
Colby College Colby College

Digital Commons @ Colby Digital Commons @ Colby

Senior Scholar Papers Student Research

2000

Machine learning and small robot navigation Machine learning and small robot navigation

Christopher Ireland
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/seniorscholars

Colby College theses are protected by copyright. They may be viewed or downloaded from this

site for the purposes of research and scholarship. Reproduction or distribution for commercial

purposes is prohibited without written permission of the author.

Recommended Citation Recommended Citation

Ireland, Christopher, "Machine learning and small robot navigation" (2000). Senior Scholar

Papers. Paper 126.

https://digitalcommons.colby.edu/seniorscholars/126

This Senior Scholars Paper (Open Access) is brought to you for free and open access by the Student Research at
Digital Commons @ Colby. It has been accepted for inclusion in Senior Scholar Papers by an authorized
administrator of Digital Commons @ Colby.

http://www.colby.edu/
http://www.colby.edu/
https://digitalcommons.colby.edu/
https://digitalcommons.colby.edu/seniorscholars
https://digitalcommons.colby.edu/student_research
https://digitalcommons.colby.edu/seniorscholars?utm_source=digitalcommons.colby.edu%2Fseniorscholars%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages

MACHINE LEARNING AND

SMALL ROBOT NAVIGATION

by

CHRISTOPHER IRELAND

Submitted in Panial Fulfillment of the RequirementS oflhe

Senior Scholars Program

COLBY COLLEGE
2000

Christopher Ireland

Senior Scholar Approvals

APPROVED:

~~

Randolph M. Jones'

Abstract

Developing successful na\ igation and mapping strategies is an essential part of

autonomous robot research. However, hardware limitations often make for inaccurate

systems. This project serves to investigate efficient alternatives to mapping an

environment, by ftrst creating a mobile robot, and then applying machine learning to the

robot and controlling systems to increase the robustness of the robot system. My

mapping system consists of a semi-autonomous robot drone in communication with a

stationary Linux computer system. There are learning systems running on both the robot

and the more powerful Linux system.

The first stage of this project was devoted to designing and building an

inexpensive robot. Utilizing my prior experience from independent studies in robotics, I

designed a small mobile robot that was well suited for simple navigation and mapping

research. \\Then the major components of the ro bot base were designed, I began to

implement my design. This involved physically constructing the base of the robot, as

well as researching and acquiring components such as sensors. Implementing the more

complex sensors became a time-consuming task, involving much research and assistance

from a variety of sources.

A concurrent stage of the project involved researching and experimenting with

different types of machine learning systems. I finally settled on using neural networks as

the machine learning system to incorporate into my project. Neural nets can be thought

of as a structure of interconnected nodes, through which infonnation fi lters. The type of

neural net that I chose to use is a type that requires a known set of data that serves to train

the net to produce the desired output. Neural nets are particularly well suited for use with

robotic systems as they can handle cases that lie at the extreme edges of the training set,

such as may be produced by "noisy" sensor data. Through experimenting with available

neural net code, I became familiar with the code and its function, and modified it to be

more generic and reusable for multiple applications of neural neLS.

The next stage of my project involved implementing my neural net system on my

robot. My ftrst task for the robot involved creating a system that would allow the robot to

track a light source. The next application of neural nets was a system that interpreted the

data returned by a ranging sensor, putting this distance information in terms of units

relative to the robot. These two networks proved to be very successful and useful.

The third and largest application of neural nets in my system was a system that

would determine the best way for the robot drone to map an unknown environment. I

implemented a system that would generate a number of possible paths for the robot to

pursue to gather infonuation about the environment:, and then upload that infonnation to

the robot. The third neural net is the system that chooses which of those possible paths is

would be the useful to pursue. This net examined a representation of each path, and

output a measure of the projected usefulness and success of the path.

At tills point I also created an environment in which to run my robot and test the

mapping system. This is also when I discovered a problem with the compass on my

robot. This sensor problem prevented the robot from C{)nsistently knowing which

direction it was moving in for more than a minute or two, and essentially crippled the

useful flUlctions of the robot. This prevented testing the third neural net, as well as the

overall mapping system.

Due to these hardware issues, it is impossible to draw any overriding conclusions.

However, I completed most of the project with positive results. The robot I built turned

out to be very successful. despite the issues with one sensor. I was able to apply neural

nets to two aspects of controlling the robot, and the software system for controlling the

robot is quite large and extensive. Overall the project has promising results, and was a

tremendous experience. There are also many areas that remain for future research,

including testing the remainder of my mapping system, and introducing more variables

such as multiple robots, and implementing other machine learning systems.

(Copyright) Christopher Ireland 2000

All Rights Reserved

Acknowledgements

There are many people who played important roles in this project. Th~ fust

person to thank is my advisor, Clare Bates Congdon. Clare's role was quite extensive, as

she was a resource of knowledge, materia~s, and a perspective very different from mine.

This project would not have been possible without Clare's knowledge of robotics and

machine learning, and would not have gotten very far without our brainstorming sessions.

Also at the top of the list are my readers for this project, Randy Jones and Dale Skrien.

They have offered help and suggestions at various points throughout the semester, and

were kind enough to read through my paper multiple times. Allen Downey of the

Computer Science department has also offered suggestions and help over the course of

the year.

I would also like to thank the Dean of Faculty's Office and the Student Special

Projects FUl!1d for providing a budget with which to make the purchases necessary to

build my robot. Along the same lines, the Computer Science department and NSF AlRE

(National Science Foundation, Awards for the Integration of Research and Education)

grant have also made additional funding available to cover expenses, including traveling

expenses for a recent conference. I would also like to thank the Biology and Geology

departments for making space available to me over the past year and a half when I have

been pursuing this research.

Chuck Jones has been a great resource for help with interpreting electrical

schematics, and implementing hardware by offering tips and assistance with soldering.

Also deserving of thanks are the creators of the Handy Board at MIT, and the Handy

Board web site and mailing list. Without these two resources, 1 would not have been able

to implement much of my robot.

Additional sources of support throughout this project have been my friends and

family. Finally I would like to thank my roonunates for their help in my research,

particularly their decision not to move my belongings out of my room when I spent those

long nights in my office.

CHAPTER 1

INTRODUCTION

The primary goals of this project are to design and build a robot, and to apply machine

learning to a robotic navigation and mapping system, with the hope of creating an efficient

mapping system for inexpensive small robots. Many small robots are created with less than perfect

hardware systems, as quality is often sacrificed for considerations of size and expense. Due to

these hardware limitations, it is often challenging to create mapping systems for these robots. My

robot is largely homemade, and therefore incorporates many of these hardware issues. Through the

application of neural networks to several aspects of the robotic mapping system) I have created

effective solutions to some of these problems.

My system is composed of a homemade semi-autonomous robust robot, controlled by a

simple on-board computer. The robot includes a navigation system composed of an electronic

compass and a shaft encoder, which serves as an odometer. The robot also uses a series of light

sensors in a light tracking system, which allows the robot to return to a known location, signified

by a light source, in the event of becoming lost. The robot also incorporates a series of touch

sensors, as well as an infrared ranging sensor for obstacle detection and mapping purposes. The

robot serves as a drone that reports back to a more powerful Linux computer. A fully autonomous

robot is one which is entirely under its own control. I consider my robot to be semi-autonomous as

it receives instructions from and reports data back to a second computer system.

The Linux machine is included due to its powerful computing and processing abilities. The

Linux computer serves as a central controller and an information processor and data repository.

The goal of the software running on the Linux computer is to collect enough data to successfully

map the environment. Furthermore, the Linux software also evaluates and improves upon the

general strategy of mapping an unknown envi.ronment.

In general, the Linux software generates a number of possible paths for the robot to pursue,

and picks what it determines to be the most useful path based on the amount of data that will be

collected. The robot then executes this path, gathering information about the environment as it

goes. This information is then reported back to the Linux machine, which examines it) incorporales

it into the map, and updates the strategies of choosing paths for the robot. This process is shown in

more detail in Figure 1.1.

\) 01 reI urn II)

"larI111; COOl' IlflUIC.

J Illg Ihl: Ilghl-lrUI.-h.lng
Ill:uraJ flel

I
mo' to\\'ard_ h light

{\Iblll atlempI 11,.1

"\cClII.: palh

R" UI report . ala
(In.:luJlng Inl"Jrlll31ll1n aboul

Ihe IllOP and Ihe ..,ucce ... " 11
rhl: Inp) 10 Ihe Llnux

111:1 hlllC

LlllU\. 01'1\\:11'<:: Illll:rrn:l ...
..,o.:nsnr Jata (ron he lob. L

i-a neura net \\ ark. Fir 1. a ncura net work i

Iran nJIlkJ
Lv hc rllbnl

Figun> 1.1 - G n ral process

irection for th I' bot to turn in order

!"Ilh J

r ' it- input. and OUlpUl'

Llnu\. <;oll\\:lrc 111\:orp' rale ...
JUla I nIL, Ih.: map

(

I
Pru.:.:" ... r.:po.:al Ulllt!
l'll\ In nmenl '" full;

I1lllppcd

Llnu\. ,,<In,,· 1'': ':1t';JI<;~

II palh JIll' lhc n'\wl

In an effon to maximize th' robu tn :::s 0 'tlli' s t~ll). machine I arning j' applied in

IlflU' nf!\\arcad.lu hLh'

p3Ih-rI31l11lng neural
nd 1101'1..

in orporated a~ part of the light tracking sy tern. Th~ n t \ork ake' re<ding- from thr~e light

, ~\ era area . The t; pe f earning y:tem II

'our e, Thi- nct\\or' run' on 1 robot its~lf. a: light tracking ani.' a 'cur' \\hen the robot i

operating in uUlOnomou- mode. an . i' nOl in comn uni ation \'ith the Linux computer.

Xl. th Linm:. oft\\ar run a net\\ 1'1. that illterp ~t. r'ading - fr m til" robot" infrared

n ·or. lhe rob t upload' inlormation fr III this 'en or. in'luding th I cation of th sen. or

·eading.r \\cll a- the reading itself. Thc 11'{\\'ork tl1"n interpret· thi informati n a: a di tan c that

i' rel ant to tll map. Thi interpretation net 'on' rt· "n or r ading int di 'tan "rei vant to

the robot. A non-learning system then converts these distances into locations on the map by

resolving the distance to an object, heading of the robot at that point, and the location of the robot

at the time of the reading.

The third application o.f ncura,1 nets is to the general strategy of how to map an environment.

This net bas a series of inp-uts that includes a representation of the portion of the map that is

relevant to t.he path in question. As more d.ata-gartbering excursions are made by the robot, this net

is trained to accurately idemify which paths of traveL are the best to pursue, in order to map the

environment in the least amount of time.

Many challenges and unexpected problems were encountered during my pursuit of this

project, making it a tremendous learning experience. Implementation problems with one of the

sensors I used held up the testing stage of the neural net for designing a mapping strategy. i

successfully implemented and completed all other aspects of the project, including building my

robot, designing and implementing the neural netv.'orks and extensive systems for controning the

robot and utilizing the networks, and testing all systems but the strategy forming network in an

actual environment.

This document will describe the design and implementation of all aspects of this project.

Chapter 2 provides a relevant background in robotics, machine learning, and navigation. Chapter 3

covers the design and implementation of the hardware that comprises my robot. Chapter 4

describes the software that I used and constructed for this system. Chapter 5 provides a discussion

of the experiments that I performed with neural nets. Chapter 6 offers some of my reflection upon

this project, and my thoughts for future work to continue this research.

3

CHAPTER 2

BACKGROUND

2.1 Introduction

Before I could begin to create a robot, I needed to experiment and research robotics and

current topics in the weld. My initial-experience with rohots consisted of experimenting with the

Handy Board (a compact computer designed at lV1lT for smail rohots) and custom Lego sets. This

introduction steered me towards interest in a naviga,tion and mapping sys'tem. Research into these

areas revealed how important and fundamental the topics are.

Another aspect of my project is machine learning. Prior to designing and creating the

learning systems that my proj ect utilizes, I needed to experiment with different types of learning

systems. This involved research and using available code to get a feeil for tbe strengths and

weaknesses of the options available to me. My efforts in this process finally amounted to choosing

neural ne-tworks as the system that I impl'emen1ed in the project.

2.2 Robots

My introduction to robotics began with two independent studies during the second half of

my junior year. These independent studies covered basic concepts and simple reactive robots such

as Braitenburg vehicles l
. Braitenburg vehicles are some of the simplest robots that can be created,

and involve reactive systems with very simple control structures. These studies were performed

using special Lego kits designed for small robot experiments. The Lego system applied to small

robots works very well on a prototype level, however the robots do not really stand up to long-tenn

or realistic rough handling. This fact introduced a number of hardware issues by itself, but there

were many other issues encountered during these studies.

One of the more basic operations that is necessary for many of the possible systems is a

navigation system. A navigation system allows a robot to maneuver through an environment

safely. The inclusion of a mapping can allow a navigation system to operate in a more intelligent

fashion, by affording knowledge of the environment. A mapping system gives a robot the ability to

I Braitenburg, Valentino, "Vehicles, Experiments in Synthetic Psychology"

4

actually map the environment on its own. The process of navigation and mapping became much

more challenging than 1 expected, due to the 'llariOUS hardware problems that I encountered with the

Lego system. Creating a system for navigation and mapping became topics of interest to me, and I

chose to pursue these topics as the main focus of my Senior Sclholar proj ecl.

Nav.igation is a topic that is useful and required by virtuaHy every mobile robot system,

from academic and research robots to commercia!! and industrial robots. Many of these un.its also

rely on some sort of mapping system, whether it be the process of mapping an environment, or

using a map to navigate iDl an environment. A source of inspiration for me in regards to robotics in

general as well as the topics of navigation and mapping is a Somerville, MA based rohot company,

IS Robotics2
. Much of the research done at this company is performed with the support of military

and government funding. Many of these projects require a robot which is capable of maneuvering

in unknown hostile environments, and many require the robot to serve as an autonomous

reconnaissance robot, reporting back information about the environment the robot is infiltrating.

Also, many of these robots must create some sort of map of the environment that they encounter,

both as information gatherers, and to provide a way for the expensive robot to return back to home

base and be saved for future use. These projects and others on IS Robotics' web site were great

sources of inspiration for me in thinking of my own project.

A more public example of a navigation and mapping system in use is apparent in the much

publicized Mars Pathfinder mission3
• While this robot is far more complicated than my system, the

concepts and necessity for a robust navigation system are very important for this system. The

Sojourner robot received a substantial amount of instructions from Earth-bound controllers. The

design of the Sojourner robot is very similar to my own, as both systems are composed of a central

controller and a robot drone. The Sojourner robot was also equipped with various sensors to detect

obstacles, and ways of handling situations related to maneuvering. The importance of an intelligent

navigation system is very clear given the limited life span and extreme expense of such a robot.

There are many other useful projects where a robust navigation system is required. One of

the maj or areas of research focuses on constructing robot systems to function in an office

environment. Indeed, Nils Nilsson has issued a challenge4 to mobile robot researchers to create an

autonomous system for use in an office environment. This challenge relies heavily on an effective

2 http://www.isr.com
J http://mpfwww.jp I. nasa.govldefauIlhtm1
.j Knorts, Ryan, el. aL, "NaviGates: A Benchmark for Indoor Navigation

5

system of mapping and navigation, and "will be met only when a robot functions in an unmodified

office building environment, on-the-job, for a full year."s Similar challenges and competitions

incorporating issues of navigation are offered! from organizations such as the American Association

for Artificial Intelligence6
.

It is fairly obvious how na\ igation and mapping are important issues for autonomous

mobile robots. The task of creating a robust and effective system for navigation and mapping is a

deceptively difficult task. There are tile obvious issues that apply to all autonomous mobile robots,

such as computation and memory restrictions on an on-board computer. However, the primary

issues for navigation seem to be caused more by hardware deficiencies than software and

computational limitations. The largest issue jls that of giving the mbot the ability to keep track of

its location. Even with this capability, the robot will probably need some sort of reference to verify

its actual location. There are many variabies, many of which are out of the range of control of the

robot, which could interfere with the course of a robot. Any errors or deviations in location

tracking are cumulative, and could cause the actual location of the robot and the location that it

believes it is at to be very different. It is obvious how inefficient and inaccurate sensors could

magnify this issue. One might expect that mo!'e expensive sensors could easiLy so~ve this problem,

however "some experiments have sno,wn that usimg higher resolution sensors introduces more

variation, not less ... ,,7. While there are many viable options, there is not an ideal solu~ion as of yet,

and the topic is still being researched.

There are various options for helping '3 robot to keep track of its position. One of these is to

allow the robot to have a map of the environment. However, this is only useful if the robot can

utilize the map to recognize locations, and thus constantly verify its position. This would require

some sort of landmark recognition, or a "feature-extraction" system, as in the InductoBeast at

Carnegie Mellons. This type of solution will not take into account dynamic factors that might be

introduced. In the model of an office environment, these might include doors being opened or

closed, and the presence of people or other mobile robots. Another option is to introduce some sort

of intelligent system to control the robot for navigation or mapping purposes. I chose to apply

artificial inteUigence to the mapping portion of this issue.

S Knons, Ryan, et. ai, "NaviGates: A Benchmark for Indoor Navigation"

6 http://www.aaai.org

7 Meeden, Lisa, and Kumar, Deepak "Trends in Evolutionary Robotics"

g Kunz, Clayton, "Aulomatic Mapping of Dynamic Office Environments"

6

2.3 Machine Learning

Similar to robotic navigation, the appljcation of machine learning systems to robotics is a

current research topic. As hardware and sen_sor systems may at times perform somewhat erratically

and return noisy data, applying learning systems to deal with these issues is a logical step.

Swarthmore College's Carbot robot, imptelll1ented by Lisa Mecden, uses a neural network system

to control its "novement9
. I.m.put to the net is in the form of readings from light sensors, and output

from the net cons~sts of instructions to controll the robots motors. A further example of machine

learning applied to robotics ties within the same project. Meeden also utilizes, Genetic Algorithms

in the controlling system. In this case Genetic Algorithms are used to a1ter the net by choosing the

weights that are assigned to links between nodes.

Similarly, neural networks have been applied to many other robotics systems. Meeden and

Deepak Kumar of Bryn Mawr have performed numerous experiments in this fidd lO. Among these

are net\vorks applied on a commercially available Khepera robot to perform such tasks as learning

to recharge a simulated battery system by moving to a specific location in an environment, and

performing simple trash collecting tasks. Another interesting example is NAVLAB; an

autonomous vehicle of larger size than other systems examined. This system leams to use camera

images to stay on a set path or road.

All of these systems incorporate machine learning into the robot controller system. Most of

these also tie in issues of navigation to the leaming system. These are merely a few examples of

some of the machine learning systems that could be applied to robotics.

When I was determining which systems to implement in my project, I examined several

different types of machine learning concepts. Many of the problems I hoped to solve relied on

hardware which was not consistent in its perfonnance. Therefore I needed a system which was

robust enough to handle this sensor noise, both within the traiillng data, and within the normal

operating conditions that the robot was intended to operate in. Another consideration when I was

choosing learning systems was to choose one for which I had initial code available. Many systems

are complex enough that designing and implementing my own system would be very time

9 Meeden, Lis.a, "An Incremental Approach (0 Developing lntelligen Neural Network Controllers for Robots"
10 Meeden, Lisa., and Kumar, Deepak. "Trends in Evolutionary Robotics"

7

consuming, and not necessarily what [was most interested in. Most of the systems researched

were available in code in one form or another.

2.3.1 Possible Machine Learning Systems

r entertained a h.andfu~ of machine learning systems as options for use in my project. One

of the methods researched was Genetic Algorithms (GA's) 11. A Genetic Algorithm system is one

iliat relies on selection to weed out the less successful solutions, and encourage better solutions.

GA's cycle ~hrough a serres of generations of solutions, setecti,ng what it detennines to be "good"

options at the end of each generation, by choosing from a population of possible so~utions by way

of a function that identifies promising characteristics. These then become likely candidates to be

allowed to serve as "parents" for the next generation, thus passing on some of their traits to

offspring. The process further allows for mutations to be introduced into the population, and

ensures that many options will be examined before the fmal population is reached.

Another system I examined briefly is called AutoClass n12
. This system is a Bayesian

classification system. This type of classification involves classifying objects based on the

statistical layout of the entire data set, and detennining the probability of each object being

included in a particular class. This system offers the advantage that objects are not placed into a

classification absolutely. The statistical analysis offers the ability to examine all attributes of

objects simultaneously, and does not make arbitrary assignments to classes if more than one class is

represented.

The third system examined is called COBWEB 13. This is a conceptual clustering system.

Objects are classified so as to offer the best ability for inferring other information about the object

based on how it is classified. This is not a pre-trained or supervised learning system, but rather an

observational system. The system classifies objects based on criteria that emerge as the best

descriptors of the class. This system offers the clear advantage that it is unsupervised, that is, it

determines for itself the important points in a data set, and does not require a user to offer

infonnation or opinion.

II Congdon, Clare, "A Comparison ofGenetic Algorithms and Other Machine Learning Systems on a Complex

Classification Task from Common Disease Research"

12 Cheeseman, Peter, "AuwClass: A Bayesian Classification System"

13 Fisher. Douglas, A., "Knowledge Acquistion Via lncremcntal Conceptual Clustering"

&

The final approach examined is Neural Networks. This system takes a series of inputs in

numerical form, runs ~t through a structure of nodes and weighted links, and then outputs one or

more numbers. The neural nets mat I exami.ned are aU supervised learning systems, so they require

a trainmg set to IDe run in order to train the network. Neural nets are very good at generalizing,

such that a net trained on a representative subset of the expected information can then successfully

operate with the entire data set l4
. I ultimately decided Ito use Neural Networks as the machine

learning system in Illly project. This was largely due to initial success I had when experimenting

with a neural net package, the time put into learning this system; and the ability of neural nets to

successfully learn based on a subset of the data, and the ability to generalize through the type of

"noisy" information I expected to encounter with less Ourn perfect sensors and hardware systems on

the robot.

2.3.2 Neural Networks

As w~th many machine learning approaches, there are many different variations of neural

networks. Generally, artificial neural networks are loosely based on biological neural networks.

Biological neural networks are composed of many neurons interconnected by synapses. A generic

neural net has a similar structure, consisting of a grouping of nodes intercormected by weighted

links. Each node takes some number of inputs, which could! be sensor output or connections from

other nodes, and uses these input values to create its own output value, which could then be used as

the input for other nodes or the output from the network. Each node is connected to other nodes by

way of weighted links that affect the value of connected nodes.

A simple structure of a neural net can be thought of mathematically as a directed acyclic

graph. This architecture consists of severallayeFS: am input layer, some number of hidden layers,

and an output layer. The signal flows into the input nodes, trickles through the network, and ends

up in the output layer. A simple connection structure has each node in one layer cOTUlected to each

node in adjacent layers. This type of system is said to be fully connected. A traditional neural

network consists of the three layers, although different nets may utilize the node and link modet as

necessary, with many layers and different link structures. More radical systems abandon the formal

layer structuring and have much more extensive connections between nodes. All of the neural

lJ Neural Network FAQ. ftp://ftp.sas.com/neuraIlFAD.hlml

9

networks I use in this project follow the standard model, consisting ofan input layer, a single

hidden layer with many nodes, and an output layer. This type of structure can be seen in Figure

2.3.1.

One notable addition 'to my networks ,is the existence of an extra input node as advocated by

G <Ii) 0 Input Layer Tom Mitchell J5
• This node serves to ensure that

~"" / the values of the two hidden nodes are less

""'l~ likely to equal zero. The value of node ~ is

@ l@ H~dden Layer always one, and the weights from ~ are set to

\/
@ Output Layer

random values along with the other weights.

Values of nodes are set by us'~ng a very simple

Figure 2.3.1 equation. Clearly the input nodes are simply set

to whatever the input to the network

is, and io is set to one. The values of the hidden nodes are detelliIl..ined by the values of the input

nodes and the weights between the two layers, and values of output nodes are determined by the

values of the hidden nodes and the weights between hidden nodes and output nodes. First I must

establish a general notation. The values of a node will be referred to simply as the node itself, such

that the value of node io is simply notated as io. The weights between any two nodes Aand Bp

where A, is at a higher level than B) in the net, is notated as W(AI' BJ Tn the example offered in

figure 2.2.1, the process is easy to follow through. The values of I~, ~,and 4are set by the input

values. 110 is set to io*W(io,/lo)+ ~*W(~,ho)+ 4*W(4,ho)· ~issetto io*WCio,h1)+ ~*W(~,hl)

+ 4*w(4, ~). 00 then becomes 110 *W(110,00) + I~ *w(~,oo)' The output from the net is then

available for whatever purpose it was intended for. This is a very simple and elegant process to

understand, and is also not computationally difficult.

Beyond the architecture of a neural network, there is also the issue of how the net actually

learns. The neural nets that I use learn by example. The type of process that I use is called a

supervised learning system. My networks must be given some training data on which to base its

internal structural adjustments. How these adjustments are made is the interesting part about neural

nets. In general, a net learns by adjusting the weights between nodes, by either incrementing or

decrementing their value. In this type of net, the correct outcome is known for some subset of the

IS Mitchell, Tom. "Machine Learning"

10

data that is expected to be run through the net. This is known as the training data. On a high level,

the net takes each case of the training set and nms it through the nodal structure. The output is then

examined and compared to the desired output. The structure of the net is then changed by a

correction process.

The correction process that I use is called backpropagation. This is known as a feedback

system, as the system examines the output, then backtracks up through the net, correcting the

weights oflinks appropriately. When the training data is nm through the network, the output

values are compared to the d~sired output, based on the training set. The backpropagation

algorithm then works back up through each node and link, comparing the val.ue of a node to the

value that it should have been to determine the error. This is done for the hidden and output nodes,

and then the algorithm adjusts the weights of the links connecting the nodes. After tFaining the

nen.vork, there may be the opportunity to test the network on data that was not included mthe

original training set, depending on the nature of the data bei.ng used. for instance, in a net that i,s

trained to recognize a function such as XOR, it is not possible to test the network willi data that is

not included! in the training set. However, in a net\\'ork which has learned to recognize a pattern or

a more general function, the network can be tested with data that was not part of the training set to

test the generalizing capabilities and success of the net.

A strength of neural networks lies in their ability to generalize to the desired function. That

is, a netv.'ork can learn a function that is present in the training data and successfully apply it to data

that has never been encountered before. The type of data and function being represented by the

network will have some effect on the networks' ability to generalize well. In general, the one

important restriction is that the training data must actually represent what the network is supposed

to learn. If the training data includes some sets that are on the extreme edges of the average input

data, the network will not perform as well. The flip side of this is that a well-trained network will

perform very well on abnormal data after the training stage is completed, and can in fact include

some abnormal examples in the training set. This is of particular importance to robotics

applications, as sensors frequently return noisy readings. Under these conditions, a robot could

receive a strange sensor reading, and still perform the proper response to the situation.

To learn more about neural nets, I used some examples of code. The first was a network

that learned to recognize the exclusive OR function l6. The exclusive OR function, or XOR, is a

16 code from Patrick Ko Shu-pui,

I)

bitwise operation that takes two binary input values. The function is satisfied if one but not both of

the input values is one. So, the four possible scenarios are as follows: 0, 0 -7 0; 0, 1 -7 I; 1, 0 -7

1; 1) 1 -7 O. The next coded example of a neural net that I examined was designed to perform face

recognition in simple images17
• This neural network package contained a great deal of code that

was specific to the problem of face recogpition. Most of this '''las not essential to the neural net

itself, and could be remo\Ied. I used this code base to create another example of a net to perfonn

the XOR function, based on the operation of the first nen used. The XOR function is an interesting

example to use. The entire d.ata, set must be I!Jsed as the training set, as there is IilO way to generalize

this function. This is due Ito the fact that the XOR function is 110u~Jinear in nature. While there is

not way to test the generalization capabilities of the net using this function, it is a very good

illustration of the capabilities of a neural net, as it is difficult to learn a non-linear function. Once

this task was completed, I had a working neural net structure that I could apply to other problems.

Once 1 had an XOR function working on the Linux computer, the next step was to move

this code over to the Handy Board and run it there. There were a number of,changes that needed to

be made to the code in order to compile and run it through Interacti,ve C, due to some limitalions of

Interactive C. Once these changes had been made, I began to run neuraJI networks on the Handy

Board. I quickly determined that running any sort of complex or large net on the Handy Board

would be extremely time consuming, due to the memory and CPU limitations of the Handy Board.

17 code from Tom Mitchell

12

CHAPTER 3

HARDWARE

3.1 Introduction

I put much time and thought into dle design and conSlrllc{jon of a sturdy robot. A reliable

base that is not prone to breakdown or erratic behavior is desirable for both practical and research

applications. Likewise the sensors and attachments to the robot base must aliso be consistent in

performance. While there are oommercially av,aillable bases that are well designed, these u11!its are

often too costly for a research project such as this.] chose instead to des~gn and build a homemade

base. This yielded complete control over mounting custom sensors, in addition to a rdatively low

cost. This also allowed me to experience building a robot, which \vas a challenging and

educational experience. AIlong a similar line,] used commercial\ly avaHable parts to build sensors

rather than pUIchasing more expensive prefabricated! sensors. There were many issues and

problems that I encountered during this process.

3.2.1 The Robot Base

My preliminary robot research entailed using Lego pieces designed for robot

experimentation. Using Legos offers several advantages over other materials. Primarily, Legos are

reusab~e, whereas materials such as wood or metal are often more permanent. This makes Legos

an excellent option for prototyping robots, and even bettcr for an initial introduction to robotics in

general. While there are some restrictions based on limitations of the Lego pieces, such as the

rectangular nature of most pieces, and the inflexibility of Lega pieces, in general they are a good

tool, as well as fun to play with.

After experimenting with the Legos however, I determined that a Lego base would not be

appropriate for long-term use. The ability of Lego pieces to be disconnected and reattached also

means that they are more likely to break apart, and therefore are not able to provide a sturdy base.

Options for the material of the base included plywood, Plexiglas, and a combination consisting of

Legos glued to either plywood or Plexiglas. After my experiences with gluing Lego components to

other materials I quickly dismissed this option, as the glue would typically be knocked loose during

normal operation of the robot. Plywood was eventually chosen due to availability.

13

I1C r iameter Ir of I -t' :- wood. - ing I -+" pl:- \\0 in 'tea of,

thicJ...er gra Ie otTers the b~ncf)f a.... · ana hm I ofhard\\·are. 30- tl ef" i... a r~lati\' Iy -mall

hi kne'. fmat rial to Irill hrough. n addition 1 th 1 -+"]:- \\ood bing relati . 1:-' lightm~ight.

cing able to use horter ser \\ . to alta 'h hardware:. al. a h I to kee the o\erall \\ ight of th wlit

dO\\l1. entered on tJ1e c I1t rlin ofthc cir I, and locat d .:- mmetrica Iy a r 'fr mea lather

ar t\\O \alhole"'ut uto1'th ircJ . fh holL - are c.~ign d

Sl) that th dri\'~ \\h ~~Is do not sticJ... out t \ and th dgc> of tlr circular ba . and '0 that the \\'hel.

\\ ill ,tick up through them. t 1U- r a-jug tlle \ ra I h ight oflh rob t (Figul"" .3,_,), epLl1g

th height of the r bot do\\ n i-important as it helps to 'ee Ihe weighl of th" robot closer to he

ground, This unit docs not ha\ a \\ ide \\'beel beL '. and .'0 annat uppan top-hea\':' de 'ign,

Fiour 3,~.1 - Robot base showing placcllH'll1 of II'lIeels Figure 3.2.2 - Robot base shol\ ing placement of

motors

fhe matoe are mounl Ion he un 'rsid afth 'obo ba' . The motor' are aligned

'\ mm tri 'ally I ng Ih' obal ba' . As th' dri\" haft I ing h gearbo, - i ' nol

'enlere .11 argcr part of the m tor unit is fa ing 1I \', r toward the robot ba e. 1l1i gi\ e: tll

ro a (higher ground clearance. and cr '(-1 " more -I ac' underneath the robot for -en or to ~

d (L' - J I) The t\\·o ITIOlor- are an, hmounte rlgUr ,)._,_ . 'itha-lrip r ra's. Th tripi pIa d

a rl - Ih m t r. an th n . cr \. d up\\ard into the ba 'e. he hal in th~ bra', . trip m:~dcd 10 b

pre-drill'd,a-il\\a'notpo"ible ,Ianahoe\\'ilhju'ta r \\. 1I

strip., Ilh in'iJe ndofth mOlOruni.a airoCthinbra' \\'Ire I 'Lr Ih mot r. Th -

\\ir .. arc doubled gainst '\ h 01 her. and then go up through h robal ba.'. \\'h rc th y r t"i ted

1--1

-trang mountmg \ tern. an ro a\' om \ ig 1l \

dr pping out \\ 0 S r \\ -. Th ca -tor. r w. into th' ply\\ od.
Fioure 3.2.3 - Rollol base \\ ilh C:lstor

and 1h I into 1h' as 0 - the robot. \ 'ith he rap\\'ood a
\\ heel m l(llleu

, a' r. The Sf a 'r \\'n- th n remo\ a' (h 'cr \\.. held the

15

------SignaI2

16

f----- +5 volts

I

Conncction 10
Drive Sysrcm

Figure 3.2.5 - Schematic of Mouse Quadrature Shaft

Encoder Design

castor attached very securely even without the spacer being there (Figure 3.2.3).

3.2.2 Shaft Encoder

In order for the robot to keep track of its location in the environment, it must have some

mechanism for recording how far it has moved. This requires some form of odometer. In my

previous independent studies in robotics, I attempted to create an odometer from Lego components.

Thjs proved to be troublesome on many different levels.

My initial Lego design was a physical shaft encoder, where a touch sensor would be tripped

with every rotation of one of the drive wheels. This was difficult to ma'intain. prone to breaking

frequently, and required constant supervision to

ensure that the encoder did not exert too much

pressure on the drive wheel and prevent motion

of the robot. My next design involved a

spinning disk attached to the drive S) st.em of the

robot. There was a light on one side of the disk,

and a light sensor on the other side. The disk

contained three holes, such that the light sensor
Figure 3.2.4 - Light Based Lego Shaft Encoder

would only detect the light when the disk was positioned so that light could travel through it

(Figure 3.2.4). This was more successful, but was not very accurate, as the robot traveled a

._1---- Signal 1 significant distance before the odometer would

increment. This system was also susceptible to

missing light and not incrementing the distance

traveled when it should have.

My next design involved a modified

computer mouse. This design used the existing

small-scale quadrature encoding system of a

mouse, and incorporated it into my robot. Most

mice use a series of break-beam infrared sensors

to encode movement. I had initial difficulties in

IIII 'fa ting \\ ith thL e:--i ting infrar 'n 'or -, '01 opt'> for a hy-i < J ~: -t 111_ Thi ill' 01\ ed

<Illuchinh- eonducti\-c stri . of m ~tal a the quadrature ') -t m, and \\Titin2 1d' har would

-n r ment a mabIe \\-hen~ ompkte r \ It tion_ hi off red tl c

apabiJit: to kee tra k off ur lire 'tions of tr, \ el. but alo \\as limite I: the h::sical nature of

h~ \ 'tem, \\ lie 1 \\-a pr n' t r~ -ing, and difflCU tto repair 'u t th _-mall a' and fraQility

f th 'omponem,

n the_ options and m:- xpenenc \,-ith them, ropte to pur h, s a 'ommercially

a\ aila e 13ft enco er. T le unit r eh . e i Ih 'I 111 de, mad \ 'S Di.2ital. Inti rmation a ut

hi unit i - a\ ailable in App' n Ii ' .-\ and B,

h spa in b,t\ -'CIl thc \\-0 dr'" motor' \\a intentionall:-' mad I rg' 'nat gh 10 hou e

th laft ncod r The encoder is l1l unt d in the ent r of the robot ba - that th onh

mO\e111 -n rcc f 'd i' that of the robot mo\-ing fo \'ard or back\\-ar . an not \\ hen tbe robot

p rfoml' a T tating turn to the I 'or right (Figur~ '.2.6 . The haft neod Tha a tLlr 1:- bra. \\"\

\\Tapped on c around th -haft. lose t the housing of the

n a er.' ur I \\'ith nUl -re\\" d 0\\ n tig t : again t t e

l1l:oJer bou-in.!_ Thi- form_ a trong: ttl xibl 'tem r r
holding Ih :'haft el od'T in place _ The \\ ire ome u on eithe

.:ileoftle ange. Ea'l

ugh he robot ba c. 'h reach

Ul id' edg fthe ba _

\'I-ire end arc th n - ured \ 'ilh additional wir s. :0 that they ar

h Id do\\ 11 tighth. ut 'an 'till e ea'ily r~m \'~d or adju, I" .

Th \\ ires efe adj 11 't ullli I the. haft "n ad
fiaure 3.2.6 - Robot base Wilh lim11: against the Ooor, The, ~curing \ ir s, r de-igne to ha\

ll10unted Shaft Encoder
nough 'pring in them' thai t 1 :-haft ~n a

\\ 'th, . Jightl~ 11 '\ n 1oar urface \\ ithoul mi sing r'\' juri n~ of the dr\ e \\heels. }: t on]:-

thL wir's 111 \ up and dO\\-Il. th~y 1:0 allo\ tho .::haft neodt' a -sem 1;- [0 moYe _id~ o.id

anti ipated t at thi \\ u 'not e utili7"d uring normal a erali 11, ut it e .:: of

lhe a" mbl\" e omin_ br k n if the 'obo i-han led roughl. or bumpe .

3.2.3 Light Sensor'

The robot mu' ah\ a: . r lllrn to J. kno \-n h me oordinat . Thi_ i- necc saD as the robot

o report it finding' about the \ r11 to the im'\ om uter" hi h is 1 c ted, I thi - hom

coordinate. It is al 0 n c "a1: b caus to r orient its~lf in tht: en\-ironment

should it become 10 'lor get olltra -. ,hould th ~ 1'0 m It. t. il wil n longer be a Ie to

rei: on it: interpr~tation 01 th '0 lrdinat \'stem I fInd it- \\'a\' ba k 10 th' h me co rdinale.. .

rh rerore it be' m : ne 'e.', < ry to ha\ ome .::ort ot' backup : -t m for locating an rca hing the

horn coor in, teo \ ly ·0 utian to thi \\ a' to in 'orp rate, i ht Uf at the hom oardinate and

tTl s of light s~n ar- on the - bot.

rh thrc' light sen -ors 'II"" mount' on top)1' th' r bo . facing fOI"\ -, r ,Th 'ensors <II

mounte j on a _mal ic ~ of" 0 . \\ hich -elTe to rai c them abo\ ther n50r mount d on the

front of the robot. The s 'n")rs are alta' le by g uing Ih'l11 to

tl pi ' of "-00 \,-hich Ih ar m unle I. h ~n~or ar

I") ated in a line_ \\ ith Ih mi

for\\-ar . and the t \ ft an rig t fa ing forty

f. My original rahat

-ign calle I for the liuht en-o - to b mounte n th~ r~ar of

tle ro t. fa ing behind th ro at. Thi would allo\\ the rob t

to ack int po-ition a the home c ordinat ~_ and b facing tl ~

on~ dire tiO! \\ hen it am ~ lim 0 .-e ute th next p, tho

Ho\\ \ er. the re\'i u ly m ntioned robl I11S \\ ith th ~ astor
Figu IC 3.2.7 - Robot base \\ il h light ,,'he'l pI' '\Tnt thi '. lrom eing an option. a t 1 fa at \\ ould

cnsors
hU\e to dri\ th rem, ining astor 'h I ahead of i ifit were

to mO" 111 r \ '1" . r 'd to mount th light:: nsors n the front ortbe robol. and hay the

robot perform a imple one hundr<:;d ight:'-degree turn on e it \\"a:- in po ition at t 1e 10me

oordinat~_ Thi_ all \ d for, lr, te light trad,ing and maIk m,:rabilit: _ This s. ·t)11 was

onFtinFs not sufficient to r~ li~m th robot in the el \ ironm~nt. and oc 'a 'ionally r~ql in.:d orne

in! r tion on my part to n'ur t1at t 1 r t \\-a. reOf) 'nt pro rJ. Due to lard"'are roblems

I \\:1. unable to tine-tun thi- s:st ~m a p rat su ce.. fully \\'ithoUl u er illt ra tion.

18

3.2.4 Touch ~l'IlS01-S

In oru I' for h robot to kIl0\\ \\hen it bump: int an ob,tacJ', ther mu' 'ome -ort of

SLI1'ior that int~ra t \ilh th 'n\ironm nt. Due to II 'ize of the robot. thi t\.:m mu't be

arg ~n ugh to en m a ~ th ntir leadimz edg of the robot. \' t must b' of enough

e location al \\'hich th I' t hi£.- (n bj n t nnined \\ ith

. me d gr~t.: fa' ma y,

The natuJ, I solution \\ a-to milir sim I lOll h S Lors, Th' 11 or: are homemad and

'ust mlZ I for m~ ro at. Ther ar four .'11.'01'- 111 unte on the front ha rof Ih r t. The tou h

n i'l 01'1\ bra, trips nailed into the cdg of the ply \'ood ba. e, The 1\\0 sirip arc on

Ih left nd right id ' of the !cadinQ. g of th robot. SU'p nded OY r lhes ,I" four br,. Wire,

Th('- 'prin~:' \\ ires a1' at a h in the top of the I' t a- by \\' y of drilled hole and glue.

Each \\'ire i ben '0 tha it hangs in fr nt f the br S sirip on

Ih fr n[oflh~rob tba-c(Figur .3.:2.). Inlhi'\\ ylhebra

wlr "n [u h lh ra -~ -t -i \\ hen it ncounler' an bje 0t.

Thi mp ~ ": th~ cir uit. nd th r ot then' 10\\' 11 re i

:oli a\',

Figure 3.2. - Robot ba. e \\ itll louch

sensors

3.2.5 Electronic Compass

\\Tille the shaft encoder allo\\": he robot to kce [raei-, of ho\\ far it ha '. 111 \ d. thi'

infoD11ationi'u' Ie: \\'thoutth '110 kdQ of ,,'hi hdire tionth motiono If \cI C:'1D. b>

rahat i' not r liable enough on it· 0\\11 to b abl I mo\'~ in a -traight line t all Ii 111 -, TIler tor

- III oh r ono'che 'oftle if Ii noft1ero ti-n :-,ry, ~y outionf'orthi-pro!em

\\3 to pur has and in egral a1 ekc ronic \' CLOr mpa-..

19

The \\iring of th ompa ., l' am I~.". and the unit mu:--t h' po'ition~u 'ar lilly so a,' to

~1\oid b nuing \\ ire- and jeopardizing the integrity of _ J 'onn ~ tiOIL nl r \\ cr~ al-

se raloth r IS' s that inilucn d the pO'itioning ofth mpa" 0) my obm. I \\'ant 'u th

~n red in the middl ofth~ robot. '0 that ~rror' U to th I' lati\'c p -itioning of

tle rahat a mpared t the ompa 'would minimizl.:. T 1 'ompass ir ~If i- mounteu on a

erf-board \ :ith mounting hal at the four c r ers. and af< ry oh\ iring, a' ier

repairs t th~ \\"iring. and for h' ability to mount th ompa,' onto the robot \ 'ithollt haYing to

a 'wall) attach the compas' unit it. elf.

nother major' ·su tha impacte lth J.) 'arion of the compa . '\\'a that of magn tic

fi td . ~v[agtleti field' ha\e a large impa t n h 'lIccessflll

op~rati n of the campa, s, :-0 th ~ unit neede I to b mounted

a\\'ay from' ur 'e' of magnL:ti field, uch a the motor_. t

l-Iand\' B ar I. an t -am' xt nt erhap. th un hi ld "'ire'

ann ting th Handy Roar I ! hard\\'ure ~mponl:nt, \ 11iJe

lIilt in " ibration :- t m to comp~n :Hc for

the effe ts of Ilagneti . interf<~rnce. hi :- 'tem i' run \ 'hen

le ompa- j- fir' initiat ,\\'hi 0 urs olll~ n e uflng

aeration, Therefort' any 111, gn ti source_ \\ ith flu wating

:t' ngth-. su h a- th motor', c uld C 11 ~i\'ab y ha\ e an effect

on th operation vfth ompa--, To ositiol th. '01 pa_ ~ as

fra\\a) aspos'ibl~rromth' 'our- -.rmounrcdth

rnpa" onto a 5" I ng. pi ' of\\'ood, and po-itioneu it abo\'e
Figur ._.9 - Robot baSt \\,jlh

the obot base. A- it \\ a abo ne es:-ary 0 ha\'· he compa --
IrClronic compass

locat in the ~nt r or th I' bot, the ompa is fa 'tened to

the \': a on onl h t Jat it proje ts forwar \ r t e ap r :\Imate nter of th ro at.

,-\1' , in order t en nre proper peration of he ompa", the mit n~ed- to e held 'omplet Iy I wI

at all lime.. To omplish this. I ma 'ur hat III \ ad on \ hi h h m a is mount

e upright _ ur \, Thi' \\\lod i: n ermanentl f, -t n d to the robot ba:--e a, I n ~ to acee s

th' ompa "on a r gular ba 'i'. and must be able to deta han r ana h the unit ea -ih .

~o

3.2.6 lnfnlred Rang-ing S n, or

\\"h.ile tJle ouch ,-en or.- are suffici 'n for na\ igatin6 ami 'ue 'e '-rull)' mO\'ing aboUl rhe

unkno\\n m'irorullent. 11 ing nl) th ~ t u h en or- for llapping th entir m'ir nm nt 'auld

nl)t b th 1110 't t'fti icnt metJlO , L' ing onl.' rou h s n or~' \\ auld r q robot to att mpt to

h\ 'i 'aIh' lra\ It\' ryoordin, t on th map. Thi" \\ ul i re ulre a r_ e amount of time. a- the

k' t n\ irorullent that I 're'He j \\'a' t~n f et b) en '"eet' -iz. I r 'ious "tudi , f had u ~d

inlxpensi\ infrar d -en or' or r<1 'k" "uch (, lb:ta -Ie d"'lection, So for thi proj ur'ha

an int grate a ight) more ex en 'jYe infrare ranging en-or. Thi allo\\'s Ihe ro at to dete-t

object - from a di 'tnll - . Gnd p rform en -or -\yecp' hat create a pictur of th urrounding

th I' bot \ ithin the radius defined b.' t e ma.. imum rang of lht' s n or,

The infr, rc s'n or. lik th ompa:>s. i" m unted onto a

ieee or \\0) . approximale) thr" in le: ig 1 Th

mount d r 'ing: on\ ar . an i mounted ab \' th rop urfac of

th robot base so to ~Iimin I tram ob'tfu tions

u a' the ther 'en or" mounted on th' front of t 1 1'0 at. Thi

en or ha' both an eft'"e li\'e maximum rang of 0 em C'l I)"

. \\]], S . n effe ti\" ninimum rang flO m

.!l. I Therefore. \\ li e thi" 'en or docs not n' ated at the

center of th ~ robot. it doe ne be .. t back rrom the le'l ing

'dg f Ih robot bi se to en: lre Ihat thc s'n or doc not r pon

ba -k aron, us r"'adings that lie outsid of its effecti\'e range, So

I 1 ~ ,-n:or IS cat appr :\imatel) four in he- a k frolll the

Figure 3._.10 Robot ha~(' '\ i'" front f 'obO!. Thi eliminates tJlc p --ibiliry fan ob tack

lnfrarrd R,llloing Sen or t nd its minimum r Th en or L

r~\ 'cd into Ihe m unt \\ a ~. 111

Ih infrared sen or-all ing (:,cc Figure .' .:2.10 .

.3.1.7 - The Hanel," BO~lrd

Thl:? bigg ·t component to be mounted ant 111 rob ba.' \\'a - til' on-board ompu 1'. The

h Hand)' Board i , :mall [hr ~IHz C 111 liter. quippe

::!1

"ith thlrr:- -t\\· ~ilob: t of R. \:- L :- I re 'omple cificmion' of the Hanch'

Board a.n be found in. ppendi:-.:

h Han \'-8 ard nLLd. t be an, h to the top of the r b ,p ~iti n d a that all ~ nor'

an b~ plugg din \\jthout training th onn~ tion . Th~ board

mu t a 'a f'<nen . ur . nough. that it \\ au not e in

dang r f falling n O' being hmag d. The \\ c:- I eho. 0 do this

e board h ~Id in pIa b\ a ri' f nail- hamn ~d

int th surf of the ba"e (Figure 3._.(1). The boar Ii \\'ithin

these nail . and is pre\' n e I from sliding or m \'ing around while

allowing it to b a' and remo\'ed a ily. '[h ~ board is

1110uJ1led at th ~ rear of th robol..iu t for\\ ard of thl:: ea 'tor whe I,

In thi' \\'a:-' the r~l ti\'d:-' h~c \y' board 'n' as a ounter a ance

"no ip fOl'\\ard. ' nd al' k~ P' the

board alit of the \\ :- of th 01'\ ard mount d n or , enough of

the \\'eight i. I1t r of the 1'0 at t lat t lere i n t to

mu h \·ciQ.h pia e 0 th castor \\ heel. \\ hich \\ uld pre\'en tIl'
i<Turc 3.1.11 - Robot btU' \Ijth

\\'he"] from turning fr h.
HalH.l~ Buard

J.3.l Constructing Sensors

All rthe Sen 01'- U ld. including thOse that \ ere ureha. d miller iall.-, required ome

gre of on. tm tion 'md \ iring to be perform d, InJormatiol "'as ."om time,. n t immediately

a al a Ie for the wiring ::'lemali . for the e .en r., r.\'ry component of th r bot that r quire

\\ iring to be don had" III nunon I'SUe",

-or all \\'jrin::;, and ann tion' r us tl xib ' stran ~ ri bon ble. n pre iou roboti'

rO,le t- I ha I u oli -tirf Iue to it thi kn -:- an -trength,

anne ion ma Ie \\'itll the thi k c r \'ire \\' re m r lik y to rea' un er

a 1Y:- rt of rot gl handling of h robot. Th ribbon able

IS \ [\ t xii Ie. and III s conn 't d in ·trips. s that the de. ir"d num b r of \ 'il' an b torn oiT

\\ire in'i the p astic in ulation on:i L f ~tran or mall iameter

\\ Ir " . Idcre ann tion m Ie \\ itll the-e wire arL more lik ly to retain can .Iu ti\ it\·

nUshandled, as there are many more connections present than with a single copper v,-ire. One

drawback to using these stranded wires is that if a connection does become loose, it is very likely

that one or more strands may touch other connections, creating contact points where no contact is

desired. Thi,s has the potentiall to damage the Handy Board or sensor equipment. The Handy

Board is equipped with detection routines that shut ,the board off in the event of ovedoaded cllcuit,

however it is stili possible to damage expensive sensors. I used two solutions to overcome this.

First, I used shrink tubing \\ henever possible. This entailed putting unshrunk tubing on the wires

before soldering a connection, and then shrinking this robing after soldering. The tubing is shrunk

by a heat gun, which operates at a relatively high temperature (approximately seven hundired

degrees Fahrenheit). As this temperature is often above the safety threshold of many electronics

components, ~t was often not possible to use the shrink tubing due Ito the proximity of sensitive

electronics. The second solution was to pre-treat the stranded wire with solder. This involved

twisting the strands of wire together, heating them with a soldering iron, and allowing a small

amoWlt'of solder to be drawn into the strands. This helps to hold the wire together both during the

process of connecting the wire to an electronic component as well as after the connection is

soldered. TIllS also makes the soldering process easier by already having solder present when the

wire and electronics component are heated to make the final connection.

Most sensor connections to the Handy-Board are made with male strip header, which is

composed of a series of metal posts embedded in a plastic holder. Wires are soldered to the top

part of the post, and the bottom part of the post plugs into the corresponding female strip socket on

the Handy Board. Both male posts and female sockets are spaced at a regular and standard distance

from each o~her. The Handy Board has nine digital input ports, and seven analog sensor input

ports. The Handy Board also contains other options for sensor input, and the Expansion Board

increases these options even more. More information about the Handy Board and Expansion Board

can be found in Appendix B.

3.3.2 - Constructing Sensors: The Expansion Board

The Expansion Board is a recent addition to the world of small robots. The Expansion

Board is designed to plug into the Handy Board, and offers several more options for sensor input

and output. While the Handy Board was pre-assembled, the Expansion Board came in the form of

a kit, with no instructions or directions for constructing it. While the Expansion Board (Figure

23

3. I.l} enoL nte In an\' \ r: omplicm d \ Iring, il . , nsist of ~ me n-iti\'c cI tr OJ'

compon nt 11 "Int 't I the Ex an ion Boar b. cxamining pi 'lure.: of ample ed Ex an ion

Figure 3.3.1 - Handy Board and E~pansion BO,lrd

Board found on-line's Whit Ihi \\a" ultimateh' Sll e-. hI!, i is not the id at melh d, a I ha 10

r al \\a. 10 I S \' rye rnpon nt oflh E,pan'iun Bard to determj if \\:t 'thin~ \\'3 "II'

'orre' h. I "imply Ie I th im te inpul art thaI I c ul :xp illl'lll \\'jth,

3.3.2	 Constructing Sensors: Shaft Encodt:r

imilar to the E,'pan. ion Bard. Ihe shaft eneod r (Figurc 3.3._) did 110l arrj, \\ilh' n:'

Irect!on r in "Int ti n' f I' on-tn tlOn, o\\'e\" r. t e

pins r r the" n . were \ c'y cI arl: tab ted. and it \\'a' '1

-impt I rmin Ih~ proper \"iring for th nit. As

the llni I had t- that fit into Ihe trip' 'k Ihat l U 'd. i

\\ Ir . n or. . as I did n t hay t m eralUre
Figure 3.3.2 - Shafl Eneod r

'onlrol Or the s I I ring iron. and heat an hay ffcet on nonie component. The

ann an : Boar is a simpl n~. Th' - aft nco er ta nl: t\\ a analog: in ut

pan - (connect t the Handy 1:3 ard. an onh

\'Cl'\ • impt to \\ ire 'm implem ~ I.

Til on yoth r j- U rem' ining \\ilh t IS ~'n~ I' \ a- that of inter' 'lin.! the en or with the

~n I ronme t. As I \\ as not goi ng a anne' tbe shati r I [h' dri\T y tem in an: \\<1\. I

h I d' .lllp' e .\\ \\ \\ .me" 13.mIl, 1I group. I ProJecL han ;. - oard h . p30

2-1

oeeded to have some way of turning the shaft 00 the encoder. My solution was to attach a wheel to

the shaft. I used a Lego wheel of relatively small diameter. I needed to make the hole in the wheel

a bit bigger to accept the 1/4" shaft from the

encoder housing, and used a drill to do this. As

rhad neither the 1/4" drill bit nor a drill press to

drill directly down into the wheel, I used a small

drim bit. I held the drill perpendicular to the flat

side of the wheel. and circled it around a number

of times, 510\.\,ly stripping plastic out until I had

an even, larger hole to accept the shaft of the

Figure 3.3.3 - Shaft Encoder with Lego Wheel encoder.

3.3.3 Constructing Sensors: Light Sensors

The light sensors are sOme of the easiest sensors to wire and implement. The light sensors

are composed of a simple photoresistive cell. There are only two

connections to be made for these sensors to work. One of the wires of the

sensor goes to the signal port, and the other goes to the ground port of an

analog input on the Handy Board. Electricity comes into the resistive

cell, and the amount oflight present determines how much of the
Figure 3.3.4 - Light

electricity is allowed to continue through back to the Handy Board. Sensor mounted on Robot

These sensors are fairly standardized, and there is little variation in performance between them.

OrdinaFily I would shield the soldered connections with shrink. tubing, however, for the light

sensors, it was easier to wrap the connections in electrical tape.

25

3.3..4 Construcling. ensor'S: Touch Sensors

imilarly to L touch

en or. . 'ere aL \. ~ry easy t \'i r The t uch

n OL are a '~ry .'impl ~ d ~ ign. \\'hi h relie o.

ir uit eing: i leI' op ned or

h cireui is eompleteJ. he ou h . n'or 'eturn'

e signal that it ha- b~ n trigg "I' >d,

im lemenle 111\ r II h -en' r u h that Ihcr~

'Ire \\' source of power for four ouch cn ors.

Fi~ure 3.3.5· Robot Touch l'nsor~

3.3.5 ((Instructing Sensors: Eleclronic Compass

Th~ m st iftlcul en 'or to \\ ire and imp cm~llt \\'a t1le \' I r ompe '-. \\'hil rhi- -en or

di ome "ith do um mation an S 'hematic. th infofmati n gl 'cn \\'a a an ad 'nnc d le\!;;1 that

\\ :, nol of mu ·h help to me or m:- peers. E\'cntually, through s \ ral so r :. nough infomlation

r at ~ a \\'iring -) mati t at would alIo\\ t e compa - to fun lion.

. 'here '~n..: c\-ere I i, u - tha \\ em along \\ ith \\ iring the I clroni' em's', The fir::,t \\ a'

111\ "Iu'l nc to 'older \\ ir .. dir '11; to the I in on tip ompa- its If. Th 11 ~ t in\'oh'~d ,,'auld

troni 'omponent onlle c m a This 'alled for

1110unling the compa - on a mall piece of perf-board. I initial!:- us d Ihe 'am 'trip' eket Ihat I

wed for 11 ther a .. to plug into. Ho\\'e\,er., s the pins on be mpa-. ar

t tandthcstrip.o k~ti' Ign to ac pt

-guar pin. thi' di not guaranI a n'tant

nncctJ n, Lntil I a ab to 10 ate and

.	 I' de 'ign~ for flat pir '. I

fth~ square h Ie' \

in efling a pi c~ of bra wire int ea'h hole 0

tion b \\ nth pin nd the

Figure 3. '.6· Electronic compa.' m la

long ~r a pro I In on 'e I ('\\ ired Ihe ':" ~m \\'it1) - ckelS d~-i~l1 ~ for tel pin. ,

~6

The next major issue in the wiring was that of the connection to the Handy Board. The

compass connects to a synchronous serial port for communications, which on a Motorola system

such as ilie Handy Board is ,the SPI port. When the Expansion Board connects to the Handy Board,

it plugs into the available SPI port. While the connections continue through to the Expansion

Board, there are 110 sockets on the Expansion Board to utilize the SPI port, and it is a very difficult

task to cO'Qnect female s.t.rip socket to the top of the Expansion Board, as this would involve

attaching the posts of the strip socket to the tops of the posts sticking up through the Expansion

Board. Due to this, connections were made directly onto the tops of the posts that are used to

connect the Expansion Board to the Handy Board. This is a difficult task, and as the space

involved is extremely limited, ilt is easy to have unwanted connections. I would frequently have (0

check the connections using a voltmeter to check for conductivity. Stray solder, loose wires, and

loose pieces of metal would ,often be culprits in bad or unwanted connectioDs.

Upon examining the schematic of the Expansion Board, I found it to be possible to access

all pins of the SPI P0rl through other locations on the Expansion Board. Some of these 10cattol1S

Were no more accessible tllan the origi.nal ones, but using a combination of these pins made it easier

to wire the connections, and easier to track down and repair problems.

Another issue with wiring for the compass was that a wire needed to be connected to a pin

on a chip on the Handy Board. Not wanting to solder directly to a chip, I wrapped the wire around

the pin and secured the connection that way. \\'hile this seemed to work, there were too many

ways for the connection to fail. Upon examining the schematic of the Expansion Board, another

connection was found to be possible, and the wire was soldered directly to the Handy Board this

way. More information is available in Appendix B.

3.3.6 Constructing Sensors: Infrared Ranging Sensor

The infrared ranging sensor was very easy to wire. This unit came both with instructions

and additional parts, such as wires, a pre-made socket to plug into the sensor, and a transistor

necessary for use with the Handy Board (Figure 3.3.7). The infrared sensor plugs into a digital

input P0rl on the Handy Board, but also requires one of the digital output ports on the Expansion

Board. This particular sensor is an active sensor, in that it emits a signal in the infrared

27

\ 'l\d ngLh. \\ait for a return ,-ignallO boull~~ off of some bje t.

and th~n determine' the istanc t' d 11 tlc time it look LO re' I\'e

thL: rctk l"'d -ignal.

Figure 3.3.7 - Infr:J.red

Ranging Sensor

CHAPTER 4

SOFTWARE

4.1 Introduction

I put.a tremendous amount 'of time and planning into the software that would make this

entire system work. There are a large number of components that work together to form the bigger

mapping and navigation system. Each component ~s in tum comprised of still smaller parts. I view

the software in two gfoups: the so,ft"ware on the rohot, and the software running on my Linux

system. This is simply a way of breaking up the code to make it easier to examine. The two

groups of software cannot perform independently of each other, as they rely on components of each

other in order to produce any useful results. For the purposes of this discussion ~he software will

be broken up into subsystems, so as to simplify the task of examining the systems and the design

decisions behind them.

4.2 Robot

4.2.1 Robot Software - Communications

Periodically throughout the operation of this system, the Linux system and the Handy Board

need to communicate. Communication with these two systems requires a serial link between them.

Both computer systems check the serial line for communications. Communication over this serial

link requires a non-trivial amount of time, and also requires periodic checks to ensure that data is

actually being received on the other end of the communications link. Another issue with this

system is that communication from the Handy Board to the Linux computer takes a significantly

smaller amount oftime than communications going in the other direction, probably due to the

significantly faster processor speed of the Pc.

There were a couple of ways to establish this serial communications link. The first

possibility was to use the infrared transmitter and receiver located on the Handy Board in

conjunction with a similar hardware system built for a PC. The second option was to use the

already established telephone wire interface between the Handy Board and an RS232 serial port on

a Pc. As I would have had to create the Linux component of the infrared system, I opted for the

29

direct physical connection. This meant that whenever the robot and Linux machine wanted to

communicate, I would have to connect and disconnect them at the proper times.

Using publlicly available code for the Handy Board and a modification of codel9 for a Linux system

I created <Ii reliable system of communkation that caters to the needs of this project. This system

can send integers over the serial I,ine. My solution includes a way to acknowledge messages sent

between the two computers. This is necessary as the communication line is not infallible, and as

the line is broken and reattached periodically, which could easily lead to miscommunication.

The communications requirements ofiliis system consist oftransmiHing paths of travel and

a representation of the map from the Linux machine to the Handy Board, and retummg the results

of the data collection trip from the robot to the Linux machine. Due to the large amount of data

that must pass between the robot and the Linux machine, I opted not to acknowledge every

transmission of data between the two computers. This meant that more data was sent j'll between

acknowledgments, so more data would have to be resent if a traRsmission failed. When send~ng

communications from the Linux system to the Handy Board, I discovered that I needed to introduce

a delay between each transmission, as the Handy Board was unable to receive information at the

rate that the Linu.x system was sending it.

The code required for the Handy Board to transmit and receive data over the serial line is

available from the code repository on the Handy Board web site20
• All of the necessary methods

are provided. In general, the serial link to a controlling compiler such as Interactive C must be

overridden, by disabling the peode, the low-level interface on the Handy Board. Transmissions can

then be handled by transmitting a character at a time over the serial lime I used a function that

would loop through the digits in integers larger than one digit in order to speed the process and

decrease the code that needed to be written. Similarly, receiving information on the Handy Board

is handled by taking a character at a time off of the serial line. It is important to Dote that all items

sent through the serial line are characters, represented by ascii nwnbers, and not actual integers.

This fact can easily go unnoticed. All characters that are meant to be integers must be converted

from characters to integers. It is also important to note that a controlling program and compiler,

such as Interactive C, must be shut down or disconnected from the serial line before attempting

communication between the Handy Board and Linux machine. The first system to take control of

19 Thomas Heidel - theidell7i'advis.de
20 hnp: ·'el. www.media.mit.edu/groups/el/projeclslhaody-boardlsoftwareJcootrib/drushel/serialio.c

30

the serial line has control until it releases it. Should either the Handy Board or Interactive C

attempt ,to send signals to the wrong system, either system could easily misinterpret characters sent

over the serial line, and exhibit unexpected behavior.

4.2.2 Robot Software - Interacting With Sensors

All of the softw3!.fe necessary to interact! with and utilize the sensors used on the robot is

avaHable from various rocations on the Handy Board web site. This includes both the assembly

code necessary to interface the haEdware systems together as well as the code to activate and get

data from the sensors.

The first sensor that I imp1emented was the shaft encoder. The assembly codell for the

shaft encoder is avaHable wi,th a couple of options, namely the speed at which the encoder operates,

and which input port the user desires the sensor to be connected to. The speeds available are fast

and slow. I experimented v,rith both and determined that the fast speed was the most accurate and

appropriate for my robot. The versions of the assembly code for different input ports are included

as the assembly code must explicidy specify which port to access in order to increment the counter

variable. I arbitrarily chose the encoder to be connected to input port six. The user has the

capability to set the thresholds at which the total count from the encoder will increment. The user

can also access and reset a variable representing ,the nwnber of times the encoder has incremented,

and access a variable representing the current velocity of the encoder. These variables are integers,

and thus are limited in size.

The next sensor I implemented is the infrared ranging sensor. This code22 provides the

necessary subroutines and interfaces to coutrol the IR sensor. The user must flrst call a function to

enable the sensor before using it. Similarly, when use is completed) or if the user wishes to free up

processor cycles being used by the process controlling the IR sensor, there is also a disable function

available. Getting the current sensor reading is done by accessing a variable that contains the most

recent reading from the sensor.

The final sensor that required special software is the vector compass. The codeD for this

sensor again provides all necessary subroutines and interfaces to control the compass. The

compass software must also be enabled, and can likewise be disabled. The current heading is

- 21 hrrp://e I.www.media.mit.edulgroups,'eVprojeels hand"'--boardlsoftwareJencoders.hun I
22 hrrp:/lreality.sgi.com'barry dc!roilGP2002 I.html (linked from Handy Board site)

31

stored in an integer variable, and can be accessed at any time. During proper operation of this

particular implementation of the compass, the reading sboutd always be between zero and three

hundred fifty nine, S~gIDfying the current compass heading.

The code for aJlJ three of these sensors is somewhat taxing on the processor. Each software

system is constandy updating and interacting l;"llh the sensor, which chews up time and processing

capabilities that affect the other sensors as well as other computations being performed. The

ultimate effects of this are discussed in following sections.

4.2.3 Robot Software - Measuring the World

Having the robot interact with the environment created some issues and problems that

needed attention. In my representation of the coordinate system, I split up the world into a grid of

one inch squares. The most obvious problem was that the Linux software and Handy Board to this

point have dealt with paths of travel and locations as if the robot were one grid square in size, and

haven't compensated for the fact that the robot is significantly larger than this. So the first problem

was to interface the robot to the world by putting grid squares in some sort of unit that was useful

to the robot. As the robot measures distance with the shaft encoder, it made sense to determine the

size of a grid square in terms of clicks on the odometer, and I established the number of odometer

clicks per grid square by performing experiments. These experiments included measuring certain

distances, running the robot over these distances, and then dividing the number of clicks of the

odometer by the number of inches that the robot had moved. I did this for various lengths, and at

varying speeds of travel. This seemed to work well and consistently, and I found that a grid square

was about equal to two hundred clicks of the shaft encoder. However, once I began running the

fully implemented software package for the robot that I had written, this was no longer true. It

seems that once I enabled the infrared sensor and the compass, and had my own code running

constantly, enough cycles of the processor were taken away to significantly decrease the number of

encoder clicks that covered an inch in distance. I repeated the experiments with all of the software

running, and found that an inch was then covered in one hundred clicks of the encoder. It is

difficult to know if this number will now be consistent or not, given more or less computationally

intense periods on the Handy Board, and varying power levels as the robot is run more and more.

This is a significant problem, and one which is difficult to solve due to uncontrollable variables.

!J hClQ:/lel.www.media.mit.edu/grouDs/eVprojectslhandv-boardfsoft\v3re/contrib tomb

32

Future systems would need to compensate for this, perhaps by running each sensor in its own

thread, and ensuring the consistency of sensors such as the shaft encoder.

Due to the size of the robot, it covers just over nine grid squares in width. The software on

the robot is designed to incorporate this fact as it records its movements and keeps track of its

location.

4.2.4 Robot Software - Travel

Moving the robot through the envirorunent is a major issue. The vector compass is the

essential component of this portion of the system. The robot cannot even move in a consistent

straight line by itself, due to hardware limitations of the motors and unknown qualities of the

environment, such as dirt on the floor. The addition of the compass allows the robot to know

which direction it is heading in, and correct for any errors that may occur during traveL

To help this system and to reduce the probability of error, as well as simplify the task of

coding, the robot was restricted to four directions of travel. These directions are determined when

the robot is first activated, and is guaranteed to be oriented in the correct direction. When the robot

is still sitting in its starting position, it fust checks for normal operation of the compass, and then

sets the primary direction, which is considered to be north. The other three directions are set by

incrementing the heading by ninety degrees. These numbers are then checked to ensure that they

do not exceed the upper boundary of three hundred fifty nine degrees. In this event, the number is

decremented by three hundred sixty degrees to bring it back into the proper range. Whenever the

robot needs to change direction, it is done in teons of moving in the direction of north, east, south,

or west.

When the robot does need to turn, there is a function that turns to this new heading. The

robot turns in the direction that brings it from the current heading to the target heading in the least

amount of time. The algori thm behind this turn is quite simple, and is as follows:

33

x = Current Heading

Y = Target Heading

if IX- Y] >= 180, and X >= Y -7 Tw·n RighI

else if :X - Yl < 180, and X < Y -7 Turn RighI

else if ;X - Y >= 180, and X < Y -7 Turn Left

else if iX- Y < 180, and X> = Y -7 Turn Left

This function will turn the robot to within five degrees accuracy. The accuracy of the compass

does not allow for an exact system that would tum the robot to within one degree of accuracy. Five

degrees seemed to be the best amount of accuracy that I could achieve.

The same aigorithrn is applied in function to keep the robot travelling in a scraight line. The

function is constantly called when the robot is in motion, and makes small adjustments to the

power of each. motor in order to keep the robot moving in a straight line. If the current heading of

the robot is mope than ten degrees off from the desired heading, the robot stops all forward motion

and calls the function to tum to within five degrees of the desired heading. The combination of

these two functions keeps the robot on course with a very good degree of accuracy.

4.2.5 Robot Software - Obstacle Detection

Obstacle detection plays a large role in the navigation and mapping system. When the robot

is travelling around the environment, the forward-mounted touch sensors must constantly be

checked for contact. I created a function that checks each sensor, and returns the number of the

sensor that had contact. The four touch sensors lJi\ust IDe distinguishable as the system needs to

know where the robot encountered an obstacle, for the purposes of mapping. Having only four

touch sensors makes this an approximation, but this is sufficient. The function to detect obstacles

is called during normal travel, when the function to correct for the proper heading is called.

Once the robot successfully reaches the proper location> it calls a function to perform the

sensor sweep. This function slowly rotates the robot around three hundred sixty degrees. At every

ten degrees it takes an IR sensor reading and stores it in an array. As the lrkeli'hood of the robot

being able to stop at every tenth degree is relatively low, I implemented this system so that it

doesn't bother to anempt to achieve the precise heading, but rather rotates slowly and takes a

34

reading once the tenth degree is achieved or passed. This way the robot only has to download the

heading iliat beg<m the sensor sweep, a.nd the thirty-six sensor readings taken.

4.2.6 Robot Softwar'e - Light Tracking Network

The light tracking network is the only neural net actually implemented on the Handy Board.

Jbad to make some changes to the eodem order to bring my neural net code from the Linux system

to the Handy Board. The firs.t is that Interactilve C neither requires nor accepts prototypmg the

functions osed, as is possible OD the Lumx system. The next change is that the "main i
' function

needs to be declared as "void." Next, Interactive C does not accept n#include" statements. Some of

the functions that used calls to "math.h" also needed to be changed at this point, to make them

compatible with math functions built-in to Interactive C. The next change to be made was iliat all

variables and functions declared as "float" needed to be changed to "double," These were the

primary changes that needed to be made in order to have a neural net work on the Handy Board.

The final structure of the net contains two input nodes, two hidden nodes, and one output

node. The structure was such that it took the leftmost light sensor reading as the fust input, the

rightmost light sensor reading as the second input, and the output was the direction that the robot

should tum to. As the robot is only allowed to tum to the left 0.£ right, the third and middle light

sensor on the robot is not necessary, and was left out so as to simplifY the leaming process. This

middle light sensor is left on the robot in the hopes of creating a more comprehensive llight tracking

system that will incorporate all three sensors. The light tracking net will be discussed in more

detail in Chapter 5.

4.2.7 Robot Software - Infrared Interpretation Network

The neural network for interpreting infrared sensor readings is actually located on the Linux

system. This was due to the size of the network. The net was trained on the Linux machine, and it

was just as easy to upload sensor readings from the robot as it would be for distances, so I decided

to have the LinlL'(machine hold the network and perform the calculations.

However, the robot was the source of the data for the training set, and this simple data

gathering task is worth mentioning. I would position the robot a set distance away from a large

object, usually a wall. The robot would then move slowly towards the object, and record the

distance traveled by the shaft encoder every time the infrared sensor reported a change in reading.

35

When the robot ran into the obstacle, it would stop. The robot would then download the sensor

reading and corresponding distance to the object. The distance was determined by subtracting the

distance traveled by the robot at the change in infrared sensor reading. This process took a

significant amount of time due to frequent acknowledgment of transmissions. This information

was then stored on the Linux machine for the process of training the network.

4.3 Linux Software System

4.3.1 Linux Software - Communications

The communications process and requirements were discussed in tIle previous section about

the robot software. The code on the Linux machine is fairly simple. 11lere are standardized

routines for accessing a serial line on a PC, and this code merely utilizes these routines. Reading

and writing to or from a device such as a serial line is basically the same as reading OF writing to or

from a file. The major difference is that the program needs to be run as root in order to access ,the

device.

4.3.2 Linux Software - Map Representation

The map is represented in a grid coordinate system. While the system works under the

theoretical premise that the unknown environment is very large, this premise is not practical for

several reasons. The first is that the physical space available to me was very limited, and

increasing the size of the environment wouJd have increased mapping time considerably.

Additionally, I was limited by the memory and computational capabilities of the computer being

used. A large map would take a very long time to process and would inefficiently use up memory

resources. While a very large environment would be possible with a more powerful computer

system and a larger environment, in light of the restrictions placed on me, J had to limit the possible

size of the map to a two hundred by two hundred grid. Each grid square is a component in a two

hundred by two hundred array in the Linux software.

Each grid square represents a number of components. As each grid square can either be

occupied or free of obstacles, there must be some way of keeping track of the status of a grid

square. As the robot is expected to return some "noisy" data and data that conflicts with previously

recorded information, I deemed it necessary to assign levels of confidence to the current status of a

grid square. This is determined by the number of times the square was visited, and the status of the

36

square as. it was found! during iliat visit. The starus is determined by the greater number: the

number of visits the square was found to be empty versus the number of times it was found to be

occupied. ~n the event of both numbers being the same, the system assumes that the square is

fiUed. In my system the map is assumed to be static, That is, there are no moving obstacles, and

the environment never changes. The confidence level is determined by dividing either the number

of visits that showed the square to be empty or the number of visits that showed the square to

contain an obstacle (whichever is larger) by the total number of times the square was visited. For

instance, consider a square that has been vis~ted ten times. Say that the square was fOl!lDd to be

empty two times, and found to be occupied eight times. This means iliat tile square is considered to

contain an obstacle and has a confidence level of 0.8, as yielded by dividing eight by ten. A grid

square is not considered to be mapped until the confidence is greater than point five, and the total

number of visits to the square is at least nine. This is done to ensure that erroneous data is

discovered by comparing multiple trips to the same location. While primarily serving to guarantee

that the correct map is disco\'ere~ this also affords the machine learning system enough

opportunity to gather a sufficient training set.

Another component of a grid square is whether or not the square is on the horizon of the

known map. For this mapping system, the horizon is defmed as the outer edge of a mapped region,

and is used in the large learning system as an indication of the unknown aFea trnverse,d by the robot

in a given path. The horizon is an expanding region of areas that are considered to be mapped.

The area is contained by consecutively mapped squares or an outer wall. Outside the horizon is

considered to be completely uncharted territory, regardless ofhow close to being mapped the area

is. An area that is contained within the horizon is considered to be known and safe for the robot to

traverse without difficulty. If this is not true, the area has been incorrectly mapped. Assuming

normal operation of hardware system, these errors \"il1 eventually be discovered, and if the area is

traversed enough times, will be corrected on the map. The map may contain islands of mapped

areas and therefore many different areas with horizons, due to the mapping strategy and the random

nature of creating goal locations for the robot to achieve.

Each grid square is represented as a structure in an array of structures. This structure

contains variables to convey all necessary information:

l.	 The number oftimes the square was visited, either through the robot physically moving to

the space, or by a sensor sweep, and found to be empty

37

2. The number of times the square was visited and found to contain an obstacle

3. The status of the square (zero being empty and one being filled)

4. The level of confidence in the current status of the square

5. Whether or not the square is on the horizon

These variables are set at various times, and are all set to a default state in the initialization of the

map. All of the values are set to zero, meaning that the square has not been visited, is not on the

horizon, and is asswned to be clear of obstacles with zero confidence.

4.3.3 Linux Software - Unreachable Areas

As the environments created will contain obstacles of notable size, and as it is likely that the

theoretical outer edges of the environment will not be reached, it is necessary for the Jocation

generating system to recognize the existence of solid objects, so as not to enter into infinite

attempts to reach an unreachable area of the map. This is a deceptively difficult task. The outer

edges ofthe·se objects are the only parts of the obstacles that will be discovered. However,

depending on the accuracy of the sensory equipment and the generation of random locations to

visit, it is possible that the outer edges will not be exactly determined until much time and many

paths have occWTed. However it would be much more efficient to realize and recognjze these solid

objects early in the mapping process, so that time is not wasted attempting to reach unobtainable

areas.

The method for recognizing the existence of solid objects is rather time and

computationally intensive. The process examines every known grid square in the map. If a square

is filled, the system attempts to follow the path of filled squares parallel to the x-axis, if there is

such a path. When the end of this path is found, the process then moves along the y-axis, again

following the filled grid squares. This continues, alternating between x and y-axes. If the starting

coordinate is reached again, then the area inside the boundaries of this outer rectangle is marked as

being occupied by an obstacle. This is a simple iterative process, which assigns values to the

number oftirnes visited and the status of the square in order to designate these squares as filled.

This system is redundant, but the repetitive nature of the system helps to eDSure that objects will be

recognized by the system.

Obstacles with large boundaries are recognized as being the outer edges of the actual

environment, and are treated as such, marking the area outside of these edges as filled. This system

38

is not ideal in iliat it may not be likely that the robot will accurately determine the exact outer edges

of an obstacle. The concern here is that the system may be able to trace the outside of an object,

but may not end up exactly at the same coordinate that the process started at. Also, if there are

obstacles up against the walls of the environment, this system may have a difficult time identifying

these objects. Unfortunately this system was not tested with any real data, due to the problems

with the vector compass. The extent of the limitations of this process is not known. The full

system to recogn.ize the outer walls of the environment is not yet fully implemented, due to the

problems with the compass.

4.3.4 Linux Software - Random Number Generation

At several points I needed to make a random decision or choose values randomly in order to

create possible locations to travel to. For decision making I only needed two possible values, but

for creating locations for the robot to travel to I needed to be able to create numbers that covered

the entire range oftbe size of the map. So I combined these requirements into a system that

generates a random number between 0 and 199, inclusive.

It is difficult to create numbers that are actually random, but programming languages offer a

number of options that can serve as solutions to this problem. While systems exist to generate

random numbers, I did not have any viable options when I needed one, so I chose to implement my

own system. My solution was to get the current microsecond and store it in a variable as the

number of microseconds so far in the current second. I then take the sixth digit from the right (the

one hundred thousands place) and store this value. I 'then take the third digit from the right (the one

hundreds place) and store this number. I then take the second digjt from the right (the tens place)

and store this value. I then place these three digi1ts i!nto a new variable which gets returned to the

calling function. The digits are put into place by multiplying each by one, ten, or one hundred.

The resulting integers are then added together. The magnitude by which the three digits are placed

varies on a rotating basis, such that one will take the hundreds place, one the tens place, and one the

ones place, but they will not take the same position until five more random numbers have been

created. This prevents two random numbers called in rapid succession from being related or close

to each other, in most cases. Any of the three digits taken from the current microseconds value can

be zero, so the system actually does cover the range of zero to nine hundred ninety nine. One

39

drawback to this process is that it takes more computation time than is desired. This system has

proven to be sufficient, and is certainly good enough for the requirements oftrus research.

4.3.5 LiDUX Software - Pa1b Generation

The system that gener-ates possible paths for the robot to take creates a number of options

for the neural net to choose from. In the interests of speeding the learning process, and thus the

mapping process in geneml, the system is guaranteed to produce some desirable options. The

system wiiJI create seven completely random locations to travel to, regardless of whether or not

they're already mapped or even if they are filled. The remaining three paths are guaranteed to go to

an unmapped location on the map, as long as there are unmapped locations to go to. This is done

by checking to make sure that the target location chosen is not yet considered fo be mapped. This

does not mean that one or more of the random locations will not be a better choice' than one of

these three "good" choices, but it means that there wiJll always be somewhere desirable to go to, so

that when the machine learning system has been trained sufficiently, there will be a good option for

it to recognize and choose.

A variable between possible paths for the robot to take, besides simply the coordinate

traveled to, is the nwnber of waypoints within the path. For this project I have defined a waypoint

to be a point where the robot changes its direction of travel. This aUows the robot to move to

locations by avoiding known obstacles and to gather more data per trip by covering more ground.

decided that it would be pointless to have a waypoint where the robot does not change direction, so

there are special cases, such as when the starting coordinate and goal coordinate are aligned along

an axis of travel, which need to be handled separately.

Note that if a path is not possible due to obstacles} the path generator will move the variable

coordinate component successively closer to the starting coordinate in the hopes of achieving a

clear path. Should this fail, the attempt to generate a path with that particular number of waypoints

will also fail. If a path for a particular number of waypoints cannot be generated, there will be one

less i.n the total number of paths that the neural network has to choose from.

The function to generate a path with zero waypoints is the only function that actually

changes the stored path that the robot will follow. The functions to create paths of one to five

waypoints all call the function to create a path with zero waypoints. In addition, each of these

generators also calls the function for the next smaJjest number of waypoints. That is, the function

40

to generate a path with n waypo~nts makes a call to the function to create a path with zero

waypomts, and then calls. the function to create a path with n - 1 waypo.mts. The function for n - I

waypoints then calls the function for zem waypoints, and then the function for n - 2 waypoints, and

so Olll, unti~. the function c.all reduces to n + I calls to the function for zero waypoints, thus creating

a path with n waypoints and n +] transitions between them..

Each funclion for creating a path with more than 0 waypoints makes a random decision

about the initial direction of travel. As it is pointless to have a warypomt in 'line with the start and

goal coordinates, this possibility is excluded by overriding the random choice of direction in the

subcalls. The end result of this is that only the direction of travel from the starting coordinate to the

first waypoint is random, and the remaining movements alternate beNieen x and y, depending on

the initial movement. A more complete version of this system will allow for initial movement in

one of four directions. Given the current system of path generation, this is neither required nor

possible.

The functions for creating paths with certain numbers of waypoints takes aJ number of

parameters. These consist of the starting x coordinate, the starting y coordinate, the goal x

coordinate, the goal y coordinate, the randomization override value, the index into the list of

commands, the number of waypoints currently being attempted for that index, and the number of

the point that is currently being attempted. The starting and goal coordinates are self-explanatory.

The randomization override value will only be zero, one thousand, or negative one thousand. This

value is added to the result of a call to the function that creates a random value between 0 and 199

such that if the override is zero, the value remains random; if the override value is one thousand,

the random value is skewed to force the function to move in the x direction; and if the override

value is negative one thousand, the random value is skewed to force the function to move in the y

direction. This prevents the case where a path could contain waypoints that lie in line. The index

into the list of commands and the number of waypoints being attempted keep track of which values

in the array of possible moves are currently being altered. The number of the current point keeps

track of the order of the waypoints.

For example, the call to create a path with three waypoints would contain the start and goa!

x and y coordinates, a value of 0 as the override value, the current index into the list of commands,

a value of three for the number of waypoints, and a value of zero to indicate that the first waypoint

is being created. After the initial direction of travel is chosen, a call for a path with zero waypoints

41

is made for the fIrst waypomt, and a call to create a path wiili two waypoints is made, after

incrementing the CWTent point being created.

Each of these functions has some bllilt~in capability for dealing with waypoints that cannot

be reached. If an attempt to create a path between a set point and some attempted waypoint fails,

the function c-an aliter that waypoint witllin a specific range in an attempt to fmd a more viable

coordinate. IFor example. if a path wilth two waypoints fails on the fIrst waypoint, th.e path

generator win move the tlrst waypoint doser to the originall point. [fthe waypoint gets too close to

the starting point, the system wit! cease its attempts to create that path and report a failed attempt

This system is not ideal in that ~t ~s not exhaustive; that is, it does not seek out every possible path

with three waypoints before reporting that it is not possible. However, this system is only a tool

tluough which to focus on the learning system, so I deemed this path generator sufficient for

creating paths.

The first path calls for zero waypoints. This path is simply a straight line from the home

coordinate to the goal coordinate, and thus is only possible if either the x or y components of both

locations are in line. A path with zero waypoints is not always possible, regardless of the density

of the map and the placement of obstacles. The function first checks to ensme that either the x Of y

• coordinates are in line, and then checks to make sure that the

path is clear between the two locations. The system checks to 0---.
see if the path is clear between two points by projecting the

path of tbe robot between the points. It does this by centering
Key:

a line on the two points, and then examining the area on eithero Starting Locatlion

• Goa~ Locat,ion side ohhat line, in a width equal to the radius of the robot.
o eWaYlPoint This ensures that any space the robot will occupy is clear of

obstacles. Figure 4.3.1 shows the two possible paths from
Figure 4.3.1 - Possible paths with zero

point A to point B.
waypoints

Like straight-line paths, paths with one waypoint are also not difficult to create. These

paths are formed by two straight lines. This path can move fIrst along the x-axis, that is, remain on

42

• __• I • the horne y coordinate while travelling out to the x component of

I the goal, or move first along the y coordinate. Thus if the starting

I 0---. coordinate represents the bottom left comer of a rectangle and the o
goall coordinate represents t1Ie upper right coordinate, the waypoint

Figure 4.3.2 - Possible patbs v.;lb will be either of the remaining comers of the rectangle, depending
one waypoio' on if the path moves first along the x or y~axis. This rectangle

concept is the prelnise behind all paths that are created. Figure 4.3.2 shows the possible paths from

point A to point B wi.th one waypoint.

Paths with two waypoints introduce some more difficult issues to be dealt with. In the

•	 ._. case where the starting coordinate and goat coordinate are in

I It~ne, whether it be along the x or y-axis of travel, the function .1--·
 should still be ab~e to create a path with two waypoints. To

o	 0-. acccmplish this, the function will make the first waypoDnt out

from the starting coordinate some random distance away} along
Figure 43.3 - Possible patbs witb two

the opposite axis of travel ITcm the direction which is in line
waypoints

between start and goal coordinates. If tl'le start and goal

coordinates are not in line, the function makes the first waypoint in line witt1 eid1er the x or y

component of the starting coordinate (where the initial direction is determined randomly), and out a

value of half the distance between the respective coo.rdinates of the start! and goal. The second

waypoint is created by moving along the other axis of travel so that the second waypoint is in line

with the goal. Figure 4.3.3 shows the possible paths from point A to point B with two waypoints.

Creating paths with three waypomts entails difficulties similar to those encountered in

.-. I • creating pailis v.rith two waypoints. If the start and goal

I I I coordinates are in Rine, the frrst waypoint is again chosen

.1-. I j-e somewhat arbi.trari~y by a random value. Otherwise, the three

o	 10-. waypoints are detennined by a distance ofhalf the distance

between the respective coordinates of the start and goal. This
Figure 43.4 - Possible paths with

means that, in the ideal situation, the second waypoint will lie at
three waypoints

the center of the rectangle bounded by the starting and goal

coordinates, as shown in figure 4.3.4.

Paths v.-ith four waypoints are sl ightly easier create. In the event of the start and goal

43

6

-I .-_	 coordinates being in line, the function forces the Hrst

waypoint to still be in line with both the start and goal e-' I r-·I coordinates. The function then calls the process to create a
.-. I path with three waypoints, which will handle the situation of

10 -. the coordinates being in line as previously described.

Figure 4.3.5 - Possible patbs with four Otherwise. the first waypoint is determined by randomly

waypoints
 moving in the x or y direction a distance of one third the

distance between the respective components of the start and goal coordinates. The rest of the path

is determined by the creation of a path with three waypoints. The paths of four waypoints are

shown in figure 4.3.5.

Paths with five waypoints are handled in the same way as paths with four waypoints. The

'-_1	 _ only difference lies in the fact that the path is created by a

path with zero waypoints, and then a path with four T-e I I •	 ___
I

v.,-aypoints. These possible paths are shoViTI in figure 4.3.6. e-e I .-~-	 I This solution for generating paths with various 6 10 -. numbers of waypoints is not the ideal one. There are

Figure 4.3.6 - Possible paths with five arguments to be made for changing many aspects of the

waypoints system. A more robust system would allow for travelling in

more directions, and for maneuvering around obstacles. However, as this project merely calls for

creating a variety of options for the strategy system to choose from, this system is sufficient

4.3.6 Linux Software - Primary Learning System

Originally, I intended that the primary machine learning system on the Linux system was to

be a different type of machine learning. I ultimately decided that the large scale learning system on

the main Linux computer would be a neural network, in order to conserve the overhead of time

involved in implementing a new machine learning system, and to be consistent with the rest of the

project. The decision to remain with neural networks created a need to recast the representation of

the system so that I could feed it into a neural net in a meaningful and useful way.

The neural network is given a number of different paths on which to send the robot for data

collection. A representation of these paths is put into the net, and the system compares the output

of each path to see which path will theoretically produce the most useful information. When a path

44

\.
HIDDEN LAY ER

/
Figure 4.3.7 - Input BDd OUlpuf of the Primary Neural

Network

45

The third input to the net is a measure of the density of known objects in the area covered

by the proposed path. The density of dle area deady can have a direct impact on the number of

waypoints necessary to maneuver around obstacles, and can aJ!so have an effect on the estimate of

success of the path in general. This information is included as a path through an area with high

density may be less likely to be suocessful, due to the larger number of chances for the robot to run

into an oDject where it doesn't expect one. This could serve to lower the predicted success of the

path. The density for a particular path is determined by examining the ratio of filled grid squares to

'the total! number of grid sqUMes over the relevant area. The relevant area in, tms situation is defined

as the rectangle fonned by making the slarting coord'rnate the lower left hand corner, and the goal

coordinate the upper right hand comer. To make sure that thi,s actually includes some infonnation,

a buffer often grid squares is added alii around that rectangle. This process includes much error

checking to ensure that the system does not try to step outside the boundaries of tll.e map. The

function iterates through each square contained in the rectangle, and rncrements a courtter,

depending on whether or not the square is occupied or empty. Finalily the function returns the ratio

detennined by divid.ing the number of fitted squares by the total number of squares in the rectangle.

The fourth input to the net is the number of waypoints contained in the path. This is

important as it, in combination with the density of the area to be covered, may have an impact on

the success of the path. A path with a large Dumber of waypoints may introduce more opportunity

for the robot get off track and become lost The number of waypoints also has a direct correlation

to the amount of data that can be collected, and hence affects the usefulness of executing that path.

While the actual training of ~his network could not take place due to the problems with the

vector compass, I had a plan for this part of tbe project that should receive some attention.

Whenever the robot returned to the Linux machine, it would report back information that the Linux

system would then interpret. Part of the interpretation was to add the results of the trip to the

training data for the network, by adding the input and the actual result to the training set. The

usefulness of the trip is detenn.ined by taking a scaled value of the number of grid squares visited,

and dividing this number by the number of seconds that the robot was on the excursion. The time

spent on the trip is measured from the time the last element of the path to be traveled is uploaded to

the Handy Board, Wltil the Handy Board re-establishes a communications link: with the Linux

machine. This means that I need to be quick and consistent in attaching and detaching the serial

link between the two computers. The number of squares visited is determined by counting all of

46

the squares that the robot passed through on the path, including those covered by the width of the

robot. The number of squares covered hy the sensor sweep at the end of the path would be

detennined by cOWlting every square within range of the sensor. Those squares that were already

counted by the robot physically moving through them are subtracted from the count created by the

sensor sweep. Every square encountered, through either travel or the infrar,ed sensor, would have a

vaJue assigned to it, based on how useful it was to map that square. If the square was not

considered to be mapped yet it would be more usefull than rechecking a square that had a~ready

been mapped, and woufd receive a higher rating of usefu~ness. This is computed simply by

assigning a larger number to tFle usefulness rating for mapping an unmapped square as opposed to

re-mapping a square that had already been mapped. Squares that lay beh.-ind an obstacle in a sensor

sweep were subtracted from the total number of squares visited. TIUs would avoid the situation of

rewarding a trip for squares that were not actually mapped, and also avoid reducing the usefulness

of the trip simply because there were squares that could not be seen.

The success of the trip is fairly simple to determine. If the robot achieves its goal location

and performs the sensor sweep, the trip is assigned. the highest success value. If the robot

encounters an obstacle and cannot achieve its goal location, the success is determined by dividing

the number of grid squares that were actually visited by the number that would have been examined

had the target location been achieved, including those covered in the sensor sweep.

If the trip was not one hundred percent successful, that trip will still be added to the training

set. A second trip will also be added to the training set as well. This fictitious data set is the trip

that would have performed had the target location where the robot encountered an obstacle. The

input for this trip is determined using the same processes applied to actual trips, and the outcome is

assumed to have successfully examined all possible grid squares, including all those that could be

covered in a sensor sweep, and have taken the same amount of time that the failed trip actually

took.

4.3.7 Linux Software - Light Tracking Network

The ftnal version uses two input nodes, two hidden nodes, and one output node, as

previously described. Output for this node is binary, where a 0 signiftes turning left, and a 1

47

signifies turning right. While the network is used on the Handy Board, the network was pretrained,

in that the starting weights were hardcoded from the results of a network run on the Linux machine.

This net will be discussed in greater detail in Chapter 5.

4.3.8 Linux Software -Infrared Data Interpretation Network

The neural network to interpret infrared sensor readings is similar in structure to the light

tracking network, except that this net runs exclusively on the Linux system, and uses more hidden

nodes. The net contains one input node, twelve hidden nodes, and one output node. The input

value is the reading from the infrared sensor. The output value is the distance in terms of clicks of

the shaft encoder. The structure, results, and experiments associated with this net will be discussed

in greater detail in Chapter 5.

48

Chapter 5

Experimentation

5.1 Introduction

There were three neural networks tbat I designed and implemented in this project. All of

the nets utilized the same underlying code, and varied only by the number of nodes used in each

layer, and the number of iterations of pre-traitting. The first net served as a]ight-tracking system

for the robot, the second! was a system for interpreting the data returned by the infrared ranging

sensor, and the third net was a system for creatrng a strategy for efficientty mapping an unknown

en\'ilforunent.

Each o'fthese networks had its own design and implementation issues that I had to confront.

There were some overlappulg issues and problems that applied to the nets, however tbe solutions

were generaUy u~lique to the specific situation. Successfully completing these nets involved som.e

degree of trial and error and experimentation.

5.2 Liglht T'racking Neural Net

5.2.1 Structure ofthe Net

The light tracking neural net is the only network that was run on the Handy Board. h is also

run on the Linux macmne however, in a pre-training process. The structure of the 'network lis the

same on both computers, despite the necessary imprementation differences. 01.] both machines the

final version of the net consists of two input modes, being the left and right tight sensors, two

hidden nodes, and a single output node, consisting of the direction to rum.

Earlier versions of the net, however, utilized alll three available light sensors. These

versions of the net had three input nodes, one for each Dight sensor with the left sensor being the

fIrst node and moving to tbe right. The network at this point had more hidden nodes as well to

allow the three i.nput values to be faidy represented. The number of hidden nodes ranged from six

to twelve. I a~so experimented with the number of output nodes. I toyed with the idea of having

the network output a binary number signifying the direction to tum, followed by a second output,

which was the number of degrees to tum in that direction. However as the compass was not yet

implemented I could not pursue this approach. Another structure of output nodes that J attempted

49

was a system that would have two outputs, which would represeot power sent to the two motors.

As it ,turned out, the structure of the outp.ut nodes may have been viable options for a two-input

system, but the three-input node system turned out to be too compl'ex to tra'in. TIlls was due to

reasons of the tFaining set involved, and wm be examined in more detaiL

In the fInal version of the net, with two input nodes, two hidden nodes, and one output

node, I also varied the number of Ilidden nodes during the experimentation process.] started this

version of the net with more Ulan two hidden nodes, and gradually worked my way down through a

process of experimenting with the structure of the net. Clearly a smaller network is preferable to a

llarger one due to, memory and computation lirnitalioFls.] was fairly surpri'sed to observe that it was

actually easier and faster to tmin a network that contained two hidden nodes as opposed to some

farger number.

5.2.2 Pre-Training

Running the oet on the Handy Board took a large amount of time, I initially started training

the net with a very ideaIistic view of'the system. I p'1anned to run the robot through many actual

scenarios, providLng a supervised! learning system by teUing the robot which way to tum by

utilizing the start and stop buttons OA, the Handy Board. I did this for both the three and two~input

node versions of the net. With the three~input version, the robot had three options for travel: left,

.s1raight; or right. With the two-input version Flimited the options to either turning left or right.

While not perfect, the robot does not tum very far in a single move, such that the robots inability to

go straight lis not problematic.

The process, to this point had been to place the robot in the environment, let it take readings,

telil it the direction to turn, let it loop through the training loop a few times to speed up the training

process, and then have it run the input through the net and tum in the direction prompted by the

output, regardless of its COll'ectness. The {'obot would then move a short distance in that direction.

I rapidly got tired of waiting fOF the robot to tum and move, so I cut this part out of the system, and

chose mstead to place the robot in realistic positions to create the training set.

My hope was thal this process would quickly begin to reveal that network was learning

which direction to turn in, and that I would observe a shift towards the robot making better

decisions about which direction to tum in, It quickly became clear that this process would take

much too long to be useful. As a time-saving innovation, I opted to pre-train the network. I did

50

this Erst on the Handy Board, but it became clear iliat the Linux system could perfoITIl this pre

training much faster than the Handy Board was capable of. When I did pre-training on the Limux

machine, I needed w get the [mal \\eights from the Linux system to the Handy Board. As the

communications software was not yet fully implemented at this point, I did this by hand, entering

the weights on the Handy Board as the initial values of tlIe weights for the Handy Board's net I

couJ:d also test the net on the Linux machine, and did so by running through a series of input

scenarios. Once I had a working network,] experimented with the system by starting the training

process over and reducing the pre-training that was done. Finally I had a net iliat was pre-trained

as htUe I found to be necessary, and I put this less extensively trained net on the Handy Board.

From there I continued training on the rolDot, and was then able to see improvement in the decisions

,that the network made.

5.2.3 Training Set

The original training set consisted of actual data gathered by the robot. As previously

discussed, this proved to be much too time consuming. The next t.ra.ining set that I used was

generated by tbe robot, by placing the robot in realistic positions and recording tbe sensor Feadings

at those points. I quickly realized that this wasn't reallly necessary, and began to generate my own

dlata points by extrapolating from the teal points. This was necessary as it became clear that [was

going to needmore than a handfu1 of data points in my training set.

Eventually it seemed as tho,ugh this was not going to be sufficient. At this point I

introduced a series of compietely fj,ctitious data pOLnts to the training set. This beg.an when I was

stilll!lSil1g three input nodes instead of the [mal version consisting ofjust two. [abandoned my

,actual data points, and replaced them !by looping through a series of artificial data points. I did thjlS

by looping thrOUgfl possible input values with various increments between the input values. For

instance, for a series o,f points with an increment of ren, the data points that would have the robot

tum left would ~ook like 20, 10, 0; 30, 20 ,10; and so on. Points having the robot go straight would

look like 0, 10,0; 10,2010; and so on, This was clone for values within the range of zero to two

hundred fifty five (the output range ota light sensor), and for increments often, twenty, and thirty.

This worked very well for the cases where the robot had to tum either left or right. Howe.ver, in

more than half the scenarios where the robot needed to move straight ahead, the net would tell it to

51

rum one way o,r the other. This was troublesome and time consuming to attempt to track down.

Therefore] moved to the two input node version of the net.

I also used my same incremental pre-training modd on the two input version of the net as

well. This obviously involved only two inputs, and so it was much easier to produce the trai.ning

set and train the net. Upon exanlining actual data from the light sensors however, ~t appeared that

the angle between the. left and rightmost sensors was such that there would not usually be a

difference as small as ten bet\veen the two readings. Therefore I changed my training set to run in

mcrements of 'twenty, thirty, and forty. This version seems to work very well.

5.2.4 Training the Net

Training the actual network took a surprisingly small amount of time. In the versions of the

network and training set that I came up with prior to the fInal version, I inoreased the number of

iterations through the training set in an attempt to gain better results. However as I approached the

final version of the net, I was surprised to observe that the number of iterations needed to train the

network was much lower Ithan I thought would be necessary. W~th each iteration I would ,run

through the entire training set once. This is a sizable amount of information. Eventually though, I

,detennined that it was only necessary to run through one hl!lIldred iterations of the training set to

train ithe ne'twork. Any Ilarger fil!lffiber of iterations would only serve to reinforce the function that

the net had already learned. To put this ,in perspective> one hundred ~terations through this traililing

set would take less than a minute, which is substantially ress ,than other networks that I was n.mnmg

in this project.

5.3 Infrared Sensor Interpretation Neural Net

5.3.1 Structure of the Net

This network served the purpose of interpreting infrared ranging sensor data by putting it in

terms of a distance in units of clicks of the shaft encoder. With this in mind, it is clear that there

would be one input node; the value of the lR sensor> and one output node; the distance in terms

useful to the map. With the experiments of the previous net showing that fewer hidden nodes can

often be preferable, I used this approach to begin with. However, due perhaps to the complexity of

the function, lower nwnbers of hidden nodes did not seem to generate better results for this

network. This function is made complex by the extremely noisy nature of the data. The training

52

set is not a one-to-one FeJlationsrup at various points, although the network is attempting to create a

one-to-one function during the training process.

Once] detennined that fewer nodes WQuid not provide the solution that I needed, I focused

my experiments on shghtly larger numbers of hidden nodes. My experiments ranged from ten to

twenty hidden nodes. The final version uses twelve hidden nodes. My procedure consisted of

training the net, and then running a test set through the network. I then compared the outcome of

this test set with a sample of the training set to see how close ,the two were. [did this by graphing

both together and comparing the Jines graphed. The acmal training set would contain some noisy

data, and some conflicting data. My measure of success of the net was based on how close together

the two graphs were. Where the training data became noisy and contained conflicting data, I

looked for the trained net to follow the average of this data!.

It ,is difficult to d~aw condusi01ilS based sorely on varyLng the number of hidden nodes. The

number of iterations at which it was necessary to tFarn the network was such that it took anywhere

from three to eight hours to train the network and have data that was worth graphing. Due to tills, I

was unable to VaJ5' one parameter at a time with every attempt at running the net. iF,ewer numhers

of hidden nodes meant a shorter training tim.e, however often not significantly so.

53.2 Pre-Training

Like the light tracking net, this network is pre-trained. However, unlike the light tracking

net, this net is entirely pre-trained. In the light-tracking system I allowed for the robot to continue

the training process during real~wor[d situations, whereas this net is pre-trained with the training set

and then thought to be entirely static. I assume that both the IR sensor and the shaft encoder will

present constant findings over time. However, it is necessary to note that this process must utilize

the original findings of the size of a grid square. TIus system was run with no other sensors

enabled or running, and little other code running to take up processor time and memory space. As

previously discussed, the rate of clicks returned from the shaft encoder is about halved when the

complete system is rWilling on the robot. But the data collection for this network was performed

without the complete system running, as it hadn't been implemented yet. Therefore it 'is important

to remember to use the original size of a grid square when using the output from this net.

53

5.3.3 Training Set

The training set for this net \\ as gathered by using the robot. I gathered quite a bit of

infonnation for the data set, and most of it was fairly consistent. The IR sensor has an effective

maximum range, which is fairly apparent when examining a graph of sensor readings versus

distance as measured by the shan encoder (f~gtlre 5.3.1). As Can be seen in the

14000

...
Q) 12000

"'C
0
U

I::

W
 10000:=
IV

.r:::.
en
>
,Q 8000
"'C
l!
~
I/)
rg 6"000
Q)

:::E
ell
ra
Ql 4000
u
l::

.B
II)

C 2000

0
0 50 100 150 200 250

IR. Sensor Reading

Figure 5.3.1

graph, the d!ata is fairly consistent through an IR sensor reading of about seventy. That is the point

at which the sensor data becomes consistently noisy and difficult to interpret. As I attempted to

train the network, I found that the resulits ",,'ere heing shifted up the graph, and I anributed this to

the fact that the data set was not representative of the area that I cared about the most. This was

due to the way that I gathered data,

I gathered the data by baving the robot record the distance traveled every time the IR sensor

changed its reading. However, the sensor changed quite a bit more often in the noisy range., so

there were many more data points in this range, The sensor gathered more data in the noisy range

as it would often receive many different readings when located at the same distance away from an

obstacle. As the robot moved into the range where the sensor started to return values of seventy

and above, the correspondence beh...·een IR sensor and distance from the obstacle became one-to

one, so there was only one distance for each IR reading, and hence fewer data points to consider.

54

55

70m----------------------------,

• Net Output

I . Training Data,

300200100

\

50
o+---~~~-~~~ ..---~

o

4000 I

•
30m + ----"t~------------~:__---_i

'"
1

20m ~-~.....-~------------...,......_---_i

10m +I------=il~~---------..:........------l

: ~

1 50m +----..-;'.....------------..:........--------i

Born -+--__......i~·.---------------l

5.3.2 - Output ofIR Net "5. Training Data

still many issues wllth the net, but I was finally able to obtain a net that produces meaningful

infonnatioll! over the useful range oflR sensor readings, as shown irn. Firgme 5.2.2. I determined the

useful range of the sensor to be for readings greater than seventy.

5.3.4 Training the Net

Trai.ning the net was a long and time-consuming task. With every change that I made to the

network, I would need to train the net and check the output As training the net took anywhere

from three to eight hours, and better results were Dot necessarily guaranteed, this was often a

Once I realized this fact I started to count the important range of data, where the JR sensor read

seventy or greater, many more times, in order to have both ranges COtmt equally as much, and to

make the training set more representatrve.

As time progressed though, I shifted mo.re and mOfC importance onto the range between

seventy and greater. FinaU)' J cut the other values out of the 'training set all together. There were

discouraging task. The number of iterations ranged from five thousand to one hundred 'twenty

thousand. I was attempting to get as precise an output as possible from this network, so adding a

few thousand more iterations morder to get a single unit closer to the target data was worth it. It

quic'kty became apparent that as I trained the net more, 1 had to .make more d!rastic changes in order

see any effect. for instance. the difference in resclts between running the training set for one

hundred twenty thousand iterations and ninety thousand ~terations ES very small.

5.4 Mapping Strategy Neural Net

It is impossible to discuss this network in great dew I, as the probien-lS with the electronic

compass Ii'mi,tcd the results that I was able Ito gather. The structure of the network has been

discussed in the previous chapter. I never settled on the internal structure of the hidden nodes for

this net, as I could Dot experiment without a reaL data set. My plan for this network was to run the

training set through the net after each data gathering excursion performed by the robot.]

aJilticipated that I would nm the training set through several iterations each time it was run. [also

planned on ,creating. a system to cycle through the trailling set, as the initial trips would be over

represented in this train.ing scheme.

I contemplated the idea of training this net on data generated by me, but chose not. to pursue

this approach. .I could easHy generate locations to travel to, and create a series of data to train Ute

net with, however this wouldl not take into account the. hardware discrepancies that I anticipated

would be present on the robot. As this is a m<ljor point of interest toe me, I chose not to continue

along this path,

56

CHAPTER 6

Conclusions

6.1 Introduction

A research project such as this one can never really be considered to be completed. There is

always some aspect left illlfinished, or some component which can be expanded or enhanced in

some way. My project is no different than any other in these .r.egards. Despite these areas that can

and should be expanded or oompleted, there are many other areas which are cmnplete, and a great

number ot'lessons which have been learned.

There are two main aspects to reflect upon, the first ofwhicfl ,is what I learned. When I

examine these issues, I focus on passing on the lessons that I learned to someone dse, rather than

lis.ting the numerous topics that I learned about. The second aspect is that of what is completed,

and what needs to be done.] ge:ar this section primady towards future researchers, so that others

will know of the issues Jam facing, and in the hopes that others will apply their perspectives and

ideas to further my research.

6.2 Lessons Learned

6.2.1 Robot and Hardware

Given that I had never had any instruction in creating hardware systems sueh as the ones

incorporated into my robot} this was an area involving a great deal of research as well as trial and

error. The first strategy that I would recommend involves giving a lot of thought to the design of a

robot. There were many issues and problems that arose with my robot that I could not have

foreseen, and it seems as though this is a general tnlth. So to minimize this issue, I strongly

rewmmend putting much time and energy into thinking about the demands that will be placed on a

robot, and implementing and testing prototypes whenever possible. This will decrease the number

of long-term issues that \\~ll need to be confronted, and make for a more robust robot system in

general.

Along a similar line, giving a lot ofthougbt and planning to choosing which sensors to use

is another time-saving recommendation. I put a good deal of thought into the requirements of my

robot, and this helped in my choosing sensors to purchase and implement. Along the· same line, I

57

whole-heartedly advise getting hardv."are components which are best suited for one's skills and

abilities. In my case, I would have been much better off huying sensors that required less

construction. While my goals for this project invollved learning about wiring and soldering

electronic components, not aU of my sensors were quite wit.hUI reasonable grasp of my skills. I

sank a great dea1 of time into the implementation of my sensors, and in the case of the electronic

compass. was not entirely successful. While I am grateful for the opportunity to learn what I did

about solder,ing and wiring, too much time was spent all' these hardware issues. and ultimately more

software and results would have been achieved had I been able to eliminate these hardware issues

in amore timely fashion.

Similarly, I have found that it ils mucb more beneficial] to seek mIt hdp from those more

experienced rather than attempting to force through some issues. While it is oat belpfu1 to anyone

to simply ask for help from the start without making some sort of effort, there are many resources

which can serve as educational tools. Without any background in electrical engineering, it was

essentially impossibte for me 'to interpret the electrical schematics of sensors without externa.l help.

Sources such as the internet and the Handy Board Mailing Lisr4 were mvaluahle to me ill

determining how to wire the sensors that I used.

6.2.2 Neural Networks

As with my background in hardware topics, I was relatively new to machine learning and

neural networks at the beginning of this project. When I refer to the size and complexity of a

network, I am referring to the number of hidden nodes in a net. In my experiments, the number of

input and output nodes was fairly obvious for a problem, and thus was not really variable. Thus the

only variable left for the structure of the network is the number of hidden nodes.

The biggest piece of advice that I can offer to someone experimenting with neural nets is to

start small and build up from there. This is true for several reasons. First of aU, it simply makes

sense to start with a simple design and build complexity into it. By starting with a simpler design

and adding to it I was generally able to watch the results get better as experimentation progressed.

Then it was a fairly simple task to add complexity to the net until the performance of the network

was satisfactory, and the performance increases yielded by further complexity were negligible.

Another benefit of starting small is that a smaller net takes less time to train and examine the

24 Handy Board Mailing List

58

results. As the comp1exity of a net increases, the training process takes longer, and 'the process 0,1

gathering and comparing results thus takes more time.

The ,truly difficult part of exper~mentingwith neural nets is recording the differences

between the nets and the resuhs of each. As I varied such components as the number of hidden

nodes and the number of iterations ohhe training process, each different net would yield a set of

results. First of all, it is difficult to determine whether a change in the number of hidden nodes in a

net or the number of training iterations made a change in tbe resu~ts of a net. Therefore it is

importaot to vary onJy one of these variables at a time, which can De rather time consuming

depending Oil! the size of the net and number of ~teIatiolilS for the training set. J have found that

keeping a good set of Dotes for each change made to the net is critical to being able to track the

effects of changes. Tlus is especiallly true if a test of the network takes severa~ bours or ,days.

6.2.3 General Lessons

Generally, my most significant piece of advice is to write about sections and systems as.

they are completed.] did ,this to, some degree, and increased my po~icy of this as I progressed in

Ithe project. When doing background Fesearch it is easy to make write summaries and small topic

papers along the way, and these mini papers can be plugged into a flnal paper with relative ease.

This is somewhat more difficult when creating a hardware system, but design notes and brainstorm

sessions are a good way to track the design and thought process behind d~signing a robot. Keeping

track of changes when writing code may be the most difficult task of all]t is very difficult to write

about code before it is completed, given the large number of p.roblems that arise and changes that

end up being made to code before it is complete. I have found that the best solution here is to keep

a good system for commenting code. Well commented code can not oIrly be understood by others

who might wish to read the code, but it also serves as an outline for a paper. Comments in code

speH out the process and ,thought behind! the code in a concise and strnightforwaId way, and in my

case couJld often be put directly into a paper.

6.3 Future Work

Many aspects of the p.roject that I originally set out to do have been successfuUy completed.

Some others are currently held up by h.ardware implementation issues. The completed topics are

certainly not trivial, and are aU discussed earlier in this paper. Among these are such large-scale

59

topics as building the robot, building the software system to control the robot and tie together the

learning systems, and impl'ement}ng three nets and testing two of them. As mentioned at various

points in this discuss~on. there were several topics that were not completed, or were not completed

to my satisfaction.

Clearly the problems with !he electronic compass prevented some of the project from bemg

completed. Also, some components, such as the pa!h genera!ion system, were implemented only to

the point of being suffic.ient for the· current state of the system. Topics such as these could he

furthered to be more complete and operate with. greater efficiency. These current issues and my

hopes for the project help to create em impressive list of topics for future work.

My first hope for future work is to complete the system as it lies no\.-", This primarily

entails working on the electronic compass more, and making it work correctly. The proper

operation of the compass would yidd the ability to test the rest of the code that I wrote, induding

the primary learning system.

Another topic for future £1esearch entails lintroducing multiple robots into the environment

This includes a surprismg numbe.r of problems and opportunities [or more research. The first issue

is that there ,is now one or more robot in the environment at a time, essentiaBy creating multiple

moving obstacles in what was previously a static environment. There are several possible solutions

to this problem, all of which include further subsystems. There is the possibility of having more

than one starting coordinate, with each corresponding to a different robot. This would involve

having sections of the map assigned to a specific robot, but that implies some sort of fore4

knowledge of the map. Another solution would be a scheduling system, involving a central

computer assigning tasks to robots in such a way as to avoid collisions. This is a somewhat dull

and imperfect solution however. A more interesting system might involve inter-robot

communications, both for avoiding collisions, and perhaps also for a more intelligent and accurate

system of mapping based on comparing two perspectives of the same area of a map.

Another interesting possibility with the introduction of multiple robots is giving individual

robots different skills and different tasks. This could require some sort of cooperation between

robots, as one robot may be assigned the task of mapping an area that it is not capable of mapping

for some reason (perhaps due to different terrain in the area, or restrictions placed on a robot). This

would be a particularly interesting system to apply machine learning to, to examine any emergent

behavior in the relationships between the individual robots.

60

Another hardware issue to be addressed is the seriat communications link between the

Handy Board and the Lirrux computer system. It is truly irritatmg to have to connect and

disconnect the telephone cord between lhe two compute]' systems. It would be possible to

unplement either an infrared communications system, or a wirdess radio system between the two

computers. This could also be a longer range connection, such that the robot may not always have

to return to the starting coordinate to report back its fmdings and receive new instructions.

Beyond the hardware issues, there are se\'era~ software implementation wpics which could

be enhanced ali increased. The obvious issue is that of the path~generation systelIli, on which l cut

some cor.ners in order to have a working system. The system could be marginally eooaJ'lced by

incmporating more options for paths into this system. Additionally, i would Hke to increase the

presence of machine learning systeI'l'lS in the whole system. There are many more areas where

machine learning system could be incorporated, and it would be interesting to examine the effects

of putting more of the system into the control of a learning system. Finally, I believe it would be

quite intefesting to create a successful system whh one type of machine learning, and then re

implement the components of this system with different machine learning systems. Comparirng the

results could perhaps lead to combining the S)'st€IDS to CFeate a very efficient mapping and

navigation system based on multiple machine learning approaches.

61

Appendix A: Robot Base

3 114"

1 "

Rubot Base - Viell from the l3ack

:2 II~"

4 lf~"

'2 '!"'

9 1'''

Robot Base - \ iell from the Front

3 li4"

3 114"

9 3/8"

Robof Base - Vie\\ from till' Llottom

6 ' .'

112"l
I /4"

4'

1r.:'

112 "

3 1/4"

. 31 II

R hot B:lsC - Vie\\ from the Top

6..\

1/4 "
H

14 II

_ 3/8"

Robot Ba e - Vic\\ from th Side

5

Parts List: (Corres londs. to 3 Fieures Followin~ this Chart)
Part: Num. Supplier Information Reference

Num
Dri.ve Wheels - 3 1/4" 2 DuBro I
1 11/16" Castor Wheel I Hardware store 2
Lego Wheel = I I Lego Robotics Technology Kit 3
1\/16" x 1.12" I

GeaJl'ed MOlors '2 Herbach & Rademan Co., 16 Roland Ave., Mt. Laurel" NJ 08054, 4
(856}802-0422
.Pan #: lM90Mli'Rj 1.66, "25rpm 12vdc" ($27.95 ea.)

'93/8" x 9 3/8" x 1/4"
I I Scrap wood 5

o-Iywooo 'I
2" x 3" x If2"' pl'ywQod I Scrap· wood 6
3 3/4" x I" x 1/4" pine
2 1/4" x 4 112" x 1'/2"

I I
1

, Scrap wood

IScrap wood
7
g

pine
, 2 112" x.2 1/2" x 1/2" I Scrap wood 9
i pine

j" aluminum scvcws 12 I Hardware store 10
\,12" brass scre.ws 8 Hardware store 111
Perfl30ard I Electronics store 12
Precision Na\>igalion I Jameco, 1355 Shoreway Road, Belmont. CA 9400 I, 11-800-831 13
Elec·tronic Compass 4242

Dan #: 126703, "sensor, magnetic compass elect." ($49.95 ea.) I

Sharp GP2D02 I Acroname, Inc., PO Box 1894, Nederland, CO 80466. 14
Infrared Ranger (303)258-3161

pan #: R19-fR02 ($21.00 ea.)
Optical Snaft Encoder I US Digital, 1110 NE 34 lD CiEcle, Vancouver, WA 98682, 15

(360)260-2468
pan #: SI-2S0-NT, "softpot optical shaft encoder, sleeve h~lshing

version, with no added tora.ue, 250 CPR"', ·$49.95 ea.)
Light Sensors 3 Electronics store 16
Strips Brass Fall 2 Hardware slore 17
StripS Brass 2 Hardware store 1&
Brass Wire 6 Hardware slore 19
liandy Board 1 Gleason Research, PO Box I~47, Arlington, MA 02474 20

I Pan #: GRHB Mac (S299.00 ea)
I" Brass Nails 10 Ha[dware store 21
Pipe Insulation NA Hardware store 22
Wire NA I Electronics store NA
Sl}rink Tubing NA Electronics store NA
MaleJFemale Strip NA Electronics store NA
Connectors I

Appendix B: Hardware and Sensors

I'"

Sh'lfr Encoder Sh;lfr Encoder \\ iring Diagrall1~

Ground
\"oltag. (-: \)

Vollal? alii

Dlgllnl OlllPUI

Int rrilcln~
Diode ~

Infrared Sensor Infrared SeJlsor Wiring Schem;llic

69

70

PI Port

, Tran,l<;tor

S PD:

Elect roni<' Com pass

Electronic ompHs' Pin Oul

EI ctronk Compa s: \Viring to Expan'ion Board

mt---- " .h

Ele [rollie ompa Allernaie \Virin!,! to E'\pansion Board

rlcel ronic Com P;lSS: Wi ring 10 H:lndy 130a rd

71

Bibliography

American Association for Artificial Intelligence; (http://www.aaai.org]

Braitenberg, Valentino, "Vehicles., Experiments in Synthe'tlc Psychology", MIT Press,
Cambridge, Mass., 1984

Brusehaver, Tom; Handy Board contr.ibuted codc repository
[htm;/leLwww.media.mir.edulgroups 'ct [projectsfhandY-'board/softwarefc0ntribltomhi] (Brushaver' s code,
a\ ailable from the Handy Board contributed code repository)

Cheeseman. Peter, et. at, "AutoClass: A Bayesian ctassiiicatio.n System", from
Proceedings of/he Fifih International Conference on Machine Learning, 1998

Congdon, Clare, "'A Comparison 01 Genetic Algorithms and Other Mac.hinc Learning
Systems on a Complex Classification Task from Common Disease Research", PhD thesis,
Univers~ty of Michigan, Depanment of Electrical Engineering and Computer Science, February
1995.

Detroit, Barry, [http://realitv.sgLcomfbarry detro~tlGP2D02 I.btml] (Detroit's code linked =
from the Handy Board code repository)

Drushel, Richard F.; Handy Board contributed code repository;
[hup:/lel.www.media.mit.edu/groups/ellprojects/handv-board/so[(\Vare/contrib/drushel/serialio.c~

(Drushel's code, available from the Handy Board contributed code repository)

The Expansion Board web- site; [http://el.'wv.rv,i.media.mit.eduJlZrDllps/dlProjeclsLhandv
boardJhbexp30J] (Information availabre from this site was 'used as ~nstr1Llctions for c.onstructing the
Expansion Board)

fisher, Douglas, A., "Knowledge Acquistion Via Incremental Conceptual Clustering",
Machine Learning, 2: 139-]72, KiU\lveJ Academic Publishers; Boston, 1987

The Handy Board code repository; [http://el.w\\w.media.rniceduJQ:roups/eMprojectslhandy
hoardlsoft\ are/enc.oders.html] (Standard code for the Handy Board, availab!e from the Hoody
Board software repository)

The Handy Board Mailing List, [http://w'\v\\dugnct.comJroboticslhan&yboardIU (Reposiitory
of messages from tbe Handy Board Mai~ing List)

Heidel, Thomas, [theidd(@advis.de]l, personal commU!I1ication, Monday, November 8, 1999

IS Robotics welD site; Ihttp;llww\\i.isLcomJ

72

mailto:theidd(@advis.de]l

Knotts, Ryan; Nourbakhsh, Wah; Morris, Robert, "NaviGates: A Benchmark for Indoor
Navigation",
[http://www.n.cmu.edu/pub files/pub I!knotts rvan 1998 l/knotts ryan 1998 I.pdf]

Kunz, Clayton; Willeke, Thomas; Nourbakhsh, "Automatic MappiLng of Dynamic Office
Envirorunents",
[http://wwv.'.ri.cmu.edu/pub files/pub I1kunz clayton 1999 lIkunz clayton 1999 l.pdfl

Meedel1, Lisa, "An Incremental Approach to Developing Intelligent Neural Network
Controllers for Robots", appeared in IEEE Transactions ofSystem.~, Man, and Cybernetics, Pari B:
Cyhernetics, June 1996, Volume 26, Number 3, pages 474-485

Meeden, Lisa; Kumar, Deepak, "Trends in :Evolut~onary Roboti,cs", appeared in Soft
Computingfor lnlel/igenl Robotic Systems, edited! by L.c. JaL\I1 and T. Fukada, Physica~Verlag,

New York, NY, 215-233,1998

NASA, Mars Pathfinder web site; ~http://mpfwww.rpl.nasa.gov/default.htm~]

The Neural Network FAQ, [ftp://ftp.sas.com/neural!/FAQ.html] (Comprehensive resource
and smrrce on neural networks)

Mitchell, Tom, M., "Machine Leaming", McGraw Hill, New York, 1997
[http,://wW\.....cs.cmu.edu/afsfcs.cmu.edw'userlmitchelllftofml.-examplces.hrml] (Neural network code

accompanying textbook)

Sbu-pui, Patrick Ko; ,[http://www.cs.cmu.cdu.'afsJcslprojectlai-repository/aiJareasineuraVsystems/bpnnl]

(Neurall net code from this site lIsed as an introduction to neura' networks)

73

	Machine learning and small robot navigation
	Recommended Citation

	tmp.1226436603.pdf.EKgbr

