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Abstract 

Developing successful na\ igation and mapping strategies is an essential part of 

autonomous robot research. However, hardware limitations often make for inaccurate 

systems. This project serves to investigate efficient alternatives to mapping an 

environment, by ftrst creating a mobile robot, and then applying machine learning to the 

robot and controlling systems to increase the robustness of the robot system. My 

mapping system consists of a semi-autonomous robot drone in communication with a 

stationary Linux computer system. There are learning systems running on both the robot 

and the more powerful Linux system. 

The first stage of this project was devoted to designing and building an 

inexpensive robot. Utilizing my prior experience from independent studies in robotics, I 

designed a small mobile robot that was well suited for simple navigation and mapping 

research. \\Then the major components of the ro bot base were designed, I began to 

implement my design. This involved physically constructing the base of the robot, as 

well as researching and acquiring components such as sensors. Implementing the more 

complex sensors became a time-consuming task, involving much research and assistance 

from a variety of sources. 

A concurrent stage of the project involved researching and experimenting with 

different types of machine learning systems. I finally settled on using neural networks as 

the machine learning system to incorporate into my project. Neural nets can be thought 

of as a structure of interconnected nodes, through which infonnation fi lters. The type of 

neural net that I chose to use is a type that requires a known set of data that serves to train 

the net to produce the desired output. Neural nets are particularly well suited for use with 

robotic systems as they can handle cases that lie at the extreme edges of the training set, 

such as may be produced by "noisy" sensor data. Through experimenting with available 

neural net code, I became familiar with the code and its function, and modified it to be 

more generic and reusable for multiple applications of neural neLS. 

The next stage of my project involved implementing my neural net system on my 

robot. My ftrst task for the robot involved creating a system that would allow the robot to 

track a light source. The next application of neural nets was a system that interpreted the 



data returned by a ranging sensor, putting this distance information in terms of units 

relative to the robot. These two networks proved to be very successful and useful. 

The third and largest application of neural nets in my system was a system that 

would determine the best way for the robot drone to map an unknown environment. I 

implemented a system that would generate a number of possible paths for the robot to 

pursue to gather infonuation about the environment:, and then upload that infonnation to 

the robot. The third neural net is the system that chooses which of those possible paths is 

would be the useful to pursue. This net examined a representation of each path, and 

output a measure of the projected usefulness and success of the path. 

At tills point I also created an environment in which to run my robot and test the 

mapping system. This is also when I discovered a problem with the compass on my 

robot. This sensor problem prevented the robot from C{)nsistently knowing which 

direction it was moving in for more than a minute or two, and essentially crippled the 

useful flUlctions of the robot. This prevented testing the third neural net, as well as the 

overall mapping system. 

Due to these hardware issues, it is impossible to draw any overriding conclusions. 

However, I completed most of the project with positive results. The robot I built turned 

out to be very successful. despite the issues with one sensor. I was able to apply neural 

nets to two aspects of controlling the robot, and the software system for controlling the 

robot is quite large and extensive. Overall the project has promising results, and was a 

tremendous experience. There are also many areas that remain for future research, 

including testing the remainder of my mapping system, and introducing more variables 

such as multiple robots, and implementing other machine learning systems. 
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CHAPTER 1 

INTRODUCTION 

The primary goals of this project are to design and build a robot, and to apply machine 

learning to a robotic navigation and mapping system, with the hope of creating an efficient 

mapping system for inexpensive small robots. Many small robots are created with less than perfect 

hardware systems, as quality is often sacrificed for considerations of size and expense. Due to 

these hardware limitations, it is often challenging to create mapping systems for these robots. My 

robot is largely homemade, and therefore incorporates many of these hardware issues. Through the 

application of neural networks to several aspects of the robotic mapping system) I have created 

effective solutions to some of these problems. 

My system is composed of a homemade semi-autonomous robust robot, controlled by a 

simple on-board computer. The robot includes a navigation system composed of an electronic 

compass and a shaft encoder, which serves as an odometer. The robot also uses a series of light 

sensors in a light tracking system, which allows the robot to return to a known location, signified 

by a light source, in the event of becoming lost. The robot also incorporates a series of touch 

sensors, as well as an infrared ranging sensor for obstacle detection and mapping purposes. The 

robot serves as a drone that reports back to a more powerful Linux computer. A fully autonomous 

robot is one which is entirely under its own control. I consider my robot to be semi-autonomous as 

it receives instructions from and reports data back to a second computer system. 

The Linux machine is included due to its powerful computing and processing abilities. The 

Linux computer serves as a central controller and an information processor and data repository. 

The goal of the software running on the Linux computer is to collect enough data to successfully 

map the environment. Furthermore, the Linux software also evaluates and improves upon the 

general strategy of mapping an unknown envi.ronment. 

In general, the Linux software generates a number of possible paths for the robot to pursue, 

and picks what it determines to be the most useful path based on the amount of data that will be 

collected. The robot then executes this path, gathering information about the environment as it 

goes. This information is then reported back to the Linux machine, which examines it) incorporales 

it into the map, and updates the strategies of choosing paths for the robot. This process is shown in 

more detail in Figure 1.1. 
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the robot. A non-learning system then converts these distances into locations on the map by 

resolving the distance to an object, heading of the robot at that point, and the location of the robot 

at the time of the reading. 

The third application o.f ncura,1 nets is to the general strategy of how to map an environment. 

This net bas a series of inp-uts that includes a representation of the portion of the map that is 

relevant to t.he path in question. As more d.ata-gartbering excursions are made by the robot, this net 

is trained to accurately idemify which paths of traveL are the best to pursue, in order to map the 

environment in the least amount of time. 

Many challenges and unexpected problems were encountered during my pursuit of this 

project, making it a tremendous learning experience. Implementation problems with one of the 

sensors I used held up the testing stage of the neural net for designing a mapping strategy. i 

successfully implemented and completed all other aspects of the project, including building my 

robot, designing and implementing the neural netv.'orks and extensive systems for controning the 

robot and utilizing the networks, and testing all systems but the strategy forming network in an 

actual environment. 

This document will describe the design and implementation of all aspects of this project. 

Chapter 2 provides a relevant background in robotics, machine learning, and navigation. Chapter 3 

covers the design and implementation of the hardware that comprises my robot. Chapter 4 

describes the software that I used and constructed for this system. Chapter 5 provides a discussion 

of the experiments that I performed with neural nets. Chapter 6 offers some of my reflection upon 

this project, and my thoughts for future work to continue this research. 

3 



CHAPTER 2
 

BACKGROUND 

2.1 Introduction 

Before I could begin to create a robot, I needed to experiment and research robotics and 

current topics in the weld. My initial-experience with rohots consisted of experimenting with the 

Handy Board (a compact computer designed at lV1lT for smail rohots) and custom Lego sets. This 

introduction steered me towards interest in a naviga,tion and mapping sys'tem. Research into these 

areas revealed how important and fundamental the topics are. 

Another aspect of my project is machine learning. Prior to designing and creating the 

learning systems that my proj ect utilizes, I needed to experiment with different types of learning 

systems. This involved research and using available code to get a feeil for tbe strengths and 

weaknesses of the options available to me. My efforts in this process finally amounted to choosing 

neural ne-tworks as the system that I impl'emen1ed in the project. 

2.2 Robots 

My introduction to robotics began with two independent studies during the second half of 

my junior year. These independent studies covered basic concepts and simple reactive robots such 

as Braitenburg vehicles l
. Braitenburg vehicles are some of the simplest robots that can be created, 

and involve reactive systems with very simple control structures. These studies were performed 

using special Lego kits designed for small robot experiments. The Lego system applied to small 

robots works very well on a prototype level, however the robots do not really stand up to long-tenn 

or realistic rough handling. This fact introduced a number of hardware issues by itself, but there 

were many other issues encountered during these studies. 

One of the more basic operations that is necessary for many of the possible systems is a 

navigation system. A navigation system allows a robot to maneuver through an environment 

safely. The inclusion of a mapping can allow a navigation system to operate in a more intelligent 

fashion, by affording knowledge of the environment. A mapping system gives a robot the ability to 

I Braitenburg, Valentino, "Vehicles, Experiments in Synthetic Psychology" 
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actually map the environment on its own. The process of navigation and mapping became much 

more challenging than 1 expected, due to the 'llariOUS hardware problems that I encountered with the 

Lego system. Creating a system for navigation and mapping became topics of interest to me, and I 

chose to pursue these topics as the main focus of my Senior Sclholar proj ecl. 

Nav.igation is a topic that is useful and required by virtuaHy every mobile robot system, 

from academic and research robots to commercia!! and industrial robots. Many of these un.its also 

rely on some sort of mapping system, whether it be the process of mapping an environment, or 

using a map to navigate iDl an environment. A source of inspiration for me in regards to robotics in 

general as well as the topics of navigation and mapping is a Somerville, MA based rohot company, 

IS Robotics2
. Much of the research done at this company is performed with the support of military 

and government funding. Many of these projects require a robot which is capable of maneuvering 

in unknown hostile environments, and many require the robot to serve as an autonomous 

reconnaissance robot, reporting back information about the environment the robot is infiltrating. 

Also, many of these robots must create some sort of map of the environment that they encounter, 

both as information gatherers, and to provide a way for the expensive robot to return back to home 

base and be saved for future use. These projects and others on IS Robotics' web site were great 

sources of inspiration for me in thinking of my own project. 

A more public example of a navigation and mapping system in use is apparent in the much­

publicized Mars Pathfinder mission3
• While this robot is far more complicated than my system, the 

concepts and necessity for a robust navigation system are very important for this system. The 

Sojourner robot received a substantial amount of instructions from Earth-bound controllers. The 

design of the Sojourner robot is very similar to my own, as both systems are composed of a central 

controller and a robot drone. The Sojourner robot was also equipped with various sensors to detect 

obstacles, and ways of handling situations related to maneuvering. The importance of an intelligent 

navigation system is very clear given the limited life span and extreme expense of such a robot. 

There are many other useful projects where a robust navigation system is required. One of 

the maj or areas of research focuses on constructing robot systems to function in an office 

environment. Indeed, Nils Nilsson has issued a challenge4 to mobile robot researchers to create an 

autonomous system for use in an office environment. This challenge relies heavily on an effective 

2 http://www.isr.com 
J http://mpfwww.jp I. nasa.govldefauIlhtm1 
.j Knorts, Ryan, el. aL, "NaviGates: A Benchmark for Indoor Navigation 
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system of mapping and navigation, and "will be met only when a robot functions in an unmodified 

office building environment, on-the-job, for a full year."s Similar challenges and competitions 

incorporating issues of navigation are offered! from organizations such as the American Association 

for Artificial Intelligence6
. 

It is fairly obvious how na\ igation and mapping are important issues for autonomous 

mobile robots. The task of creating a robust and effective system for navigation and mapping is a 

deceptively difficult task. There are tile obvious issues that apply to all autonomous mobile robots, 

such as computation and memory restrictions on an on-board computer. However, the primary 

issues for navigation seem to be caused more by hardware deficiencies than software and 

computational limitations. The largest issue jls that of giving the mbot the ability to keep track of 

its location. Even with this capability, the robot will probably need some sort of reference to verify 

its actual location. There are many variabies, many of which are out of the range of control of the 

robot, which could interfere with the course of a robot. Any errors or deviations in location 

tracking are cumulative, and could cause the actual location of the robot and the location that it 

believes it is at to be very different. It is obvious how inefficient and inaccurate sensors could 

magnify this issue. One might expect that mo!'e expensive sensors could easiLy so~ve this problem, 

however "some experiments have sno,wn that usimg higher resolution sensors introduces more 

variation, not less ... ,,7. While there are many viable options, there is not an ideal solu~ion as of yet, 

and the topic is still being researched. 

There are various options for helping '3 robot to keep track of its position. One of these is to 

allow the robot to have a map of the environment. However, this is only useful if the robot can 

utilize the map to recognize locations, and thus constantly verify its position. This would require 

some sort of landmark recognition, or a "feature-extraction" system, as in the InductoBeast at 

Carnegie Mellons. This type of solution will not take into account dynamic factors that might be 

introduced. In the model of an office environment, these might include doors being opened or 

closed, and the presence of people or other mobile robots. Another option is to introduce some sort 

of intelligent system to control the robot for navigation or mapping purposes. I chose to apply 

artificial inteUigence to the mapping portion of this issue. 

S Knons, Ryan, et. ai, "NaviGates: A Benchmark for Indoor Navigation"
 
6 http://www.aaai.org
 
7 Meeden, Lisa, and Kumar, Deepak "Trends in Evolutionary Robotics"
 
g Kunz, Clayton, "Aulomatic Mapping of Dynamic Office Environments"
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2.3 Machine Learning 

Similar to robotic navigation, the appljcation of machine learning systems to robotics is a 

current research topic. As hardware and sen_sor systems may at times perform somewhat erratically 

and return noisy data, applying learning systems to deal with these issues is a logical step. 

Swarthmore College's Carbot robot, imptelll1ented by Lisa Mecden, uses a neural network system 

to control its "novement9
. I.m.put to the net is in the form of readings from light sensors, and output 

from the net cons~sts of instructions to controll the robots motors. A further example of machine 

learning applied to robotics ties within the same project. Meeden also utilizes, Genetic Algorithms 

in the controlling system. In this case Genetic Algorithms are used to a1ter the net by choosing the 

weights that are assigned to links between nodes. 

Similarly, neural networks have been applied to many other robotics systems. Meeden and 

Deepak Kumar of Bryn Mawr have performed numerous experiments in this fidd lO. Among these 

are net\vorks applied on a commercially available Khepera robot to perform such tasks as learning 

to recharge a simulated battery system by moving to a specific location in an environment, and 

performing simple trash collecting tasks. Another interesting example is NAVLAB; an 

autonomous vehicle of larger size than other systems examined. This system leams to use camera 

images to stay on a set path or road. 

All of these systems incorporate machine learning into the robot controller system. Most of 

these also tie in issues of navigation to the leaming system. These are merely a few examples of 

some of the machine learning systems that could be applied to robotics. 

When I was determining which systems to implement in my project, I examined several 

different types of machine learning concepts. Many of the problems I hoped to solve relied on 

hardware which was not consistent in its perfonnance. Therefore I needed a system which was 

robust enough to handle this sensor noise, both within the traiillng data, and within the normal 

operating conditions that the robot was intended to operate in. Another consideration when I was 

choosing learning systems was to choose one for which I had initial code available. Many systems 

are complex enough that designing and implementing my own system would be very time 

9 Meeden, Lis.a, "An Incremental Approach (0 Developing lntelligen Neural Network Controllers for Robots" 
10 Meeden, Lisa., and Kumar, Deepak. "Trends in Evolutionary Robotics" 
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consuming, and not necessarily what [ was most interested in. Most of the systems researched 

were available in code in one form or another. 

2.3.1 Possible Machine Learning Systems 

r entertained a h.andfu~ of machine learning systems as options for use in my project. One 

of the methods researched was Genetic Algorithms (GA's) 11. A Genetic Algorithm system is one 

iliat relies on selection to weed out the less successful solutions, and encourage better solutions. 

GA's cycle ~hrough a serres of generations of solutions, setecti,ng what it detennines to be "good" 

options at the end of each generation, by choosing from a population of possible so~utions by way 

of a function that identifies promising characteristics. These then become likely candidates to be 

allowed to serve as "parents" for the next generation, thus passing on some of their traits to 

offspring. The process further allows for mutations to be introduced into the population, and 

ensures that many options will be examined before the fmal population is reached. 

Another system I examined briefly is called AutoClass n12
. This system is a Bayesian 

classification system. This type of classification involves classifying objects based on the 

statistical layout of the entire data set, and detennining the probability of each object being 

included in a particular class. This system offers the advantage that objects are not placed into a 

classification absolutely. The statistical analysis offers the ability to examine all attributes of 

objects simultaneously, and does not make arbitrary assignments to classes if more than one class is 

represented. 

The third system examined is called COBWEB 13. This is a conceptual clustering system. 

Objects are classified so as to offer the best ability for inferring other information about the object 

based on how it is classified. This is not a pre-trained or supervised learning system, but rather an 

observational system. The system classifies objects based on criteria that emerge as the best 

descriptors of the class. This system offers the clear advantage that it is unsupervised, that is, it 

determines for itself the important points in a data set, and does not require a user to offer 

infonnation or opinion. 

II Congdon, Clare, "A Comparison ofGenetic Algorithms and Other Machine Learning Systems on a Complex
 
Classification Task from Common Disease Research"
 
12 Cheeseman, Peter, "AuwClass: A Bayesian Classification System"
 
13 Fisher. Douglas, A., "Knowledge Acquistion Via lncremcntal Conceptual Clustering"
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The final approach examined is Neural Networks. This system takes a series of inputs in 

numerical form, runs ~t through a structure of nodes and weighted links, and then outputs one or 

more numbers. The neural nets mat I exami.ned are aU supervised learning systems, so they require 

a trainmg set to IDe run in order to train the network. Neural nets are very good at generalizing, 

such that a net trained on a representative subset of the expected information can then successfully 

operate with the entire data set l4
. I ultimately decided Ito use Neural Networks as the machine 

learning system in Illly project. This was largely due to initial success I had when experimenting 

with a neural net package, the time put into learning this system; and the ability of neural nets to 

successfully learn based on a subset of the data, and the ability to generalize through the type of 

"noisy" information I expected to encounter with less Ourn perfect sensors and hardware systems on 

the robot. 

2.3.2 Neural Networks 

As w~th many machine learning approaches, there are many different variations of neural 

networks. Generally, artificial neural networks are loosely based on biological neural networks. 

Biological neural networks are composed of many neurons interconnected by synapses. A generic 

neural net has a similar structure, consisting of a grouping of nodes intercormected by weighted 

links. Each node takes some number of inputs, which could! be sensor output or connections from 

other nodes, and uses these input values to create its own output value, which could then be used as 

the input for other nodes or the output from the network. Each node is connected to other nodes by 

way of weighted links that affect the value of connected nodes. 

A simple structure of a neural net can be thought of mathematically as a directed acyclic 

graph. This architecture consists of severallayeFS: am input layer, some number of hidden layers, 

and an output layer. The signal flows into the input nodes, trickles through the network, and ends 

up in the output layer. A simple connection structure has each node in one layer cOTUlected to each 

node in adjacent layers. This type of system is said to be fully connected. A traditional neural 

network consists of the three layers, although different nets may utilize the node and link modet as 

necessary, with many layers and different link structures. More radical systems abandon the formal 

layer structuring and have much more extensive connections between nodes. All of the neural 

lJ Neural Network FAQ. ftp://ftp.sas.com/neuraIlFAD.hlml 
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networks I use in this project follow the standard model, consisting ofan input layer, a single 

hidden layer with many nodes, and an output layer. This type of structure can be seen in Figure 

2.3.1. 

One notable addition 'to my networks ,is the existence of an extra input node as advocated by 

G <Ii) 0 Input Layer Tom Mitchell J5 
• This node serves to ensure that 

~"" / the values of the two hidden nodes are less 

""'l~ likely to equal zero. The value of node ~ is 

@ l@ H~dden Layer always one, and the weights from ~ are set to 

\/
@ Output Layer 

random values along with the other weights. 

Values of nodes are set by us'~ng a very simple 

Figure 2.3.1 equation. Clearly the input nodes are simply set 

to whatever the input to the network 

is, and io is set to one. The values of the hidden nodes are detelliIl..ined by the values of the input 

nodes and the weights between the two layers, and values of output nodes are determined by the 

values of the hidden nodes and the weights between hidden nodes and output nodes. First I must 

establish a general notation. The values of a node will be referred to simply as the node itself, such 

that the value of node io is simply notated as io. The weights between any two nodes Aand Bp 

where A, is at a higher level than B) in the net, is notated as W( AI' BJ Tn the example offered in 

figure 2.2.1, the process is easy to follow through. The values of I~, ~,and 4are set by the input 

values. 110 is set to io*W(io,/lo)+ ~*W(~,ho)+ 4*W(4,ho)· ~issetto io*WCio,h1)+ ~*W(~,hl) 

+ 4*w( 4, ~). 00 then becomes 110 *W( 110,00 ) + I~ *w( ~,oo)' The output from the net is then 

available for whatever purpose it was intended for. This is a very simple and elegant process to 

understand, and is also not computationally difficult. 

Beyond the architecture of a neural network, there is also the issue of how the net actually 

learns. The neural nets that I use learn by example. The type of process that I use is called a 

supervised learning system. My networks must be given some training data on which to base its 

internal structural adjustments. How these adjustments are made is the interesting part about neural 

nets. In general, a net learns by adjusting the weights between nodes, by either incrementing or 

decrementing their value. In this type of net, the correct outcome is known for some subset of the 

IS Mitchell, Tom. "Machine Learning" 

10 



data that is expected to be run through the net. This is known as the training data. On a high level, 

the net takes each case of the training set and nms it through the nodal structure. The output is then 

examined and compared to the desired output. The structure of the net is then changed by a 

correction process. 

The correction process that I use is called backpropagation. This is known as a feedback 

system, as the system examines the output, then backtracks up through the net, correcting the 

weights oflinks appropriately. When the training data is nm through the network, the output 

values are compared to the d~sired output, based on the training set. The backpropagation 

algorithm then works back up through each node and link, comparing the val.ue of a node to the 

value that it should have been to determine the error. This is done for the hidden and output nodes, 

and then the algorithm adjusts the weights of the links connecting the nodes. After tFaining the 

nen.vork, there may be the opportunity to test the network on data that was not included mthe 

original training set, depending on the nature of the data bei.ng used. for instance, in a net that i,s 

trained to recognize a function such as XOR, it is not possible to test the network willi data that is 

not included! in the training set. However, in a net\\'ork which has learned to recognize a pattern or 

a more general function, the network can be tested with data that was not part of the training set to 

test the generalizing capabilities and success of the net. 

A strength of neural networks lies in their ability to generalize to the desired function. That 

is, a netv.'ork can learn a function that is present in the training data and successfully apply it to data 

that has never been encountered before. The type of data and function being represented by the 

network will have some effect on the networks' ability to generalize well. In general, the one 

important restriction is that the training data must actually represent what the network is supposed 

to learn. If the training data includes some sets that are on the extreme edges of the average input 

data, the network will not perform as well. The flip side of this is that a well-trained network will 

perform very well on abnormal data after the training stage is completed, and can in fact include 

some abnormal examples in the training set. This is of particular importance to robotics 

applications, as sensors frequently return noisy readings. Under these conditions, a robot could 

receive a strange sensor reading, and still perform the proper response to the situation. 

To learn more about neural nets, I used some examples of code. The first was a network 

that learned to recognize the exclusive OR function l6. The exclusive OR function, or XOR, is a 

16 code from Patrick Ko Shu-pui, 
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bitwise operation that takes two binary input values. The function is satisfied if one but not both of 

the input values is one. So, the four possible scenarios are as follows: 0, 0 -7 0; 0, 1 -7 I; 1, 0 -7 

1; 1) 1 -7 O. The next coded example of a neural net that I examined was designed to perform face 

recognition in simple images17
• This neural network package contained a great deal of code that 

was specific to the problem of face recogpition. Most of this '''las not essential to the neural net 

itself, and could be remo\Ied. I used this code base to create another example of a net to perfonn 

the XOR function, based on the operation of the first nen used. The XOR function is an interesting 

example to use. The entire d.ata, set must be I!Jsed as the training set, as there is IilO way to generalize 

this function. This is due Ito the fact that the XOR function is 110u~Jinear in nature. While there is 

not way to test the generalization capabilities of the net using this function, it is a very good 

illustration of the capabilities of a neural net, as it is difficult to learn a non-linear function. Once 

this task was completed, I had a working neural net structure that I could apply to other problems. 

Once 1 had an XOR function working on the Linux computer, the next step was to move 

this code over to the Handy Board and run it there. There were a number of,changes that needed to 

be made to the code in order to compile and run it through Interacti,ve C, due to some limitalions of 

Interactive C. Once these changes had been made, I began to run neuraJI networks on the Handy 

Board. I quickly determined that running any sort of complex or large net on the Handy Board 

would be extremely time consuming, due to the memory and CPU limitations of the Handy Board. 

17 code from Tom Mitchell 
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CHAPTER 3
 

HARDWARE 

3.1 Introduction 

I put much time and thought into dle design and conSlrllc{jon of a sturdy robot. A reliable 

base that is not prone to breakdown or erratic behavior is desirable for both practical and research 

applications. Likewise the sensors and attachments to the robot base must aliso be consistent in 

performance. While there are oommercially av,aillable bases that are well designed, these u11!its are 

often too costly for a research project such as this. ] chose instead to des~gn and build a homemade 

base. This yielded complete control over mounting custom sensors, in addition to a rdatively low 

cost. This also allowed me to experience building a robot, which \vas a challenging and 

educational experience. AIlong a similar line, ] used commercial\ly avaHable parts to build sensors 

rather than pUIchasing more expensive prefabricated! sensors. There were many issues and 

problems that I encountered during this process. 

3.2.1 The Robot Base 

My preliminary robot research entailed using Lego pieces designed for robot 

experimentation. Using Legos offers several advantages over other materials. Primarily, Legos are 

reusab~e, whereas materials such as wood or metal are often more permanent. This makes Legos 

an excellent option for prototyping robots, and even bettcr for an initial introduction to robotics in 

general. While there are some restrictions based on limitations of the Lego pieces, such as the 

rectangular nature of most pieces, and the inflexibility of Lega pieces, in general they are a good 

tool, as well as fun to play with. 

After experimenting with the Legos however, I determined that a Lego base would not be 

appropriate for long-term use. The ability of Lego pieces to be disconnected and reattached also 

means that they are more likely to break apart, and therefore are not able to provide a sturdy base. 

Options for the material of the base included plywood, Plexiglas, and a combination consisting of 

Legos glued to either plywood or Plexiglas. After my experiences with gluing Lego components to 

other materials I quickly dismissed this option, as the glue would typically be knocked loose during 

normal operation of the robot. Plywood was eventually chosen due to availability. 

13 



I1C r iameter Ir of I -t' :- wood. - ing I -+" pl:- \\0 in 'tea of, 

thicJ...er gra Ie otTers the b~ncf )f a.... · ana hm I ofhard\\·are. 30- tl ef" i... a r~lati\' Iy -mall 

hi kne'. fmat rial to Irill hrough. n addition 1 th 1 -+" ]:- \\ood bing relati . 1:-' lightm~ight. 

cing able to use horter ser \\ . to alta 'h hardware:. al. a h I to kee the o\erall \\ ight of th wlit 

dO\\l1. entered on tJ1e c I1t rlin ofthc cir I, and locat d .:- mmetrica Iy a r 'fr mea lather 

ar t\\O \alhole"'ut uto1'th ircJ . fh holL - are c.~ign d 

Sl) that th dri\'~ \\h ~~Is do not sticJ... out t \ and th dgc> of tlr circular ba . and '0 that the \\'hel. 

\\ ill ,tick up through them. t 1U- r a-jug tlle \ ra I h ight oflh rob t (Figul"" .3,_, ), epLl1g 

th height of the r bot do\\ n i-important as it helps to 'ee Ihe weighl of th" robot closer to he 

ground, This unit docs not ha\ a \\ ide \\'beel beL '. and .'0 annat uppan top-hea\':' de 'ign, 

Fiour 3,~.1 - Robot base showing placcllH'll1 of II'lIeels Figure 3.2.2 - Robot base shol\ ing placement of 

motors 

fhe matoe are mounl Ion he un 'rsid afth 'obo ba' . The motor' are aligned 

'\ mm tri 'ally I ng Ih' obal ba' . As th' dri\" haft I ing h gearbo, - i ' nol 

'enlere .11 argcr part of the m tor unit is fa ing 1I \', r toward the robot ba e. 1l1i gi\ e: tll 

ro a ( higher ground clearance. and cr '(-1 " more -I ac' underneath the robot for -en or to ~ 

d (L' - J I) The t\\·o ITIOlor- are an, hmounte rlgUr ,)._,_ . 'itha-lrip r ra's. Th tripi pIa d 

a rl - Ih m t r. an th n . cr \. d up\\ard into the ba 'e. he hal in th~ bra', . trip m:~dcd 10 b 

pre-drill'd,a-il\\a'notpo"ible ,Ianahoe\\'ilhju'ta r \\. 1I 

strip., Ilh in'iJe ndofth mOlOruni.a airoCthinbra' \\'Ire I 'Lr Ih mot r. Th -

\\ir .. arc doubled gainst '\ h 01 her. and then go up through h robal ba.'. \\'h rc th y r t"i ted 
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-trang mountmg \ tern. an ro a\' om \ ig 1l \ 

dr pping out \\ 0 S r \\ -. Th ca -tor.­ r w. into th' ply\\ od. 
Fioure 3.2.3 - Rollol base \\ ilh C:lstor 

and 1h I into 1h' as 0 - the robot. \ 'ith he rap\\'ood a­
\\ heel m l(llleu 

, a' r. The Sf a 'r \\'n- th n remo\ a' (h 'cr \\.. held the 
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Conncction 10 
Drive Sysrcm 

Figure 3.2.5 - Schematic of Mouse Quadrature Shaft 

Encoder Design 

castor attached very securely even without the spacer being there (Figure 3.2.3). 

3.2.2 Shaft Encoder 

In order for the robot to keep track of its location in the environment, it must have some 

mechanism for recording how far it has moved. This requires some form of odometer. In my 

previous independent studies in robotics, I attempted to create an odometer from Lego components. 

Thjs proved to be troublesome on many different levels. 

My initial Lego design was a physical shaft encoder, where a touch sensor would be tripped 

with every rotation of one of the drive wheels. This was difficult to ma'intain. prone to breaking 

frequently, and required constant supervision to 

ensure that the encoder did not exert too much 

pressure on the drive wheel and prevent motion 

of the robot. My next design involved a 

spinning disk attached to the drive S) st.em of the 

robot. There was a light on one side of the disk, 

and a light sensor on the other side. The disk 

contained three holes, such that the light sensor 
Figure 3.2.4 - Light Based Lego Shaft Encoder 

would only detect the light when the disk was positioned so that light could travel through it 

(Figure 3.2.4). This was more successful, but was not very accurate, as the robot traveled a 

._1---- Signal 1 significant distance before the odometer would 

increment. This system was also susceptible to 

missing light and not incrementing the distance 

traveled when it should have. 

My next design involved a modified 

computer mouse. This design used the existing 

small-scale quadrature encoding system of a 

mouse, and incorporated it into my robot. Most 

mice use a series of break-beam infrared sensors 

to encode movement. I had initial difficulties in 



IIII 'fa ting \\ ith thL e:--i ting infrar 'n 'or -, '01 opt'> for a hy-i < J ~: -t 111_ Thi ill' 01\ ed 

<Illuchinh- eonducti\-c stri . of m ~tal a the quadrature ') -t m, and \\Titin2 1d' har would 

-n r ment a mabIe \\-hen~ ompkte r \ It tion_ hi off red tl c 

apabiJit: to kee tra k off ur lire 'tions of tr, \ el. but alo \\as limite I: the h::sical nature of 

h~ \ 'tem, \\ lie 1 \\-a pr n' t r~ -ing, and difflCU tto repair 'u t th _-mall a' and fraQility 

f th 'omponem, 

n the_ options and m:- xpenenc \,-ith them, ropte to pur h, s a 'ommercially 

a\ aila e 13ft enco er. T le unit r eh . e i Ih 'I 111 de, mad \ 'S Di.2ital. Inti rmation a ut 

hi unit i - a\ ailable in App' n Ii ' .-\ and B, 

h spa in b,t\ -'CIl thc \\-0 dr'" motor' \\a intentionall:-' mad I rg' 'nat gh 10 hou e 

th laft ncod r The encoder is l1l unt d in the ent r of the robot ba - that th onh 

mO\e111 -n rcc f 'd i' that of the robot mo\-ing fo \'ard or back\\-ar . an not \\ hen tbe robot 

p rfoml' a T tating turn to the I 'or right (Figur~ '.2.6 . The haft neod Tha a tLlr 1:- bra. \\"\ 

\\Tapped on c around th -haft. lose t the housing of the 

n a er.' ur I \\'ith nUl -re\\" d 0\\ n tig t : again t t e 

l1l:oJer bou-in.!_ Thi- form_ a trong: ttl xibl 'tem r r 
holding Ih :'haft el od'T in place _ The \\ ire ome u on eithe 

.:ileoftle ange. Ea'l 

ugh he robot ba c. 'h reach 

Ul id' edg fthe ba _ 

\'I-ire end arc th n - ured \ 'ilh additional wir s. :0 that they ar 

h Id do\\ 11 tighth. ut 'an 'till e ea'ily r~m \'~d or adju, I" . 

Th \\ ires efe adj 11 't ullli I the. haft "n ad 
fiaure 3.2.6 - Robot base Wilh lim11: against the Ooor, The, ~curing \ ir s, r de-igne to ha\ 

ll10unted Shaft Encoder 
nough 'pring in them' thai t 1 :-haft ~n a 

\\ 'th, . Jightl~ 11 '\ n 1oar urface \\ ithoul mi sing r'\' juri n~ of the dr\ e \\heels. }: t on]:-­

thL wir's 111 \ up and dO\\-Il. th~y 1:0 allo\ tho .::haft neodt' a -sem 1;- [0 moYe _id~ o.id 

anti ipated t at thi \\ u 'not e utili7"d uring normal a erali 11, ut it e .:: of 

lhe a" mbl\" e omin_ br k n if the 'obo i-han led roughl. or bumpe . 



3.2.3 Light Sensor' 

The robot mu' ah\ a: . r lllrn to J. kno \-n h me oordinat . Thi_ i- necc saD as the robot 

o report it finding' about the \ r11 to the im'\ om uter" hi h is 1 c ted, I thi - hom 

coordinate. It is al 0 n c "a1: b caus to r orient its~lf in tht: en\-ironment 

should it become 10 'lor get olltra -. ,hould th ~ 1'0 m It. t. il wil n longer be a Ie to 

rei: on it: interpr~tation 01 th '0 lrdinat \'stem I fInd it- \\'a\' ba k 10 th' h me co rdinale.. . 

rh rerore it be' m : ne 'e.', < ry to ha\ ome .::ort ot' backup : -t m for locating an rca hing the 

horn coor in, teo \ ly ·0 utian to thi \\ a' to in 'orp rate, i ht Uf at the hom oardinate and 

tTl s of light s~n ar- on the - bot. 

rh thrc' light sen -ors 'II"" mount' on top )1' th' r bo . facing fOI"\ -, r ,Th 'ensors <II 

mounte j on a _mal ic ~ of" 0 . \\ hich -elTe to rai c them abo\ ther n50r mount d on the 

front of the robot. The s 'n" )rs are alta' le by g uing Ih'l11 to 

tl pi ' of "-00 \,-hich Ih ar m unle I. h ~n~or ar 

I") ated in a line_ \\ ith Ih mi 

for\\-ar . and the t \ ft an rig t fa ing forty 

f. My original rahat 

-ign calle I for the liuht en-o - to b mounte n th~ r~ar of 

tle ro t. fa ing behind th ro at. Thi would allo\\ the rob t 

to ack int po-ition a the home c ordinat ~_ and b facing tl ~ 

on~ dire tiO! \\ hen it am ~ lim 0 .-e ute th next p, tho 

Ho\\ \ er. the re\'i u ly m ntioned robl I11S \\ ith th ~ astor 
Figu IC 3.2.7 - Robot base \\ il h light ,,'he'l pI' '\Tnt thi '. lrom eing an option. a t 1 fa at \\ ould 

cnsors 
hU\e to dri\ th rem, ining astor 'h I ahead of i ifit were 

to mO" 111 r \ '1" . r 'd to mount th light:: nsors n the front ortbe robol. and hay the 

robot perform a imple one hundr<:;d ight:'-degree turn on e it \\"a:- in po ition at t 1e 10me 

oordinat~_ Thi_ all \ d for, lr, te light trad,ing and maIk m,:rabilit: _ This s. ·t )11 was 

onFtinFs not sufficient to r~ li~m th robot in the el \ ironm~nt. and oc 'a 'ionally r~ql in.:d orne 

in! r tion on my part to n'ur t1at t 1 r t \\-a. reOf) 'nt pro rJ. Due to lard"'are roblems 

I \\:1. unable to tine-tun thi- s:st ~m a p rat su ce.. fully \\'ithoUl u er illt ra tion. 
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3.2.4 Touch ~l'IlS01-S 

In oru I' for h robot to kIl0\\ \\hen it bump: int an ob,tacJ', ther mu' 'ome -ort of 

SLI1'ior that int~ra t \ilh th 'n\ironm nt. Due to II 'ize of the robot. thi­ t\.:m mu't be 

arg ~n ugh to en m a ~ th ntir leadimz edg of the robot. \' t must b' of enough 

e location al \\'hich th I' t hi£.- (n bj n t nnined \\ ith 

. me d gr~t.: fa' ma y, 

The natuJ, I solution \\ a-to milir sim I lOll h S Lors, Th' 11 or: are homemad and 

'ust mlZ I for m~ ro at. Ther ar four .'11.'01'- 111 unte on the front ha rof Ih r t. The tou h 

n i'l 01'1\ bra, trips nailed into the cdg of the ply \'ood ba. e, The 1\\0 sirip arc on 

Ih left nd right id ' of the !cadinQ. g of th robot. SU'p nded OY r lhes ,I" four br,. Wire, 

Th('- 'prin~:' \\ ires a1' at a h in the top of the I' t a- by \\' y of drilled hole and glue. 

Each \\'ire i ben '0 tha it hangs in fr nt f the br S sirip on 

Ih fr n[oflh~rob tba-c(Figur .3.:2.). Inlhi'\\ ylhebra 

wlr "n [ u h lh ra -~ -t -i \\ hen it ncounler' an bje 0t. 

Thi mp ~ ": th~ cir uit. nd th r ot then' 10\\' 11 re i 

:oli a\', 

Figure 3.2. - Robot ba. e \\ itll louch 

sensors 

3.2.5 Electronic Compass 

\\Tille the shaft encoder allo\\": he robot to kce [raei-, of ho\\ far it ha '. 111 \ d. thi' 

infoD11ationi'u' Ie: \\'thoutth '110 kdQ of ,,'hi hdire tionth motiono If \cI C:'1D. b> 

rahat i' not r liable enough on it· 0\\11 to b abl I mo\'~ in a -traight line t all Ii 111 -, TIler tor 

- III oh r ono'che 'oftle if Ii noft1ero ti-n :-,ry, ~y outionf'orthi-pro!em 

\\3 to pur has and in egral a1 ekc ronic \' CLOr mpa-.. 
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The \\iring of th ompa ., l' am I~.". and the unit mu:--t h' po'ition~u 'ar lilly so a,' to 

~1\oid b nuing \\ ire- and jeopardizing the integrity of _ J 'onn ~ tiOIL nl r \\ cr~ al-

se raloth r IS' s that inilucn d the pO'itioning ofth mpa" 0) my obm. I \\'ant 'u th 

~n red in the middl ofth~ robot. '0 that ~rror' U to th I' lati\'c p -itioning of 

tle rahat a mpared t the ompa 'would minimizl.:. T 1 'ompass ir ~If i- mounteu on a 

erf-board \ :ith mounting hal at the four c r ers. and af< ry oh\ iring, a' ier 

repairs t th~ \\"iring. and for h' ability to mount th ompa,' onto the robot \ 'ithollt haYing to 

a 'wall) attach the compas' unit it. elf. 

nother major' ·su tha impacte lth J.) 'arion of the compa . '\\'a that of magn tic 

fi td . ~v[agtleti field' ha\e a large impa t n h 'lIccessflll 

op~rati n of the campa, s, :-0 th ~ unit neede I to b mounted 

a\\'ay from' ur 'e' of magnL:ti field, uch a the motor_. t 

l-Iand\' B ar I. an t -am' xt nt erhap. th un hi ld "'ire' 

ann ting th Handy Roar I ! hard\\'ure ~mponl:nt, \ 11iJe 

lIilt in " ibration :- t m to comp~n :Hc for 

the effe ts of Ilagneti . interf<~rnce. hi :- 'tem i' run \ 'hen 

le ompa- j- fir' initiat ,\\'hi 0 urs olll~ n e uflng 

aeration, Therefort' any 111, gn ti source_ \\ ith flu wating 

:t' ngth-. su h a- th motor', c uld C 11 ~i\'ab y ha\ e an effect 

on th operation vfth ompa--, To ositiol th. '01 pa_ ~ as 

fra\\a) aspos'ibl~rromth' 'our- -.rmounrcdth 

rnpa" onto a 5" I ng. pi ' of\\'ood, and po-itioneu it abo\'e 
Figur ._.9 - Robot baSt \\,jlh 

the obot base. A- it \\ a abo ne es:-ary 0 ha\'· he compa --
IrClronic compass 

locat in the ~nt r or th I' bot, the ompa is fa 'tened to 

the \': a on onl h t Jat it proje ts forwar \ r t e ap r :\Imate nter of th ro at. 

,-\1' , in order t en nre proper peration of he ompa", the mit n~ed- to e held 'omplet Iy I wI 

at all lime.. To omplish this. I ma 'ur hat III \ ad on \ hi h h m a is mount 

e upright _ ur \, Thi' \\\lod i: n ermanentl f, -t n d to the robot ba:--e a, I n ~ to acee s 

th' ompa "on a r gular ba 'i'. and must be able to deta han r ana h the unit ea -ih . 
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3.2.6 lnfnlred Rang-ing S n, or 

\\"h.ile tJle ouch ,-en or.- are suffici 'n for na\ igatin6 ami 'ue 'e '-rull)' mO\'ing aboUl rhe 

unkno\\n m'irorullent. 11 ing nl) th ~ t u h en or- for llapping th entir m'ir nm nt 'auld 

nl)t b th 1110 't t'fti icnt metJlO , L' ing onl.' rou h s n or~' \\ auld r q robot to att mpt to 

h\ 'i 'aIh' lra\ It\' ryoordin, t on th map. Thi" \\ ul i re ulre a r_ e amount of time. a- the 

k' t n\ irorullent that I 're'He j \\'a' t~n f et b) en '"eet' -iz. I r 'ious "tudi , f had u ~d 

inlxpensi\ infrar d -en or' or r<1 'k" "uch ( , lb:ta -Ie d"'lection, So for thi proj ur'ha 

an int grate a ight) more ex en 'jYe infrare ranging en-or. Thi allo\\'s Ihe ro at to dete-t 

object - from a di 'tnll - . Gnd p rform en -or -\yecp' hat create a pictur of th urrounding 

th I' bot \ ithin the radius defined b.' t e ma.. imum rang of lht' s n or, 

The infr, rc s'n or. lik th ompa:>s. i" m unted onto a 

ieee or \\0) . approximale ) thr" in le: ig 1 Th 

mount d r 'ing: on\ ar . an i mounted ab \' th rop urfac of 

th robot base so to ~Iimin I tram ob'tfu tions 

u a' the ther 'en or" mounted on th' front of t 1 1'0 at. Thi 

en or ha' both an eft'"e li\'e maximum rang of 0 em C'l I)" 

. \\ ]], S . n effe ti\" ninimum rang flO m 

.!l. I Therefore. \\ li e thi" 'en or docs not n' ated at the 

center of th ~ robot. it doe ne be .. t back rrom the le'l ing 

'dg f Ih robot bi se to en: lre Ihat thc s'n or doc not r pon 

ba -k aron, us r"'adings that lie outsid of its effecti\'e range, So 

I 1 ~ ,-n:or IS cat appr :\imatel) four in he- a k frolll the 

Figure 3._.10 ­ Robot ha~(' '\ i'" front f 'obO!. Thi eliminates tJlc p --ibiliry fan ob tack 

lnfrarrd R,llloing Sen or t nd its minimum r Th en or L 

r~\ 'cd into Ihe m unt \\ a ~. 111 

Ih infrared sen or-all ing (:,cc Figure .' .:2.10 . 

.3.1.7 - The Hanel," BO~lrd 

Thl:? bigg ·t component to be mounted ant 111 rob ba.' \\'a - til' on-board ompu 1'. The 

h Hand)' Board i , :mall [hr ~IHz C 111 liter. quippe 

::!1 



"ith thlrr:- -t\\· ~ilob: t of R. \:- L :- I re 'omple cificmion' of the Hanch' 

Board a.n be found in. ppendi:-.: 

h Han \'-8 ard nLLd. t be an, h to the top of the r b ,p ~iti n d a that all ~ nor' 

an b~ plugg din \\jthout training th onn~ tion . Th~ board 

mu t a 'a f'<nen . ur . nough. that it \\ au not e in 

dang r f falling n O' being hmag d. The \\ c:- I eho. 0 do this 

e board h ~Id in pIa b\ a ri' f nail- hamn ~d 

int th surf of the ba"e (Figure 3._.(1). The boar Ii \\'ithin 

these nail . and is pre\' n e I from sliding or m \'ing around while 

allowing it to b a' and remo\'ed a ily. '[ h ~ board is 

1110uJ1led at th ~ rear of th robol..iu t for\\ ard of thl:: ea 'tor whe I, 

In thi' \\'a:-' the r~l ti\'d:-' h~c \y' board 'n' as a ounter a ance 

"no ip fOl'\\ard. ' nd al' k~ P' the 

board alit of the \\ :- of th 01'\ ard mount d n or , enough of 

the \\'eight i. I1t r of the 1'0 at t lat t lere i n t to 

mu h \·ciQ.h pia e 0 th castor \\ heel. \\ hich \\ uld pre\'en tIl' 
i<Turc 3.1.11 - Robot btU' \Ijth 

\\'he"] from turning fr h.
HalH.l~ Buard 

J.3.l Constructing Sensors 

All rthe Sen 01'- U ld. including thOse that \ ere ureha. d miller iall.-, required ome 

gre of on. tm tion 'md \ iring to be perform d, InJormatiol "'as ."om time,. n t immediately 

a al a Ie for the wiring ::'lemali . for the e .en r., r.\'ry component of th r bot that r quire 

\\ iring to be don had" III nunon I'SUe", 

-or all \\'jrin::;, and ann tion' r us tl xib ' stran ~ ri bon ble. n pre iou roboti'­

rO,le t- I ha I u oli -tirf Iue to it thi kn -:- an -trength, 

anne ion ma Ie \\'itll the thi k c r \'ire \\' re m r lik y to rea' un er 

a 1Y:- rt of rot gl handling of h robot. Th ribbon able 

IS \ [\ t xii Ie. and III s conn 't d in ·trips. s that the de. ir"d num b r of \ 'il' an b torn oiT 

\\ire in'i the p astic in ulation on:i L f ~tran or mall iameter 

\\ Ir " . Idcre ann tion m Ie \\ itll the-e wire arL more lik ly to retain can .Iu ti\ it\· 



nUshandled, as there are many more connections present than with a single copper v,-ire. One 

drawback to using these stranded wires is that if a connection does become loose, it is very likely 

that one or more strands may touch other connections, creating contact points where no contact is 

desired. Thi,s has the potentiall to damage the Handy Board or sensor equipment. The Handy 

Board is equipped with detection routines that shut ,the board off in the event of ovedoaded cllcuit, 

however it is stili possible to damage expensive sensors. I used two solutions to overcome this. 

First, I used shrink tubing \\ henever possible. This entailed putting unshrunk tubing on the wires 

before soldering a connection, and then shrinking this robing after soldering. The tubing is shrunk 

by a heat gun, which operates at a relatively high temperature (approximately seven hundired 

degrees Fahrenheit). As this temperature is often above the safety threshold of many electronics 

components, ~t was often not possible to use the shrink tubing due Ito the proximity of sensitive 

electronics. The second solution was to pre-treat the stranded wire with solder. This involved 

twisting the strands of wire together, heating them with a soldering iron, and allowing a small 

amoWlt'of solder to be drawn into the strands. This helps to hold the wire together both during the 

process of connecting the wire to an electronic component as well as after the connection is 

soldered. TIllS also makes the soldering process easier by already having solder present when the 

wire and electronics component are heated to make the final connection. 

Most sensor connections to the Handy-Board are made with male strip header, which is 

composed of a series of metal posts embedded in a plastic holder. Wires are soldered to the top 

part of the post, and the bottom part of the post plugs into the corresponding female strip socket on 

the Handy Board. Both male posts and female sockets are spaced at a regular and standard distance 

from each o~her. The Handy Board has nine digital input ports, and seven analog sensor input 

ports. The Handy Board also contains other options for sensor input, and the Expansion Board 

increases these options even more. More information about the Handy Board and Expansion Board 

can be found in Appendix B. 

3.3.2 - Constructing Sensors: The Expansion Board 

The Expansion Board is a recent addition to the world of small robots. The Expansion 

Board is designed to plug into the Handy Board, and offers several more options for sensor input 

and output. While the Handy Board was pre-assembled, the Expansion Board came in the form of 

a kit, with no instructions or directions for constructing it. While the Expansion Board (Figure 
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oeeded to have some way of turning the shaft 00 the encoder. My solution was to attach a wheel to 

the shaft. I used a Lego wheel of relatively small diameter. I needed to make the hole in the wheel 

a bit bigger to accept the 1/4" shaft from the 

encoder housing, and used a drill to do this. As 

rhad neither the 1/4" drill bit nor a drill press to 

drill directly down into the wheel, I used a small 

drim bit. I held the drill perpendicular to the flat 

side of the wheel. and circled it around a number 

of times, 510\.\,ly stripping plastic out until I had 

an even, larger hole to accept the shaft of the 

Figure 3.3.3 - Shaft Encoder with Lego Wheel encoder. 

3.3.3 Constructing Sensors: Light Sensors 

The light sensors are sOme of the easiest sensors to wire and implement. The light sensors 

are composed of a simple photoresistive cell. There are only two 

connections to be made for these sensors to work. One of the wires of the 

sensor goes to the signal port, and the other goes to the ground port of an 

analog input on the Handy Board. Electricity comes into the resistive 

cell, and the amount oflight present determines how much of the 
Figure 3.3.4 - Light 

electricity is allowed to continue through back to the Handy Board. Sensor mounted on Robot 

These sensors are fairly standardized, and there is little variation in performance between them. 

OrdinaFily I would shield the soldered connections with shrink. tubing, however, for the light 

sensors, it was easier to wrap the connections in electrical tape. 
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The next major issue in the wiring was that of the connection to the Handy Board. The 

compass connects to a synchronous serial port for communications, which on a Motorola system 

such as ilie Handy Board is ,the SPI port. When the Expansion Board connects to the Handy Board, 

it plugs into the available SPI port. While the connections continue through to the Expansion 

Board, there are 110 sockets on the Expansion Board to utilize the SPI port, and it is a very difficult 

task to cO'Qnect female s.t.rip socket to the top of the Expansion Board, as this would involve 

attaching the posts of the strip socket to the tops of the posts sticking up through the Expansion 

Board. Due to this, connections were made directly onto the tops of the posts that are used to 

connect the Expansion Board to the Handy Board. This is a difficult task, and as the space 

involved is extremely limited, ilt is easy to have unwanted connections. I would frequently have (0 

check the connections using a voltmeter to check for conductivity. Stray solder, loose wires, and 

loose pieces of metal would ,often be culprits in bad or unwanted connectioDs. 

Upon examining the schematic of the Expansion Board, I found it to be possible to access 

all pins of the SPI P0rl through other locations on the Expansion Board. Some of these 10cattol1S 

Were no more accessible tllan the origi.nal ones, but using a combination of these pins made it easier 

to wire the connections, and easier to track down and repair problems. 

Another issue with wiring for the compass was that a wire needed to be connected to a pin 

on a chip on the Handy Board. Not wanting to solder directly to a chip, I wrapped the wire around 

the pin and secured the connection that way. \\'hile this seemed to work, there were too many 

ways for the connection to fail. Upon examining the schematic of the Expansion Board, another 

connection was found to be possible, and the wire was soldered directly to the Handy Board this 

way. More information is available in Appendix B. 

3.3.6 Constructing Sensors: Infrared Ranging Sensor 

The infrared ranging sensor was very easy to wire. This unit came both with instructions 

and additional parts, such as wires, a pre-made socket to plug into the sensor, and a transistor 

necessary for use with the Handy Board (Figure 3.3.7). The infrared sensor plugs into a digital 

input P0rl on the Handy Board, but also requires one of the digital output ports on the Expansion 

Board. This particular sensor is an active sensor, in that it emits a signal in the infrared 
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CHAPTER 4
 

SOFTWARE 

4.1 Introduction 

I put.a tremendous amount 'of time and planning into the software that would make this 

entire system work. There are a large number of components that work together to form the bigger 

mapping and navigation system. Each component ~s in tum comprised of still smaller parts. I view 

the software in two gfoups: the so,ft"ware on the rohot, and the software running on my Linux 

system. This is simply a way of breaking up the code to make it easier to examine. The two 

groups of software cannot perform independently of each other, as they rely on components of each 

other in order to produce any useful results. For the purposes of this discussion ~he software will 

be broken up into subsystems, so as to simplify the task of examining the systems and the design 

decisions behind them. 

4.2 Robot 

4.2.1 Robot Software - Communications 

Periodically throughout the operation of this system, the Linux system and the Handy Board 

need to communicate. Communication with these two systems requires a serial link between them. 

Both computer systems check the serial line for communications. Communication over this serial 

link requires a non-trivial amount of time, and also requires periodic checks to ensure that data is 

actually being received on the other end of the communications link. Another issue with this 

system is that communication from the Handy Board to the Linux computer takes a significantly 

smaller amount oftime than communications going in the other direction, probably due to the 

significantly faster processor speed of the Pc. 

There were a couple of ways to establish this serial communications link. The first 

possibility was to use the infrared transmitter and receiver located on the Handy Board in 

conjunction with a similar hardware system built for a PC. The second option was to use the 

already established telephone wire interface between the Handy Board and an RS232 serial port on 

a Pc. As I would have had to create the Linux component of the infrared system, I opted for the 
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direct physical connection. This meant that whenever the robot and Linux machine wanted to 

communicate, I would have to connect and disconnect them at the proper times. 

Using publlicly available code for the Handy Board and a modification of codel9 for a Linux system 

I created <Ii reliable system of communkation that caters to the needs of this project. This system 

can send integers over the serial I,ine. My solution includes a way to acknowledge messages sent 

between the two computers. This is necessary as the communication line is not infallible, and as 

the line is broken and reattached periodically, which could easily lead to miscommunication. 

The communications requirements ofiliis system consist oftransmiHing paths of travel and 

a representation of the map from the Linux machine to the Handy Board, and retummg the results 

of the data collection trip from the robot to the Linux machine. Due to the large amount of data 

that must pass between the robot and the Linux machine, I opted not to acknowledge every 

transmission of data between the two computers. This meant that more data was sent j'll between 

acknowledgments, so more data would have to be resent if a traRsmission failed. When send~ng 

communications from the Linux system to the Handy Board, I discovered that I needed to introduce 

a delay between each transmission, as the Handy Board was unable to receive information at the 

rate that the Linu.x system was sending it. 

The code required for the Handy Board to transmit and receive data over the serial line is 

available from the code repository on the Handy Board web site20
• All of the necessary methods 

are provided. In general, the serial link to a controlling compiler such as Interactive C must be 

overridden, by disabling the peode, the low-level interface on the Handy Board. Transmissions can 

then be handled by transmitting a character at a time over the serial lime I used a function that 

would loop through the digits in integers larger than one digit in order to speed the process and 

decrease the code that needed to be written. Similarly, receiving information on the Handy Board 

is handled by taking a character at a time off of the serial line. It is important to Dote that all items 

sent through the serial line are characters, represented by ascii nwnbers, and not actual integers. 

This fact can easily go unnoticed. All characters that are meant to be integers must be converted 

from characters to integers. It is also important to note that a controlling program and compiler, 

such as Interactive C, must be shut down or disconnected from the serial line before attempting 

communication between the Handy Board and Linux machine. The first system to take control of 

19 Thomas Heidel - theidell7i'advis.de 
20 hnp: ·'el. www.media.mit.edu/groups/el/projeclslhaody-boardlsoftwareJcootrib/drushel/serialio.c 
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the serial line has control until it releases it. Should either the Handy Board or Interactive C 

attempt ,to send signals to the wrong system, either system could easily misinterpret characters sent 

over the serial line, and exhibit unexpected behavior. 

4.2.2 Robot Software - Interacting With Sensors 

All of the softw3!.fe necessary to interact! with and utilize the sensors used on the robot is
 

avaHable from various rocations on the Handy Board web site. This includes both the assembly
 

code necessary to interface the haEdware systems together as well as the code to activate and get
 

data from the sensors. 

The first sensor that I imp1emented was the shaft encoder. The assembly codell for the 

shaft encoder is avaHable wi,th a couple of options, namely the speed at which the encoder operates, 

and which input port the user desires the sensor to be connected to. The speeds available are fast 

and slow. I experimented v,rith both and determined that the fast speed was the most accurate and 

appropriate for my robot. The versions of the assembly code for different input ports are included 

as the assembly code must explicidy specify which port to access in order to increment the counter 

variable. I arbitrarily chose the encoder to be connected to input port six. The user has the 

capability to set the thresholds at which the total count from the encoder will increment. The user 

can also access and reset a variable representing ,the nwnber of times the encoder has incremented, 

and access a variable representing the current velocity of the encoder. These variables are integers, 

and thus are limited in size. 

The next sensor I implemented is the infrared ranging sensor. This code22 provides the 

necessary subroutines and interfaces to coutrol the IR sensor. The user must flrst call a function to 

enable the sensor before using it. Similarly, when use is completed) or if the user wishes to free up 

processor cycles being used by the process controlling the IR sensor, there is also a disable function 

available. Getting the current sensor reading is done by accessing a variable that contains the most 

recent reading from the sensor. 

The final sensor that required special software is the vector compass. The codeD for this 

sensor again provides all necessary subroutines and interfaces to control the compass. The 

compass software must also be enabled, and can likewise be disabled. The current heading is 

- 21 hrrp://e I.www.media.mit.edulgroups,'eVprojeels hand"'--boardlsoftwareJencoders.hun I 
22 hrrp:/lreality.sgi.com'barry dc!roilGP2002 I.html (linked from Handy Board site) 
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stored in an integer variable, and can be accessed at any time. During proper operation of this 

particular implementation of the compass, the reading sboutd always be between zero and three 

hundred fifty nine, S~gIDfying the current compass heading. 

The code for aJlJ three of these sensors is somewhat taxing on the processor. Each software 

system is constandy updating and interacting l;"llh the sensor, which chews up time and processing 

capabilities that affect the other sensors as well as other computations being performed. The 

ultimate effects of this are discussed in following sections. 

4.2.3 Robot Software - Measuring the World 

Having the robot interact with the environment created some issues and problems that 

needed attention. In my representation of the coordinate system, I split up the world into a grid of 

one inch squares. The most obvious problem was that the Linux software and Handy Board to this 

point have dealt with paths of travel and locations as if the robot were one grid square in size, and 

haven't compensated for the fact that the robot is significantly larger than this. So the first problem 

was to interface the robot to the world by putting grid squares in some sort of unit that was useful 

to the robot. As the robot measures distance with the shaft encoder, it made sense to determine the 

size of a grid square in terms of clicks on the odometer, and I established the number of odometer 

clicks per grid square by performing experiments. These experiments included measuring certain 

distances, running the robot over these distances, and then dividing the number of clicks of the 

odometer by the number of inches that the robot had moved. I did this for various lengths, and at 

varying speeds of travel. This seemed to work well and consistently, and I found that a grid square 

was about equal to two hundred clicks of the shaft encoder. However, once I began running the 

fully implemented software package for the robot that I had written, this was no longer true. It 

seems that once I enabled the infrared sensor and the compass, and had my own code running 

constantly, enough cycles of the processor were taken away to significantly decrease the number of 

encoder clicks that covered an inch in distance. I repeated the experiments with all of the software 

running, and found that an inch was then covered in one hundred clicks of the encoder. It is 

difficult to know if this number will now be consistent or not, given more or less computationally 

intense periods on the Handy Board, and varying power levels as the robot is run more and more. 

This is a significant problem, and one which is difficult to solve due to uncontrollable variables. 

!J hClQ:/lel.www.media.mit.edu/grouDs/eVprojectslhandv-boardfsoft\v3re/contrib tomb 
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Future systems would need to compensate for this, perhaps by running each sensor in its own 

thread, and ensuring the consistency of sensors such as the shaft encoder. 

Due to the size of the robot, it covers just over nine grid squares in width. The software on 

the robot is designed to incorporate this fact as it records its movements and keeps track of its 

location. 

4.2.4 Robot Software - Travel 

Moving the robot through the envirorunent is a major issue. The vector compass is the 

essential component of this portion of the system. The robot cannot even move in a consistent 

straight line by itself, due to hardware limitations of the motors and unknown qualities of the 

environment, such as dirt on the floor. The addition of the compass allows the robot to know 

which direction it is heading in, and correct for any errors that may occur during traveL 

To help this system and to reduce the probability of error, as well as simplify the task of 

coding, the robot was restricted to four directions of travel. These directions are determined when 

the robot is first activated, and is guaranteed to be oriented in the correct direction. When the robot 

is still sitting in its starting position, it fust checks for normal operation of the compass, and then 

sets the primary direction, which is considered to be north. The other three directions are set by 

incrementing the heading by ninety degrees. These numbers are then checked to ensure that they 

do not exceed the upper boundary of three hundred fifty nine degrees. In this event, the number is 

decremented by three hundred sixty degrees to bring it back into the proper range. Whenever the 

robot needs to change direction, it is done in teons of moving in the direction of north, east, south, 

or west. 

When the robot does need to turn, there is a function that turns to this new heading. The 

robot turns in the direction that brings it from the current heading to the target heading in the least 

amount of time. The algori thm behind this turn is quite simple, and is as follows: 

33 



x = Current Heading
 

Y = Target Heading
 

if IX- Y] >= 180, and X >= Y -7 Tw·n RighI
 

else if :X - Yl < 180, and X < Y -7 Turn RighI
 

else if ;X - Y >= 180, and X < Y -7 Turn Left
 

else if iX- Y < 180, and X> = Y -7 Turn Left
 

This function will turn the robot to within five degrees accuracy. The accuracy of the compass 

does not allow for an exact system that would tum the robot to within one degree of accuracy. Five 

degrees seemed to be the best amount of accuracy that I could achieve. 

The same aigorithrn is applied in function to keep the robot travelling in a scraight line. The 

function is constantly called when the robot is in motion, and makes small adjustments to the 

power of each. motor in order to keep the robot moving in a straight line. If the current heading of 

the robot is mope than ten degrees off from the desired heading, the robot stops all forward motion 

and calls the function to tum to within five degrees of the desired heading. The combination of 

these two functions keeps the robot on course with a very good degree of accuracy. 

4.2.5 Robot Software - Obstacle Detection 

Obstacle detection plays a large role in the navigation and mapping system. When the robot 

is travelling around the environment, the forward-mounted touch sensors must constantly be 

checked for contact. I created a function that checks each sensor, and returns the number of the 

sensor that had contact. The four touch sensors lJi\ust IDe distinguishable as the system needs to 

know where the robot encountered an obstacle, for the purposes of mapping. Having only four 

touch sensors makes this an approximation, but this is sufficient. The function to detect obstacles 

is called during normal travel, when the function to correct for the proper heading is called. 

Once the robot successfully reaches the proper location> it calls a function to perform the 

sensor sweep. This function slowly rotates the robot around three hundred sixty degrees. At every 

ten degrees it takes an IR sensor reading and stores it in an array. As the lrkeli'hood of the robot 

being able to stop at every tenth degree is relatively low, I implemented this system so that it 

doesn't bother to anempt to achieve the precise heading, but rather rotates slowly and takes a 
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reading once the tenth degree is achieved or passed. This way the robot only has to download the 

heading iliat beg<m the sensor sweep, a.nd the thirty-six sensor readings taken. 

4.2.6 Robot Softwar'e - Light Tracking Network 

The light tracking network is the only neural net actually implemented on the Handy Board. 

Jbad to make some changes to the eodem order to bring my neural net code from the Linux system 

to the Handy Board. The firs.t is that Interactilve C neither requires nor accepts prototypmg the 

functions osed, as is possible OD the Lumx system. The next change is that the "main i
' function 

needs to be declared as "void." Next, Interactive C does not accept n#include" statements. Some of 

the functions that used calls to "math.h" also needed to be changed at this point, to make them 

compatible with math functions built-in to Interactive C. The next change to be made was iliat all 

variables and functions declared as "float" needed to be changed to "double," These were the 

primary changes that needed to be made in order to have a neural net work on the Handy Board. 

The final structure of the net contains two input nodes, two hidden nodes, and one output 

node. The structure was such that it took the leftmost light sensor reading as the fust input, the 

rightmost light sensor reading as the second input, and the output was the direction that the robot 

should tum to. As the robot is only allowed to tum to the left 0.£ right, the third and middle light 

sensor on the robot is not necessary, and was left out so as to simplifY the leaming process. This 

middle light sensor is left on the robot in the hopes of creating a more comprehensive llight tracking 

system that will incorporate all three sensors. The light tracking net will be discussed in more 

detail in Chapter 5. 

4.2.7 Robot Software - Infrared Interpretation Network 

The neural network for interpreting infrared sensor readings is actually located on the Linux 

system. This was due to the size of the network. The net was trained on the Linux machine, and it 

was just as easy to upload sensor readings from the robot as it would be for distances, so I decided 

to have the LinlL'( machine hold the network and perform the calculations. 

However, the robot was the source of the data for the training set, and this simple data­

gathering task is worth mentioning. I would position the robot a set distance away from a large 

object, usually a wall. The robot would then move slowly towards the object, and record the 

distance traveled by the shaft encoder every time the infrared sensor reported a change in reading. 
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When the robot ran into the obstacle, it would stop. The robot would then download the sensor 

reading and corresponding distance to the object. The distance was determined by subtracting the 

distance traveled by the robot at the change in infrared sensor reading. This process took a 

significant amount of time due to frequent acknowledgment of transmissions. This information 

was then stored on the Linux machine for the process of training the network. 

4.3 Linux Software System 

4.3.1 Linux Software - Communications 

The communications process and requirements were discussed in tIle previous section about 

the robot software. The code on the Linux machine is fairly simple. 11lere are standardized 

routines for accessing a serial line on a PC, and this code merely utilizes these routines. Reading 

and writing to or from a device such as a serial line is basically the same as reading OF writing to or 

from a file. The major difference is that the program needs to be run as root in order to access ,the 

device. 

4.3.2 Linux Software - Map Representation 

The map is represented in a grid coordinate system. While the system works under the 

theoretical premise that the unknown environment is very large, this premise is not practical for 

several reasons. The first is that the physical space available to me was very limited, and 

increasing the size of the environment wouJd have increased mapping time considerably. 

Additionally, I was limited by the memory and computational capabilities of the computer being 

used. A large map would take a very long time to process and would inefficiently use up memory 

resources. While a very large environment would be possible with a more powerful computer 

system and a larger environment, in light of the restrictions placed on me, J had to limit the possible 

size of the map to a two hundred by two hundred grid. Each grid square is a component in a two 

hundred by two hundred array in the Linux software. 

Each grid square represents a number of components. As each grid square can either be 

occupied or free of obstacles, there must be some way of keeping track of the status of a grid 

square. As the robot is expected to return some "noisy" data and data that conflicts with previously 

recorded information, I deemed it necessary to assign levels of confidence to the current status of a 

grid square. This is determined by the number of times the square was visited, and the status of the 
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square as. it was found! during iliat visit. The starus is determined by the greater number: the 

number of visits the square was found to be empty versus the number of times it was found to be 

occupied. ~n the event of both numbers being the same, the system assumes that the square is 

fiUed. In my system the map is assumed to be static, That is, there are no moving obstacles, and 

the environment never changes. The confidence level is determined by dividing either the number 

of visits that showed the square to be empty or the number of visits that showed the square to 

contain an obstacle (whichever is larger) by the total number of times the square was visited. For 

instance, consider a square that has been vis~ted ten times. Say that the square was fOl!lDd to be 

empty two times, and found to be occupied eight times. This means iliat tile square is considered to 

contain an obstacle and has a confidence level of 0.8, as yielded by dividing eight by ten. A grid 

square is not considered to be mapped until the confidence is greater than point five, and the total 

number of visits to the square is at least nine. This is done to ensure that erroneous data is 

discovered by comparing multiple trips to the same location. While primarily serving to guarantee 

that the correct map is disco\'ere~ this also affords the machine learning system enough 

opportunity to gather a sufficient training set. 

Another component of a grid square is whether or not the square is on the horizon of the 

known map. For this mapping system, the horizon is defmed as the outer edge of a mapped region, 

and is used in the large learning system as an indication of the unknown aFea trnverse,d by the robot 

in a given path. The horizon is an expanding region of areas that are considered to be mapped. 

The area is contained by consecutively mapped squares or an outer wall. Outside the horizon is 

considered to be completely uncharted territory, regardless ofhow close to being mapped the area 

is. An area that is contained within the horizon is considered to be known and safe for the robot to 

traverse without difficulty. If this is not true, the area has been incorrectly mapped. Assuming 

normal operation of hardware system, these errors \"il1 eventually be discovered, and if the area is 

traversed enough times, will be corrected on the map. The map may contain islands of mapped 

areas and therefore many different areas with horizons, due to the mapping strategy and the random 

nature of creating goal locations for the robot to achieve. 

Each grid square is represented as a structure in an array of structures. This structure 

contains variables to convey all necessary information: 

l.	 The number oftimes the square was visited, either through the robot physically moving to 

the space, or by a sensor sweep, and found to be empty 
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2. The number of times the square was visited and found to contain an obstacle 

3. The status of the square (zero being empty and one being filled) 

4. The level of confidence in the current status of the square 

5. Whether or not the square is on the horizon 

These variables are set at various times, and are all set to a default state in the initialization of the 

map. All of the values are set to zero, meaning that the square has not been visited, is not on the 

horizon, and is asswned to be clear of obstacles with zero confidence. 

4.3.3 Linux Software - Unreachable Areas 

As the environments created will contain obstacles of notable size, and as it is likely that the 

theoretical outer edges of the environment will not be reached, it is necessary for the Jocation­

generating system to recognize the existence of solid objects, so as not to enter into infinite 

attempts to reach an unreachable area of the map. This is a deceptively difficult task. The outer 

edges ofthe·se objects are the only parts of the obstacles that will be discovered. However, 

depending on the accuracy of the sensory equipment and the generation of random locations to 

visit, it is possible that the outer edges will not be exactly determined until much time and many 

paths have occWTed. However it would be much more efficient to realize and recognjze these solid 

objects early in the mapping process, so that time is not wasted attempting to reach unobtainable 

areas. 

The method for recognizing the existence of solid objects is rather time and 

computationally intensive. The process examines every known grid square in the map. If a square 

is filled, the system attempts to follow the path of filled squares parallel to the x-axis, if there is 

such a path. When the end of this path is found, the process then moves along the y-axis, again 

following the filled grid squares. This continues, alternating between x and y-axes. If the starting 

coordinate is reached again, then the area inside the boundaries of this outer rectangle is marked as 

being occupied by an obstacle. This is a simple iterative process, which assigns values to the 

number oftirnes visited and the status of the square in order to designate these squares as filled. 

This system is redundant, but the repetitive nature of the system helps to eDSure that objects will be 

recognized by the system. 

Obstacles with large boundaries are recognized as being the outer edges of the actual 

environment, and are treated as such, marking the area outside of these edges as filled. This system 
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is not ideal in iliat it may not be likely that the robot will accurately determine the exact outer edges 

of an obstacle. The concern here is that the system may be able to trace the outside of an object, 

but may not end up exactly at the same coordinate that the process started at. Also, if there are 

obstacles up against the walls of the environment, this system may have a difficult time identifying 

these objects. Unfortunately this system was not tested with any real data, due to the problems 

with the vector compass. The extent of the limitations of this process is not known. The full 

system to recogn.ize the outer walls of the environment is not yet fully implemented, due to the 

problems with the compass. 

4.3.4 Linux Software - Random Number Generation 

At several points I needed to make a random decision or choose values randomly in order to 

create possible locations to travel to. For decision making I only needed two possible values, but 

for creating locations for the robot to travel to I needed to be able to create numbers that covered 

the entire range oftbe size of the map. So I combined these requirements into a system that 

generates a random number between 0 and 199, inclusive. 

It is difficult to create numbers that are actually random, but programming languages offer a 

number of options that can serve as solutions to this problem. While systems exist to generate 

random numbers, I did not have any viable options when I needed one, so I chose to implement my 

own system. My solution was to get the current microsecond and store it in a variable as the 

number of microseconds so far in the current second. I then take the sixth digit from the right (the 

one hundred thousands place) and store this value. I 'then take the third digit from the right (the one 

hundreds place) and store this number. I then take the second digjt from the right (the tens place) 

and store this value. I then place these three digi1ts i!nto a new variable which gets returned to the 

calling function. The digits are put into place by multiplying each by one, ten, or one hundred. 

The resulting integers are then added together. The magnitude by which the three digits are placed 

varies on a rotating basis, such that one will take the hundreds place, one the tens place, and one the 

ones place, but they will not take the same position until five more random numbers have been 

created. This prevents two random numbers called in rapid succession from being related or close 

to each other, in most cases. Any of the three digits taken from the current microseconds value can 

be zero, so the system actually does cover the range of zero to nine hundred ninety nine. One 
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drawback to this process is that it takes more computation time than is desired. This system has 

proven to be sufficient, and is certainly good enough for the requirements oftrus research. 

4.3.5 LiDUX Software - Pa1b Generation 

The system that gener-ates possible paths for the robot to take creates a number of options 

for the neural net to choose from. In the interests of speeding the learning process, and thus the 

mapping process in geneml, the system is guaranteed to produce some desirable options. The 

system wiiJI create seven completely random locations to travel to, regardless of whether or not 

they're already mapped or even if they are filled. The remaining three paths are guaranteed to go to 

an unmapped location on the map, as long as there are unmapped locations to go to. This is done 

by checking to make sure that the target location chosen is not yet considered fo be mapped. This 

does not mean that one or more of the random locations will not be a better choice' than one of 

these three "good" choices, but it means that there wiJll always be somewhere desirable to go to, so 

that when the machine learning system has been trained sufficiently, there will be a good option for 

it to recognize and choose. 

A variable between possible paths for the robot to take, besides simply the coordinate 

traveled to, is the nwnber of waypoints within the path. For this project I have defined a waypoint 

to be a point where the robot changes its direction of travel. This aUows the robot to move to 

locations by avoiding known obstacles and to gather more data per trip by covering more ground. 

decided that it would be pointless to have a waypoint where the robot does not change direction, so 

there are special cases, such as when the starting coordinate and goal coordinate are aligned along 

an axis of travel, which need to be handled separately. 

Note that if a path is not possible due to obstacles} the path generator will move the variable 

coordinate component successively closer to the starting coordinate in the hopes of achieving a 

clear path. Should this fail, the attempt to generate a path with that particular number of waypoints 

will also fail. If a path for a particular number of waypoints cannot be generated, there will be one 

less i.n the total number of paths that the neural network has to choose from. 

The function to generate a path with zero waypoints is the only function that actually 

changes the stored path that the robot will follow. The functions to create paths of one to five 

waypoints all call the function to create a path with zero waypoints. In addition, each of these 

generators also calls the function for the next smaJjest number of waypoints. That is, the function 
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to generate a path with n waypo~nts makes a call to the function to create a path with zero 

waypomts, and then calls. the function to create a path with n - 1 waypo.mts. The function for n - I 

waypoints then calls the function for zem waypoints, and then the function for n - 2 waypoints, and 

so Olll, unti~. the function c.all reduces to n + I calls to the function for zero waypoints, thus creating 

a path with n waypoints and n + ] transitions between them.. 

Each funclion for creating a path with more than 0 waypoints makes a random decision 

about the initial direction of travel. As it is pointless to have a warypomt in 'line with the start and 

goal coordinates, this possibility is excluded by overriding the random choice of direction in the 

subcalls. The end result of this is that only the direction of travel from the starting coordinate to the 

first waypoint is random, and the remaining movements alternate beNieen x and y, depending on 

the initial movement. A more complete version of this system will allow for initial movement in 

one of four directions. Given the current system of path generation, this is neither required nor 

possible. 

The functions for creating paths with certain numbers of waypoints takes aJ number of 

parameters. These consist of the starting x coordinate, the starting y coordinate, the goal x 

coordinate, the goal y coordinate, the randomization override value, the index into the list of 

commands, the number of waypoints currently being attempted for that index, and the number of 

the point that is currently being attempted. The starting and goal coordinates are self-explanatory. 

The randomization override value will only be zero, one thousand, or negative one thousand. This 

value is added to the result of a call to the function that creates a random value between 0 and 199 

such that if the override is zero, the value remains random; if the override value is one thousand, 

the random value is skewed to force the function to move in the x direction; and if the override 

value is negative one thousand, the random value is skewed to force the function to move in the y 

direction. This prevents the case where a path could contain waypoints that lie in line. The index 

into the list of commands and the number of waypoints being attempted keep track of which values 

in the array of possible moves are currently being altered. The number of the current point keeps 

track of the order of the waypoints. 

For example, the call to create a path with three waypoints would contain the start and goa! 

x and y coordinates, a value of 0 as the override value, the current index into the list of commands, 

a value of three for the number of waypoints, and a value of zero to indicate that the first waypoint 

is being created. After the initial direction of travel is chosen, a call for a path with zero waypoints 
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is made for the fIrst waypomt, and a call to create a path wiili two waypoints is made, after 

incrementing the CWTent point being created. 

Each of these functions has some bllilt~in capability for dealing with waypoints that cannot 

be reached. If an attempt to create a path between a set point and some attempted waypoint fails, 

the function c-an aliter that waypoint witllin a specific range in an attempt to fmd a more viable 

coordinate. IFor example. if a path wilth two waypoints fails on the fIrst waypoint, th.e path 

generator win move the tlrst waypoint doser to the originall point. [fthe waypoint gets too close to 

the starting point, the system wit! cease its attempts to create that path and report a failed attempt 

This system is not ideal in that ~t ~s not exhaustive; that is, it does not seek out every possible path 

with three waypoints before reporting that it is not possible. However, this system is only a tool 

tluough which to focus on the learning system, so I deemed this path generator sufficient for 

creating paths. 

The first path calls for zero waypoints. This path is simply a straight line from the home 

coordinate to the goal coordinate, and thus is only possible if either the x or y components of both 

locations are in line. A path with zero waypoints is not always possible, regardless of the density 

of the map and the placement of obstacles. The function first checks to ensme that either the x Of y 

• coordinates are in line, and then checks to make sure that the 

path is clear between the two locations. The system checks to 0---. 
see if the path is clear between two points by projecting the 

path of tbe robot between the points. It does this by centering 
Key: 

a line on the two points, and then examining the area on eithero Starting Locatlion 

• Goa~ Locat,ion side ohhat line, in a width equal to the radius of the robot. 
o eWaYlPoint This ensures that any space the robot will occupy is clear of 

obstacles. Figure 4.3.1 shows the two possible paths from 
Figure 4.3.1 - Possible paths with zero 

point A to point B. 
waypoints 

Like straight-line paths, paths with one waypoint are also not difficult to create. These 

paths are formed by two straight lines. This path can move fIrst along the x-axis, that is, remain on 
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• __• I • the horne y coordinate while travelling out to the x component of 

I the goal, or move first along the y coordinate. Thus if the starting 

I 0---. coordinate represents the bottom left comer of a rectangle and the o 
goall coordinate represents t1Ie upper right coordinate, the waypoint 

Figure 4.3.2 - Possible patbs v.;lb will be either of the remaining comers of the rectangle, depending 
one waypoio' on if the path moves first along the x or y~axis. This rectangle 

concept is the prelnise behind all paths that are created. Figure 4.3.2 shows the possible paths from 

point A to point B wi.th one waypoint. 

Paths with two waypoints introduce some more difficult issues to be dealt with. In the 

•	 ._. case where the starting coordinate and goat coordinate are in 

I It~ne, whether it be along the x or y-axis of travel, the function .1--·
 should still be ab~e to create a path with two waypoints. To 

o	 0-. acccmplish this, the function will make the first waypoDnt out 

from the starting coordinate some random distance away} along 
Figure 43.3 - Possible patbs witb two 

the opposite axis of travel ITcm the direction which is in line
waypoints 

between start and goal coordinates. If tl'le start and goal 

coordinates are not in line, the function makes the first waypoint in line witt1 eid1er the x or y 

component of the starting coordinate (where the initial direction is determined randomly), and out a 

value of half the distance between the respective coo.rdinates of the start! and goal. The second 

waypoint is created by moving along the other axis of travel so that the second waypoint is in line 

with the goal. Figure 4.3.3 shows the possible paths from point A to point B with two waypoints. 

Creating paths with three waypomts entails difficulties similar to those encountered in 

.-. I • creating pailis v.rith two waypoints. If the start and goal 

I I I coordinates are in Rine, the frrst waypoint is again chosen 

.1-. I j-e somewhat arbi.trari~y by a random value. Otherwise, the three 

o	 10-. waypoints are detennined by a distance ofhalf the distance 

between the respective coordinates of the start and goal. This 
Figure 43.4 - Possible paths with 

means that, in the ideal situation, the second waypoint will lie at 
three waypoints 

the center of the rectangle bounded by the starting and goal 

coordinates, as shown in figure 4.3.4. 

Paths v.-ith four waypoints are sl ightly easier create. In the event of the start and goal 
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-I .-_	 coordinates being in line, the function forces the Hrst 

waypoint to still be in line with both the start and goal e-' I r-·I coordinates. The function then calls the process to create a 
.-. I path with three waypoints, which will handle the situation of 

10 -. the coordinates being in line as previously described. 

Figure 4.3.5 - Possible patbs with four Otherwise. the first waypoint is determined by randomly
 
waypoints
 moving in the x or y direction a distance of one third the 

distance between the respective components of the start and goal coordinates. The rest of the path 

is determined by the creation of a path with three waypoints. The paths of four waypoints are 

shown in figure 4.3.5. 

Paths with five waypoints are handled in the same way as paths with four waypoints. The 

'-_1	 _ only difference lies in the fact that the path is created by a 

path with zero waypoints, and then a path with four T-e I I •	 ___ 
I 

v.,-aypoints. These possible paths are shoViTI in figure 4.3.6. e-e I .-~-	 I This solution for generating paths with various 6 10 -. numbers of waypoints is not the ideal one. There are 

Figure 4.3.6 - Possible paths with five arguments to be made for changing many aspects of the 

waypoints system. A more robust system would allow for travelling in 

more directions, and for maneuvering around obstacles. However, as this project merely calls for 

creating a variety of options for the strategy system to choose from, this system is sufficient 

4.3.6 Linux Software - Primary Learning System 

Originally, I intended that the primary machine learning system on the Linux system was to 

be a different type of machine learning. I ultimately decided that the large scale learning system on 

the main Linux computer would be a neural network, in order to conserve the overhead of time 

involved in implementing a new machine learning system, and to be consistent with the rest of the 

project. The decision to remain with neural networks created a need to recast the representation of 

the system so that I could feed it into a neural net in a meaningful and useful way. 

The neural network is given a number of different paths on which to send the robot for data 

collection. A representation of these paths is put into the net, and the system compares the output 

of each path to see which path will theoretically produce the most useful information. When a path 
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The third input to the net is a measure of the density of known objects in the area covered 

by the proposed path. The density of dle area deady can have a direct impact on the number of 

waypoints necessary to maneuver around obstacles, and can aJ!so have an effect on the estimate of 

success of the path in general. This information is included as a path through an area with high 

density may be less likely to be suocessful, due to the larger number of chances for the robot to run 

into an oDject where it doesn't expect one. This could serve to lower the predicted success of the 

path. The density for a particular path is determined by examining the ratio of filled grid squares to 

'the total! number of grid sqUMes over the relevant area. The relevant area in, tms situation is defined 

as the rectangle fonned by making the slarting coord'rnate the lower left hand corner, and the goal 

coordinate the upper right hand comer. To make sure that thi,s actually includes some infonnation, 

a buffer often grid squares is added alii around that rectangle. This process includes much error 

checking to ensure that the system does not try to step outside the boundaries of tll.e map. The 

function iterates through each square contained in the rectangle, and rncrements a courtter, 

depending on whether or not the square is occupied or empty. Finalily the function returns the ratio 

detennined by divid.ing the number of fitted squares by the total number of squares in the rectangle. 

The fourth input to the net is the number of waypoints contained in the path. This is 

important as it, in combination with the density of the area to be covered, may have an impact on 

the success of the path. A path with a large Dumber of waypoints may introduce more opportunity 

for the robot get off track and become lost The number of waypoints also has a direct correlation 

to the amount of data that can be collected, and hence affects the usefulness of executing that path. 

While the actual training of ~his network could not take place due to the problems with the 

vector compass, I had a plan for this part of tbe project that should receive some attention. 

Whenever the robot returned to the Linux machine, it would report back information that the Linux 

system would then interpret. Part of the interpretation was to add the results of the trip to the 

training data for the network, by adding the input and the actual result to the training set. The 

usefulness of the trip is detenn.ined by taking a scaled value of the number of grid squares visited, 

and dividing this number by the number of seconds that the robot was on the excursion. The time 

spent on the trip is measured from the time the last element of the path to be traveled is uploaded to 

the Handy Board, Wltil the Handy Board re-establishes a communications link: with the Linux 

machine. This means that I need to be quick and consistent in attaching and detaching the serial 

link between the two computers. The number of squares visited is determined by counting all of 
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the squares that the robot passed through on the path, including those covered by the width of the 

robot. The number of squares covered hy the sensor sweep at the end of the path would be 

detennined by cOWlting every square within range of the sensor. Those squares that were already 

counted by the robot physically moving through them are subtracted from the count created by the 

sensor sweep. Every square encountered, through either travel or the infrar,ed sensor, would have a 

vaJue assigned to it, based on how useful it was to map that square. If the square was not 

considered to be mapped yet it would be more usefull than rechecking a square that had a~ready 

been mapped, and woufd receive a higher rating of usefu~ness. This is computed simply by 

assigning a larger number to tFle usefulness rating for mapping an unmapped square as opposed to 

re-mapping a square that had already been mapped. Squares that lay beh.-ind an obstacle in a sensor 

sweep were subtracted from the total number of squares visited. TIUs would avoid the situation of 

rewarding a trip for squares that were not actually mapped, and also avoid reducing the usefulness 

of the trip simply because there were squares that could not be seen. 

The success of the trip is fairly simple to determine. If the robot achieves its goal location 

and performs the sensor sweep, the trip is assigned. the highest success value. If the robot 

encounters an obstacle and cannot achieve its goal location, the success is determined by dividing 

the number of grid squares that were actually visited by the number that would have been examined 

had the target location been achieved, including those covered in the sensor sweep. 

If the trip was not one hundred percent successful, that trip will still be added to the training 

set. A second trip will also be added to the training set as well. This fictitious data set is the trip 

that would have performed had the target location where the robot encountered an obstacle. The 

input for this trip is determined using the same processes applied to actual trips, and the outcome is 

assumed to have successfully examined all possible grid squares, including all those that could be 

covered in a sensor sweep, and have taken the same amount of time that the failed trip actually 

took. 

4.3.7 Linux Software - Light Tracking Network 

The ftnal version uses two input nodes, two hidden nodes, and one output node, as 

previously described. Output for this node is binary, where a 0 signiftes turning left, and a 1 
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signifies turning right. While the network is used on the Handy Board, the network was pretrained, 

in that the starting weights were hardcoded from the results of a network run on the Linux machine. 

This net will be discussed in greater detail in Chapter 5. 

4.3.8 Linux Software -Infrared Data Interpretation Network 

The neural network to interpret infrared sensor readings is similar in structure to the light 

tracking network, except that this net runs exclusively on the Linux system, and uses more hidden 

nodes. The net contains one input node, twelve hidden nodes, and one output node. The input 

value is the reading from the infrared sensor. The output value is the distance in terms of clicks of 

the shaft encoder. The structure, results, and experiments associated with this net will be discussed 

in greater detail in Chapter 5. 
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Chapter 5 

Experimentation 

5.1 Introduction 

There were three neural networks tbat I designed and implemented in this project. All of 

the nets utilized the same underlying code, and varied only by the number of nodes used in each 

layer, and the number of iterations of pre-traitting. The first net served as a ]ight-tracking system 

for the robot, the second! was a system for interpreting the data returned by the infrared ranging 

sensor, and the third net was a system for creatrng a strategy for efficientty mapping an unknown 

en\'ilforunent. 

Each o'fthese networks had its own design and implementation issues that I had to confront. 

There were some overlappulg issues and problems that applied to the nets, however tbe solutions 

were generaUy u~lique to the specific situation. Successfully completing these nets involved som.e 

degree of trial and error and experimentation. 

5.2 Liglht T'racking Neural Net 

5.2.1 Structure ofthe Net 

The light tracking neural net is the only network that was run on the Handy Board. h is also 

run on the Linux macmne however, in a pre-training process. The structure of the 'network lis the 

same on both computers, despite the necessary imprementation differences. 01.] both machines the 

final version of the net consists of two input modes, being the left and right tight sensors, two 

hidden nodes, and a single output node, consisting of the direction to rum. 

Earlier versions of the net, however, utilized alll three available light sensors. These 

versions of the net had three input nodes, one for each Dight sensor with the left sensor being the 

fIrst node and moving to tbe right. The network at this point had more hidden nodes as well to 

allow the three i.nput values to be faidy represented. The number of hidden nodes ranged from six 

to twelve. I a~so experimented with the number of output nodes. I toyed with the idea of having 

the network output a binary number signifying the direction to tum, followed by a second output, 

which was the number of degrees to tum in that direction. However as the compass was not yet 

implemented I could not pursue this approach. Another structure of output nodes that J attempted 
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was a system that would have two outputs, which would represeot power sent to the two motors. 

As it ,turned out, the structure of the outp.ut nodes may have been viable options for a two-input 

system, but the three-input node system turned out to be too compl'ex to tra'in. TIlls was due to 

reasons of the tFaining set involved, and wm be examined in more detaiL 

In the fInal version of the net, with two input nodes, two hidden nodes, and one output 

node, I also varied the number of Ilidden nodes during the experimentation process. ] started this 

version of the net with more Ulan two hidden nodes, and gradually worked my way down through a 

process of experimenting with the structure of the net. Clearly a smaller network is preferable to a 

llarger one due to, memory and computation lirnitalioFls. ] was fairly surpri'sed to observe that it was 

actually easier and faster to tmin a network that contained two hidden nodes as opposed to some 

farger number. 

5.2.2 Pre-Training 

Running the oet on the Handy Board took a large amount of time, I initially started training 

the net with a very ideaIistic view of'the system. I p'1anned to run the robot through many actual 

scenarios, providLng a supervised! learning system by teUing the robot which way to tum by 

utilizing the start and stop buttons OA, the Handy Board. I did this for both the three and two~input 

node versions of the net. With the three~input version, the robot had three options for travel: left, 

.s1raight; or right. With the two-input version Flimited the options to either turning left or right. 

While not perfect, the robot does not tum very far in a single move, such that the robots inability to 

go straight lis not problematic. 

The process, to this point had been to place the robot in the environment, let it take readings, 

telil it the direction to turn, let it loop through the training loop a few times to speed up the training 

process, and then have it run the input through the net and tum in the direction prompted by the 

output, regardless of its COll'ectness. The {'obot would then move a short distance in that direction. 

I rapidly got tired of waiting fOF the robot to tum and move, so I cut this part out of the system, and 

chose mstead to place the robot in realistic positions to create the training set. 

My hope was thal this process would quickly begin to reveal that network was learning 

which direction to turn in, and that I would observe a shift towards the robot making better 

decisions about which direction to tum in, It quickly became clear that this process would take 

much too long to be useful. As a time-saving innovation, I opted to pre-train the network. I did 
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this Erst on the Handy Board, but it became clear iliat the Linux system could perfoITIl this pre­

training much faster than the Handy Board was capable of. When I did pre-training on the Limux 

machine, I needed w get the [mal \\eights from the Linux system to the Handy Board. As the 

communications software was not yet fully implemented at this point, I did this by hand, entering 

the weights on the Handy Board as the initial values of tlIe weights for the Handy Board's net I 

couJ:d also test the net on the Linux machine, and did so by running through a series of input 

scenarios. Once I had a working network, ] experimented with the system by starting the training 

process over and reducing the pre-training that was done. Finally I had a net iliat was pre-trained 

as htUe I found to be necessary, and I put this less extensively trained net on the Handy Board. 

From there I continued training on the rolDot, and was then able to see improvement in the decisions 

,that the network made. 

5.2.3 Training Set 

The original training set consisted of actual data gathered by the robot. As previously 

discussed, this proved to be much too time consuming. The next t.ra.ining set that I used was 

generated by tbe robot, by placing the robot in realistic positions and recording tbe sensor Feadings 

at those points. I quickly realized that this wasn't reallly necessary, and began to generate my own 

dlata points by extrapolating from the teal points. This was necessary as it became clear that [ was 

going to needmore than a handfu1 of data points in my training set. 

Eventually it seemed as tho,ugh this was not going to be sufficient. At this point I 

introduced a series of compietely fj,ctitious data pOLnts to the training set. This beg.an when I was 

stilll!lSil1g three input nodes instead of the [mal version consisting ofjust two. [abandoned my 

,actual data points, and replaced them !by looping through a series of artificial data points. I did thjlS 

by looping thrOUgfl possible input values with various increments between the input values. For 

instance, for a series o,f points with an increment of ren, the data points that would have the robot 

tum left would ~ook like 20, 10, 0; 30, 20 ,10; and so on. Points having the robot go straight would 

look like 0, 10,0; 10,2010; and so on, This was clone for values within the range of zero to two 

hundred fifty five (the output range ota light sensor), and for increments often, twenty, and thirty. 

This worked very well for the cases where the robot had to tum either left or right. Howe.ver, in 

more than half the scenarios where the robot needed to move straight ahead, the net would tell it to 
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rum one way o,r the other. This was troublesome and time consuming to attempt to track down. 

Therefore] moved to the two input node version of the net. 

I also used my same incremental pre-training modd on the two input version of the net as 

well. This obviously involved only two inputs, and so it was much easier to produce the trai.ning 

set and train the net. Upon exanlining actual data from the light sensors however, ~t appeared that 

the angle between the. left and rightmost sensors was such that there would not usually be a 

difference as small as ten bet\veen the two readings. Therefore I changed my training set to run in 

mcrements of 'twenty, thirty, and forty. This version seems to work very well. 

5.2.4 Training the Net 

Training the actual network took a surprisingly small amount of time. In the versions of the 

network and training set that I came up with prior to the fInal version, I inoreased the number of 

iterations through the training set in an attempt to gain better results. However as I approached the 

final version of the net, I was surprised to observe that the number of iterations needed to train the 

network was much lower Ithan I thought would be necessary. W~th each iteration I would ,run 

through the entire training set once. This is a sizable amount of information. Eventually though, I 

,detennined that it was only necessary to run through one hl!lIldred iterations of the training set to 

train ithe ne'twork. Any Ilarger fil!lffiber of iterations would only serve to reinforce the function that 

the net had already learned. To put this ,in perspective> one hundred ~terations through this traililing 

set would take less than a minute, which is substantially ress ,than other networks that I was n.mnmg 

in this project. 

5.3 Infrared Sensor Interpretation Neural Net 

5.3.1 Structure of the Net 

This network served the purpose of interpreting infrared ranging sensor data by putting it in 

terms of a distance in units of clicks of the shaft encoder. With this in mind, it is clear that there 

would be one input node; the value of the lR sensor> and one output node; the distance in terms 

useful to the map. With the experiments of the previous net showing that fewer hidden nodes can 

often be preferable, I used this approach to begin with. However, due perhaps to the complexity of 

the function, lower nwnbers of hidden nodes did not seem to generate better results for this 

network. This function is made complex by the extremely noisy nature of the data. The training 
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set is not a one-to-one FeJlationsrup at various points, although the network is attempting to create a 

one-to-one function during the training process. 

Once] detennined that fewer nodes WQuid not provide the solution that I needed, I focused 

my experiments on shghtly larger numbers of hidden nodes. My experiments ranged from ten to 

twenty hidden nodes. The final version uses twelve hidden nodes. My procedure consisted of 

training the net, and then running a test set through the network. I then compared the outcome of 

this test set with a sample of the training set to see how close ,the two were. [did this by graphing 

both together and comparing the Jines graphed. The acmal training set would contain some noisy 

data, and some conflicting data. My measure of success of the net was based on how close together 

the two graphs were. Where the training data became noisy and contained conflicting data, I 

looked for the trained net to follow the average of this data!. 

It ,is difficult to d~aw condusi01ilS based sorely on varyLng the number of hidden nodes. The 

number of iterations at which it was necessary to tFarn the network was such that it took anywhere 

from three to eight hours to train the network and have data that was worth graphing. Due to tills, I 

was unable to VaJ5' one parameter at a time with every attempt at running the net. iF,ewer numhers 

of hidden nodes meant a shorter training tim.e, however often not significantly so. 

53.2 Pre-Training 

Like the light tracking net, this network is pre-trained. However, unlike the light tracking 

net, this net is entirely pre-trained. In the light-tracking system I allowed for the robot to continue 

the training process during real~wor[d situations, whereas this net is pre-trained with the training set 

and then thought to be entirely static. I assume that both the IR sensor and the shaft encoder will 

present constant findings over time. However, it is necessary to note that this process must utilize 

the original findings of the size of a grid square. TIus system was run with no other sensors 

enabled or running, and little other code running to take up processor time and memory space. As 

previously discussed, the rate of clicks returned from the shaft encoder is about halved when the 

complete system is rWilling on the robot. But the data collection for this network was performed 

without the complete system running, as it hadn't been implemented yet. Therefore it 'is important 

to remember to use the original size of a grid square when using the output from this net. 
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5.3.3 Training Set 

The training set for this net \\ as gathered by using the robot. I gathered quite a bit of 

infonnation for the data set, and most of it was fairly consistent. The IR sensor has an effective 

maximum range, which is fairly apparent when examining a graph of sensor readings versus 

distance as measured by the shan encoder (f~gtlre 5.3.1). As Can be seen in the 
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Figure 5.3.1 

graph, the d!ata is fairly consistent through an IR sensor reading of about seventy. That is the point 

at which the sensor data becomes consistently noisy and difficult to interpret. As I attempted to 

train the network, I found that the resulits ",,'ere heing shifted up the graph, and I anributed this to 

the fact that the data set was not representative of the area that I cared about the most. This was 

due to the way that I gathered data, 

I gathered the data by baving the robot record the distance traveled every time the IR sensor 

changed its reading. However, the sensor changed quite a bit more often in the noisy range., so 

there were many more data points in this range, The sensor gathered more data in the noisy range 

as it would often receive many different readings when located at the same distance away from an 

obstacle. As the robot moved into the range where the sensor started to return values of seventy 

and above, the correspondence beh...·een IR sensor and distance from the obstacle became one-to­

one, so there was only one distance for each IR reading, and hence fewer data points to consider. 
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5.3.2 - Output ofIR Net "5. Training Data 

still many issues wllth the net, but I was finally able to obtain a net that produces meaningful 

infonnatioll! over the useful range oflR sensor readings, as shown irn. Firgme 5.2.2. I determined the 

useful range of the sensor to be for readings greater than seventy. 

5.3.4 Training the Net 

Trai.ning the net was a long and time-consuming task. With every change that I made to the 

network, I would need to train the net and check the output As training the net took anywhere 

from three to eight hours, and better results were Dot necessarily guaranteed, this was often a 

Once I realized this fact I started to count the important range of data, where the JR sensor read 

seventy or greater, many more times, in order to have both ranges COtmt equally as much, and to 

make the training set more representatrve. 

As time progressed though, I shifted mo.re and mOfC importance onto the range between 

seventy and greater. FinaU)' J cut the other values out of the 'training set all together. There were 



discouraging task. The number of iterations ranged from five thousand to one hundred 'twenty 

thousand. I was attempting to get as precise an output as possible from this network, so adding a 

few thousand more iterations morder to get a single unit closer to the target data was worth it. It 

quic'kty became apparent that as I trained the net more, 1 had to .make more d!rastic changes in order 

see any effect. for instance. the difference in resclts between running the training set for one 

hundred twenty thousand iterations and ninety thousand ~terations ES very small. 

5.4 Mapping Strategy Neural Net 

It is impossible to discuss this network in great dew I, as the probien-lS with the electronic 

compass Ii'mi,tcd the results that I was able Ito gather. The structure of the network has been 

discussed in the previous chapter. I never settled on the internal structure of the hidden nodes for 

this net, as I could Dot experiment without a reaL data set. My plan for this network was to run the 

training set through the net after each data gathering excursion performed by the robot. ] 

aJilticipated that I would nm the training set through several iterations each time it was run. [also 

planned on ,creating. a system to cycle through the trailling set, as the initial trips would be over­

represented in this train.ing scheme. 

I contemplated the idea of training this net on data generated by me, but chose not. to pursue 

this approach. .I could easHy generate locations to travel to, and create a series of data to train Ute 

net with, however this wouldl not take into account the. hardware discrepancies that I anticipated 

would be present on the robot. As this is a m<ljor point of interest toe me, I chose not to continue 

along this path, 
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CHAPTER 6 

Conclusions 

6.1 Introduction 

A research project such as this one can never really be considered to be completed. There is 

always some aspect left illlfinished, or some component which can be expanded or enhanced in 

some way. My project is no different than any other in these .r.egards. Despite these areas that can 

and should be expanded or oompleted, there are many other areas which are cmnplete, and a great 

number ot'lessons which have been learned. 

There are two main aspects to reflect upon, the first ofwhicfl ,is what I learned. When I 

examine these issues, I focus on passing on the lessons that I learned to someone dse, rather than 

lis.ting the numerous topics that I learned about. The second aspect is that of what is completed, 

and what needs to be done. ] ge:ar this section primady towards future researchers, so that others 

will know of the issues Jam facing, and in the hopes that others will apply their perspectives and 

ideas to further my research. 

6.2 Lessons Learned 

6.2.1 Robot and Hardware 

Given that I had never had any instruction in creating hardware systems sueh as the ones 

incorporated into my robot} this was an area involving a great deal of research as well as trial and 

error. The first strategy that I would recommend involves giving a lot of thought to the design of a 

robot. There were many issues and problems that arose with my robot that I could not have 

foreseen, and it seems as though this is a general tnlth. So to minimize this issue, I strongly 

rewmmend putting much time and energy into thinking about the demands that will be placed on a 

robot, and implementing and testing prototypes whenever possible. This will decrease the number 

of long-term issues that \\~ll need to be confronted, and make for a more robust robot system in 

general. 

Along a similar line, giving a lot ofthougbt and planning to choosing which sensors to use 

is another time-saving recommendation. I put a good deal of thought into the requirements of my 

robot, and this helped in my choosing sensors to purchase and implement. Along the· same line, I 
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whole-heartedly advise getting hardv."are components which are best suited for one's skills and 

abilities. In my case, I would have been much better off huying sensors that required less 

construction. While my goals for this project invollved learning about wiring and soldering 

electronic components, not aU of my sensors were quite wit.hUI reasonable grasp of my skills. I 

sank a great dea1 of time into the implementation of my sensors, and in the case of the electronic 

compass. was not entirely successful. While I am grateful for the opportunity to learn what I did 

about solder,ing and wiring, too much time was spent all' these hardware issues. and ultimately more 

software and results would have been achieved had I been able to eliminate these hardware issues 

in amore timely fashion. 

Similarly, I have found that it ils mucb more beneficial] to seek mIt hdp from those more 

experienced rather than attempting to force through some issues. While it is oat belpfu1 to anyone 

to simply ask for help from the start without making some sort of effort, there are many resources 

which can serve as educational tools. Without any background in electrical engineering, it was 

essentially impossibte for me 'to interpret the electrical schematics of sensors without externa.l help. 

Sources such as the internet and the Handy Board Mailing Lisr4 were mvaluahle to me ill 

determining how to wire the sensors that I used. 

6.2.2 Neural Networks 

As with my background in hardware topics, I was relatively new to machine learning and 

neural networks at the beginning of this project. When I refer to the size and complexity of a 

network, I am referring to the number of hidden nodes in a net. In my experiments, the number of 

input and output nodes was fairly obvious for a problem, and thus was not really variable. Thus the 

only variable left for the structure of the network is the number of hidden nodes. 

The biggest piece of advice that I can offer to someone experimenting with neural nets is to 

start small and build up from there. This is true for several reasons. First of aU, it simply makes 

sense to start with a simple design and build complexity into it. By starting with a simpler design 

and adding to it I was generally able to watch the results get better as experimentation progressed. 

Then it was a fairly simple task to add complexity to the net until the performance of the network 

was satisfactory, and the performance increases yielded by further complexity were negligible. 

Another benefit of starting small is that a smaller net takes less time to train and examine the 

24 Handy Board Mailing List 

58 



results. As the comp1exity of a net increases, the training process takes longer, and 'the process 0,1 

gathering and comparing results thus takes more time. 

The ,truly difficult part of exper~mentingwith neural nets is recording the differences 

between the nets and the resuhs of each. As I varied such components as the number of hidden 

nodes and the number of iterations ohhe training process, each different net would yield a set of 

results. First of all, it is difficult to determine whether a change in the number of hidden nodes in a 

net or the number of training iterations made a change in tbe resu~ts of a net. Therefore it is 

importaot to vary onJy one of these variables at a time, which can De rather time consuming 

depending Oil! the size of the net and number of ~teIatiolilS for the training set. J have found that 

keeping a good set of Dotes for each change made to the net is critical to being able to track the 

effects of changes. Tlus is especiallly true if a test of the network takes severa~ bours or ,days. 

6.2.3 General Lessons 

Generally, my most significant piece of advice is to write about sections and systems as. 

they are completed. ] did ,this to, some degree, and increased my po~icy of this as I progressed in 

Ithe project. When doing background Fesearch it is easy to make write summaries and small topic 

papers along the way, and these mini papers can be plugged into a flnal paper with relative ease. 

This is somewhat more difficult when creating a hardware system, but design notes and brainstorm 

sessions are a good way to track the design and thought process behind d~signing a robot. Keeping 

track of changes when writing code may be the most difficult task of all ]t is very difficult to write 

about code before it is completed, given the large number of p.roblems that arise and changes that 

end up being made to code before it is complete. I have found that the best solution here is to keep 

a good system for commenting code. Well commented code can not oIrly be understood by others 

who might wish to read the code, but it also serves as an outline for a paper. Comments in code 

speH out the process and ,thought behind! the code in a concise and strnightforwaId way, and in my 

case couJld often be put directly into a paper. 

6.3 Future Work 

Many aspects of the p.roject that I originally set out to do have been successfuUy completed. 

Some others are currently held up by h.ardware implementation issues. The completed topics are 

certainly not trivial, and are aU discussed earlier in this paper. Among these are such large-scale 

59 



topics as building the robot, building the software system to control the robot and tie together the 

learning systems, and impl'ement}ng three nets and testing two of them. As mentioned at various 

points in this discuss~on. there were several topics that were not completed, or were not completed 

to my satisfaction. 

Clearly the problems with !he electronic compass prevented some of the project from bemg 

completed. Also, some components, such as the pa!h genera!ion system, were implemented only to 

the point of being suffic.ient for the· current state of the system. Topics such as these could he 

furthered to be more complete and operate with. greater efficiency. These current issues and my 

hopes for the project help to create em impressive list of topics for future work. 

My first hope for future work is to complete the system as it lies no\.-", This primarily 

entails working on the electronic compass more, and making it work correctly. The proper 

operation of the compass would yidd the ability to test the rest of the code that I wrote, induding 

the primary learning system. 

Another topic for future £1esearch entails lintroducing multiple robots into the environment 

This includes a surprismg numbe.r of problems and opportunities [or more research. The first issue 

is that there ,is now one or more robot in the environment at a time, essentiaBy creating multiple 

moving obstacles in what was previously a static environment. There are several possible solutions 

to this problem, all of which include further subsystems. There is the possibility of having more 

than one starting coordinate, with each corresponding to a different robot. This would involve 

having sections of the map assigned to a specific robot, but that implies some sort of fore4 

knowledge of the map. Another solution would be a scheduling system, involving a central 

computer assigning tasks to robots in such a way as to avoid collisions. This is a somewhat dull 

and imperfect solution however. A more interesting system might involve inter-robot 

communications, both for avoiding collisions, and perhaps also for a more intelligent and accurate 

system of mapping based on comparing two perspectives of the same area of a map. 

Another interesting possibility with the introduction of multiple robots is giving individual 

robots different skills and different tasks. This could require some sort of cooperation between 

robots, as one robot may be assigned the task of mapping an area that it is not capable of mapping 

for some reason (perhaps due to different terrain in the area, or restrictions placed on a robot). This 

would be a particularly interesting system to apply machine learning to, to examine any emergent 

behavior in the relationships between the individual robots. 
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Another hardware issue to be addressed is the seriat communications link between the 

Handy Board and the Lirrux computer system. It is truly irritatmg to have to connect and 

disconnect the telephone cord between lhe two compute]' systems. It would be possible to 

unplement either an infrared communications system, or a wirdess radio system between the two 

computers. This could also be a longer range connection, such that the robot may not always have 

to return to the starting coordinate to report back its fmdings and receive new instructions. 

Beyond the hardware issues, there are se\'era~ software implementation wpics which could 

be enhanced ali increased. The obvious issue is that of the path~generation systelIli, on which l cut 

some cor.ners in order to have a working system. The system could be marginally eooaJ'lced by 

incmporating more options for paths into this system. Additionally, i would Hke to increase the 

presence of machine learning systeI'l'lS in the whole system. There are many more areas where 

machine learning system could be incorporated, and it would be interesting to examine the effects 

of putting more of the system into the control of a learning system. Finally, I believe it would be 

quite intefesting to create a successful system whh one type of machine learning, and then re­

implement the components of this system with different machine learning systems. Comparirng the 

results could perhaps lead to combining the S)'st€IDS to CFeate a very efficient mapping and 

navigation system based on multiple machine learning approaches. 
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Appendix A: Robot Base 
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Parts List: (Corres londs. to 3 Fieures Followin~ this Chart) 
Part: Num. Supplier Information Reference 

Num 
Dri.ve Wheels - 3 1/4" 2 DuBro I 
1 11/16" Castor Wheel I Hardware store 2 
Lego Wheel = I I Lego Robotics Technology Kit 3 
1\/16" x 1.12" I 

GeaJl'ed MOlors '2 Herbach & Rademan Co., 16 Roland Ave., Mt. Laurel" NJ 08054, 4 
(856}802-0422 
.Pan #: lM90Mli'Rj 1.66, "25rpm 12vdc" ($27.95 ea.) 

'93/8" x 9 3/8" x 1/4" 
I I Scrap wood 5 

o-Iywooo 'I 
2" x 3" x If2"' pl'ywQod I Scrap· wood 6 
3 3/4" x I" x 1/4" pine 
2 1/4" x 4 112" x 1'/2" 

I I 
1 

, Scrap wood 

IScrap wood 
7 
g 

pine 
, 2 112" x.2 1/2" x 1/2" I Scrap wood 9 
i pine 

j" aluminum scvcws 12 I Hardware store 10 
\,12" brass scre.ws 8 Hardware store 111 
Perfl30ard I Electronics store 12 
Precision Na\>igalion I Jameco, 1355 Shoreway Road, Belmont. CA 9400 I, 11-800-831­ 13 
Elec·tronic Compass 4242 

Dan #: 126703, "sensor, magnetic compass elect." ($49.95 ea.) I 

Sharp GP2D02 I Acroname, Inc., PO Box 1894, Nederland, CO 80466. 14 
Infrared Ranger (303)258-3161 

pan #: R19-fR02 ($21.00 ea.) 
Optical Snaft Encoder I US Digital, 1110 NE 34 lD CiEcle, Vancouver, WA 98682, 15 

(360)260-2468 
pan #: SI-2S0-NT, "softpot optical shaft encoder, sleeve h~lshing 

version, with no added tora.ue, 250 CPR"', ·$49.95 ea.) 
Light Sensors 3 Electronics store 16 
Strips Brass Fall 2 Hardware slore 17 
StripS Brass 2 Hardware store 1& 
Brass Wire 6 Hardware slore 19 
liandy Board 1 Gleason Research, PO Box I~47, Arlington, MA 02474 20 

I Pan #: GRHB ­ Mac (S299.00 ea) 
I" Brass Nails 10 Ha[dware store 21 
Pipe Insulation NA Hardware store 22 
Wire NA I Electronics store NA 
Sl}rink Tubing NA Electronics store NA 
MaleJFemale Strip NA Electronics store NA 
Connectors I 







Appendix B: Hardware and Sensors 
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