to return values of seventy
and above, the correspondence between IR sensor and distance from the obstacle became one-to-

one, so there was only one distance for each IR reading, and hence fewer data points to consider.
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Once 1 realized this fact I started to count the important range of data, where the IR sensor read
seventy or greater, many more times, in order to have both ranges count equally as much, and to
make the training set more representative.

As time progressed though, I shifted more and more importance onto the range between
seventy and greater. Finally I cut the other values out of the training set all together. There were
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5.3.2 — Output of IR Net vs. Training Data
still many issues with the net, but I was finally able to obtain a net that produces meaningful
information over the useful range of IR sensor readings, as shown in Figure 5.2.2. I determined the

useful range of the sensor to be for readings greater than seventy.

5.3.4 Training the Net
Training the net was a long and time-consuming task. With every change that I made to the
network, I would need to train the net and check the output. As training the net took anywhere

from three to eight hours, and better results were pot necessarily guaranteed, this was often a
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discouraging task. The number of iterations ranged from five thousand to one hundred twenty
thousand. I was attempting to get as precise an output as possible from this network, so adding a
few thousand more iterations in order to get a single unit closer to the target data was worth it. It
quickly became apparent that as | trained the net more, I had to make more drastic changes in order
see any effect. For instance, the difference in results between running the training set for one

hundred twenty thousand iterations and ninety thousand iterations is very small.

5.4 Mapping Strategy Neural Net

It is impossible to discuss this network in great detail, as the problems with the electronic
compass limited the results that I was able to gather. The structure of the network has been
discussed in the previous chapter. I never settled on the internal structure of the hidden nodes for
this net, as I could not experiment without a real data set. My plan for this network was to run the
training set through the net after each data gathering excursion performed by the robot. I
anticipated that [ would run the training set through several iterations each time it was run. I also
planned on creating a system to cycle through the training set, as the initial trips would be over-
represented in this training scheme.

I contemplated the idea of training this net on data generated by me, but chose not to pursue
this approach. I could easily generate locations to travel to, and create a series of data to train the
net with, however this would not take into account the hardware discrepancies that I anticipated
would be present on the robot. As this is a major point of interest for me, I chose not to continue

along this path.
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CHAPTER 6

Conclusions

6.1 Introduction

A research project such as this one can never really be considered to be completed. There is
always some aspect left unfinished, or some component which can be expanded or enhanced in
some way. My project is no different than any other in these regards. Despite these areas that can
and should be expanded or completed, there are many other areas which are complete, and a great
number of lessons which have been learned.

There are two main aspects to reflect upon, the first of which is what I learned. When [
examine these issues, [ focus on passing on the lessons that I learned to someone else, rather than
listing the numerous topics that I learned about. The second aspect is that of what is comp‘leted,
and what needs to be done. I gear this section primarily towards future researchers, so that others
will know of the issues I am facing, and in the hopes that others will apply their perspectives and

ideas to further my research.

6.2 Lessons Learned
6.2.1 Robot and Hardware

Given that [ had never had any tnstruction in creating hardware systems such as the ones
incorporated into my robot, this was an area involving a great deal of research as well as trial and
error. The first strategy that [ would rccommend involves giving a lot of thought to the design of a
robot. There were many issues and problems that arose with my robot that I could not have
foreseen, and it seems as though this is a general truth. So to minimize this issue, I strongly
recommend putting much time and energy into thinking about the demands that will be placed on a
robot, and implementing and testing prototypes whenever possible. This will decrease the number
of long-term issues that will need to be confronted, and make for a more robust robot system in
general. ,

Along a similar line, giving a lot of thought and planning to choosing which sensors to use
is another time-saving recommendation. I put a good deal of thought into the requirements of my

robot, and this helped in my choosing sensors to purchase and implement. Along the same line, I
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whole-heartedly advise getting hardware components which are best suited for one’s skills and
abilities. In my case, [ would have been much better off buying sensors that required less
construction. While my goals for this project involved learning about wiring and soldering
electronic components, not all of my sensors were quite within reasonable grasp of my skills. I
sank a great deal of time into the implementation of my sensors, and in the case of the electronic
compass, was not entirely successful. While I am grateful for the opportunity to learn what 1 did
about soldering and wiring, too much time was spent on these hardware issues, and ultimately more
software and results would have been achieved had I been able to climinate these hardware issues
in a more timely fashion.

Similarly, I have found that it is much more beneficial to seek out help from those more
experienced rather than attempting to force through some issues. While it is not helpful to anyone
to simply ask for help from the start without making some sort of effort, there are many resources
which can serve as educational tools. Without any background in electrical engineering, it was
essentially impossible for me to interpret the electrical schematics of sensors without external help.
Sources such as the internet and the Handy Board Mailing List** were invaluable to me in

determining how to wire the sensors that I used.

6.2.2 Neural Networks

As with my background in hardware topics, I was relatively new to machine learning and
neural networks at the beginning of this project. When I refer to the size and complexity of a
network, I am referring to the number of hidden nodes in a net. In my experiments, the number of
input and output nodes was fairly obvious for a problem, and thus was not really variable. Thus the
only variable left for the structure of the network is the number of hidden nodes.

The biggest ptece of advice that [ can offer to someone experimenting with neural nets is to
start small and build up from there. This is true for several reasons. First of all, it simply makes
sense to start with a simple design and build complexity into it. By starting with a simpler design
and adding to it I was generally able to watch the results get better as experimentation progressed.
Then it was a fairly simple task to add complexity to the net until the performance of the network
was satisfactory, and the performance increases yielded by further complexity were negligible.

Another benefit of starting small is that a smaller net takes less time to train and examine the

* Handy Board Mailing List
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results. As the complexity of a net increases, the training process takes longer, and the process of
gathering and comparing results thus takes more time.

The truly difficult part of experimenting with neural nets is recording the differences
between the nets and the results of each. As I varied such components as the number of hidden
nodes and the number of iterations of the training process, each different net would yield a set of
results. First of all, it is difficult to determine whether a change in the number of hidden nodes in a
net or the number of training iterations made a change in the results of a net. Therefore it is
important to vary only one of these variables at a time, which can be rather time consuming
depending on the size of the net and number of iterations for the training set. I have found that
keeping a good set of notes for each change made to the net is critical to being able to track the

effects of changes. This is especially true if a test of the network takes several hours or days.

6.2.3 General Lessons

Generally, my most significant piece of advice is to write about sections and systems as
they are completed. I did this to some degree, and increased my policy of this as I progressed in
the project. When doing background research it is easy to make write summaries and small topic
papers along the way, and these mini papers can be plugged into a final paper with relative ease.
This is somewhat more difficult when creating a hardware system, but design notes and brainstorm
sessions are a good way to track the design and thought process behind designing a robot. Keeping
track of changes when writing code may be the most difficult task of all. It is very difficult to write
about code before it is completed, given the large number of problems that arise and changes that
end up being made to code before it is complete. | have found that the best solution here is to keep
a good system for commenting code. Well commented code can not only be understood by others
who might wish to read the code, but it also serves as an outline for a paper. Comments in code
spell out the process and thought behind the code in a concise and straightforward way, and in my

case could often be put directly into a paper.

6.3 Future Work

Many aspects of the project that I originally set out to do have been successfully completed.
Some others are currently held up by hardware implementation issues. The completed topics are

certainly not trivial, and are all discussed earlier in this paper. Among these are such large-scale
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topics as building the robot, building the software system to control the robot and tie together the
learning systems, and implementing three nets and testing two of them. As mentioned at various
points in this discussion, there were several topics that were not completed, or were not completed
to my satisfaction.

Clearly the problems with the electronic compass prevented some of the project from being
completed. Also, some components, such as the path generation system, were implemented only to
the point of being sufficient for the current state of the system. Topics such as these could be
furthered to be more complete and operate with greater efficiency. These current issues and my
hopes for the project help to create an impressive list of topics for future work.

My first hope for future work is to complete the system as it lies now. This primarily
entails working on the electronic compass more, and making it work correctly. The proper
operation of the compass would yield the ability to test the rest of the code that [ wrote, including
the pnmary learning system.

Another topic for future research entails introducing multiple robots into the environment.
This includes a surprising number of problems and opportunities for more research. The first issue
is that there is now one or more robot in the environment at a time, essentially creating multiple
moving obstacles in what was previously a static environment. There are several possible solutions
to this problem, all of which include further subsystems. There is the possibility of having more
than one starting coordinate, with each corresponding to a different robot. This would involve
having sections of the map assigned to a specific robot, but that implies some sort of fore-
knowledge of the map. Another solution would be a scheduling system, involving a central
computer assigning tasks to robots in such a way as to avoid collisions. This is a somewhat dull
and imperfect solution however. A more interesting system might involve inter-robot
communications, both for avoiding collisions, and perhaps also for a more intelligent and accurate
system of mapping based on comparing two perspectives of the same area of a map.

Another interesting possibility with the introduction of multiple robots is giving individual
robots different skills and different tasks. This could require some sort of cooperation between
robots, as one robot may be assigned the task of mapping an area that it is not capable of mapping
for some reason (perhaps due to different terrain in the area, or restrictions placed on a robot). This
would be a particularly interesting system to apply machine leaming to, to examine any emergent

behavior in the relationships between the individual robots.
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Another hardware issue to be addressed is the serial communications link between the
Handy Board and the Linux computer system. It is truly irritating to have to connect and
disconnect the telephone cord between the two computer systems. It would be posstble to
implement either an infrared communications system, or a wireless radio system between the two
computers. This could also be a longer range connection, such that the robot may not always have
to return to the starting coordinate to report back its findings and receive new instructions.

Beyond the hardware issues, there are several software implementation topics which could
be enhanced or increased. The obvious issue is that of the path-generation system, on which I cut
some corners in order to have a working system. The system could be marginally enhanced by
incorporating more options for paths into this system. Additionally, I would like to increase the
presence of machine learning systems in the whole system. There are many more areas where
machine learning system could be incorporated, and it would be interesting to examine the effects
of putting more of the system into the control of a learning system. Finally, [ believe it would be
quite interesting to create a successful system with one type of machine learning, and then re-
implement the components of this system with different machine learning systems. Comparing the
results could perhaps lead to combining the systems to create a very efficient mapping and

navigation system based on multiple machine learning approaches.
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Appendix A: Robot Base
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Parts List: (Corresponds to 3 Figures Following this Chart)
Part: Num. | Supplier Information Reference
Num
Drive Wheels -3 1/4” | 2 DuBro 1
1 11/16" Castor Wheel | 1 Hardware store 2
Lego Wheel — 1 1 Lego Robotics Technology Kit 3
11/16" x 1/2”
Geared Motors 2 Herbach & Rademan Co., 16 Roland Ave., Mt. Laurel, NJ 08054, 4
(856)802-0422
Part #: TMOOMTR1166, "25rpm 12vdc” ($§27.95 ea.)
93/8"x93/8" x 1/4" 1 Scrap wood 5
lvwood
2" x 3" x 172" plywood | | Scrap wood 6
334" x 1" x 1/4” pine | 1 Scrap wood 7
21/4"x4122"x 172 1 Scrap wood 8
pine
212°x21/2"x 127 1 Scrap wood 9
pine
17 aluminum screws 2 Hardware store 10
1/2" brass screws 8 Hardware store 11
Perf Board 1 Electronics store 12
Precision Navigation 1 | Jameco, 1355 Shoreway Road, Belmont, CA 94001, 1-800-831- 13
Electronic Compass 4242
part #: 126703, “sensor, magnetic compass elect.” (§49.95 ea.)
Sharp GP2D02 i Acroname, Inc., PO Box 1894, Nederland, CO 80466, 14
Infrared Ranger (303)258-3161
part #: R19-[R02 (521.00 ea.)
Optical Shaft Encoder I US Digital, 1110 NE 34" Circle, Vancouver, WA 98682, 15
(360)260-2468
part #: S1-250-NT, “sofipot optical shaft encoder, sleeve bushing
version, with no added torque, 250 CPR™, (849.95 ea.)
Light Sensors 3 Electronics store 16
Strips Brass Foil 2 Hardware store 17
Strips Brass 2 Hardware store 18
Brass Wire 6 Hardware store 19
Handy Board 1 Gleason Research, PO Box 1247, Arlington, MA 02474 20
Part #: GRHB - Mac (8299.00 ea)
1" Brass Nails 10 Hardware store 21
Pipe Insulation NA Hardware store 22
Wire NA Electronics store NA
Shrink Tubing NA Electronics store NA
Male/Female Strip NA Electronics store NA
Connectors
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Appendix B: Hardware and Sensors
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Electronic Compass
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Electronic Compass: Wiring to Expansion Board
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