Sculptural inquiry into geometric and organic forms

Gregory Christopher
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/seniorscholars

Part of the Art Practice Commons

Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author.

Recommended Citation
https://digitalcommons.colby.edu/seniorscholars/50

This Senior Scholars Paper (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Senior Scholar Papers by an authorized administrator of Digital Commons @ Colby. For more information, please contact mfkelly@colby.edu.
A SCULPTURAL INQUIRY
INTO
GEOMETRIC AND ORGANIC FORMS

by

GREGORY THOMAS CHRISTOPHER

Submitted in Partial Fulfillment if the Requirements of the
Senior Scholars' Program

COLBY COLLEGE

1994
TUTOR: Imi Hwangbo

READER: Nancy Goetz

READER: David Simon

CHAIR, COMMITTEE: Fernando Gouvea
Abstract

In my Senior Scholar project I manipulated simple geometric shapes in an attempt to construct organic forms using transparent planes, created areas, and implied volumes. The sculpture, which was influenced by my interest in the Renaissance, Russian Constructivism, and the Minimalists, can best be divided into five series; each series is identified by a physical and a conceptual change of ideas. The first series focused on the conceptual ideas of each piece and expressed a lack of concern for the physical properties of the objects. The work progressed during the project; the focus of other series shifted from a purely conceptual approach to acknowledge the importance of physical form and the relationship each piece has with its environment and to the viewer. This shift in conceptual ideas affected the choice of scale and material for each series. The forms that were most successful were large scale pieces with interesting points of contact with the natural environment; they related most to the viewers.

The creative process utilized throughout the work relies on exploring many possible ideas through physical models and drawings. Models allow the artist to observe the work from an outside viewer's perspective, and simultaneously work with conceptual ideas and physical relationships. I believe the sculptures created during this project succeed at balancing the ideas of object and concept by incorporating conceptual ideas with physical relationships.
Sculptural Inquiry
into Organic and Geometric Forms

Sculpture has always provided a stimulating way for me to express my thoughts. It is an activity that I enjoy immensely. Unfortunately, it is often difficult for me to devote as much time to it as I would like. The Senior Scholar Program has given me the opportunity to pursue and develop my abilities as an artist by granting me the time and structure that I desired.

My Senior Scholar Project has tied together my philosophical, mathematic, and artistic backgrounds. In this project I closely examined both geometric and organic forms. There are many differences between these forms. Geometric forms, such as a circle, are logical and mathematical. Organic forms, on the other hand, are natural and contain characteristics of a living organism. Although these two forms appear fundamentally opposite, I believe that they are connected, and that a harmony exists between them. By harmony I refer to a state where the characteristics of each form equally and simultaneously accentuate and perpetuate the other.

The structure of the Senior Scholar program was very appealing, and has been as demanding as I had expected. My tutor, Professor Imi Hwangbo, and I met on a weekly basis to critique pieces, and discuss physical and conceptual ideas. At transitional stages during the semester, such as after completing larger pieces, I met with Imi to discuss sketches of formal ideas and written descriptions of conceptual ideas. Although writing about sculpture was difficult, it was also rewarding; it allowed me to express the development of my ideas and the conceptual motivations
behind my work. The written work also strengthens an outside observer’s interpretation of the physical objects.

The Senior Scholar program greatly benefited me as a student and as an artist. I have sharpened my self motivation skills. My desires to create, and to produce successful sculptures, have been my greatest motivators. The program has allowed me to create my own projects, deadlines, and goals, thereby allowing me to concentrate more of my energy on my work. Through this project, I have learned how to budget and organize my own time without the regimented deadlines of a regular course. On average, I spent about fifteen hours a week in the sculpture room, as well as many more outside developing ideas for the work. I followed a loose schedule of times to work, which fluctuated depending on motivation and other commitments. Some weeks I would work only ten hours, others over twenty.

My work combines philosophical, conceptual, and physical ideas. Philosophically, my project originated with my ideas of organic and geometric shapes. I believe that although these two kinds of shapes are formally opposed, they are connected, and a harmony exists between them. Conceptually, my work attempts to manipulate simple geometric shapes, exploring subtle deviations of form. They include physical deviations of geometric shapes, such as straight planes, and the creation of implied planes and volumes. Physically, my work has evolved from pieces that lacked a physical presence to pieces that were dependent on material, scale, and relation to the viewer.

The philosophical motivations behind my work have come primarily from three distinct periods: the Renaissance, Russian Constructivism, and the Minimalists. My original motivations for the project came during my
semester abroad in the spring of 1993. I spent a semester in Florence Italy studying architecture, where I exposed myself to the Italian Renaissance. I found many ideas fascinating, but was most intrigued by the philosophy involving geometric shapes. Euclid's simplest geometric shapes united art, philosophy, mathematics, science, nature, and religion. The circle and square, the simplest and most perfect of Euclid's shapes, played a central role during the Renaissance. These shapes were thought of as divine: geometrically, they were perfect, so they were believed to be the shapes of God. Churches were built using the circle and square as key structural forms. These forms were the building blocks of geometry and mathematics. The importance of their role is most powerfully portrayed through the famous sketch by Leonardo di Vinci (plate 1). Whether the proportions are physically accurate or not, this one drawing conveyed the dominance of the geometric philosophy of the time: the circle and square were mathematical creations that were seen as divine shapes, and were used by God as blueprints for creating the universe, and the supreme form of the natural world: the human body.

I was attracted to the logic of this universal philosophy. The simple shapes of the circle, square, and triangle are aesthetically pleasing to me. They express a basic harmony that I identify with. These shapes, however, are cold and stale, and lack the life and dynamic variety of shapes found in organic forms. Geometric forms have no physical properties. For example, a square does not have a particular size, color or material. Organic forms, on the other hand, are necessarily physical. They are dependent on scale, material, color, and directly connected and affected by their surroundings. This year, I was interested in creating forms that
combined the physical nature of organic objects with the logical simplicity and beauty of geometric shapes.

I was also influenced by Russian Constructivism. The art of this period reflected the merging of art and life as influenced by mass production and industry. I was drawn to the work of Naum Gabo. His work stemmed from the ideas that forms found in nature could be abstracted into geometric planes and shapes. Gabo was one of the first artists to define mass without using massive form. His pieces were constructed of planes that implied interior volumes (plate 2 a). I was drawn to his technique, and attempted to construct organic forms with geometric shapes and planes. Gabo's sculptures were exquisitely designed with a geometric perfection that rendered them independent of physicality. Many of his works achieved this through using lines to imply surface and volumes (plate 2 b). I adopted this technique in attempt to build "non-physical" pieces.

My third influence came from the Minimalists. The Minimalists were interested in creating forms that were against traditional representation in sculpture. They believed that less was more, reducing spatial form to its fundamental aspects. Similar to Minimalist ideology, I saw my pieces achieving a balance between object and concept. One Minimalist with whom I particularly identified was Sol Lewitt. All of his forms came from geometric shapes; he created all his pieces using only lines, and his base shape was the cube (plate 3). I was intrigued by his process; it was scientific in that his studies exhaustively explored possible geometric variations of the cube. His work examined subtle differences in form. Each piece clearly expressed one idea. This creative process made sense to me, and I adopted and modified it for myself.
My artistic process has changed considerably during my four years of sculpture at Colby. I began sculpting with a very primitive artistic process, common to beginning art students. In this primitive approach I began each piece with the idea that I was making a masterpiece. Each idea was a monument by itself; once the form crystallized in my head, all I would do was draw, and then build the form. In this method, each piece was a beginning and ending point in and of itself. Rarely did any piece build on ideas from past works.

With the increase in time and energy invested in this year's project I was able to approach the process of creating art in a different fashion. I started with a few concepts in my head, drew them, built them, and then reacted to them. The next ideas came from previous pieces, after closely examining the physical work, not just from the conceptual ideas. My new process begins with many ideas, possibly with a philosophical or conceptual aim; then, I worked through drawings and maquettes to achieve relationships that create a successful physical solution. Working in this way has greatly improved my work. Final pieces are better thought out, more sophisticated, and are more successful.

Through this project I have discovered how I think and work through a project. I begin by conceptualizing the project and asking myself: "what do I want to do?" The answer can be physical, aesthetic, philosophical, or any combination thereof. After obtaining a conceptual goal, I work out ideas of what physical form or forms the piece might take. After working through both drawings and maquettes I settle on a particular model that best achieves my goals. It is necessary to have a clear idea of what I want, but also to allow changes in original plans if stronger
concepts, or forms are discovered. I have found that although sometimes the original idea in my head turns out to be the strongest, many times, while I am working with maquettes, my ideas will shift, and I will design pieces that are stronger than anticipated. By creating each idea in a physical model, I am able to actually pick it up, spin it around, and place it in different situations. This part of the process is very exciting because often I find relationships that I never anticipated in my head, or on paper. An object is always different in three dimensions than two. Many models get scrapped at this time. Others get modified. With a few good models to choose from, I am then able to construct clearer and more resolved sculpture.
The Work

All of the work that I created this year is three dimensional. The pieces can only be perceived, or understood, once the viewer has observed the work from all angles. Many of the works manipulate lines and planes to create transparent planes and to imply volumes. Each piece is understood only after the entire object is perceived, then; the shapes and lines that disappear behind one another are not confused. The volumes are even more difficult; none can be seen from any one angle, rather they are intuited by the viewers as they move around the work.

The plates included contain photos of all the work that I have created this year. Many of the pieces have been documented from more than one angle to illustrate the complexity of each piece. Unfortunately, two perspectives do not give enough information for one to mentally grasp or understand any of the pieces. For this reason the photographs in this report are a documentary of the work and are to be used as a reference to the reader, not as a complete description of the work itself.

The body of my work falls into four categories. None is completely exclusive from any other. The first is a series that I began working on when I applied to the program in spring 1993 (plate 4-15). I examined deviations of a flat plane attempting to find the most subtle examples of where a flat plane began to take on organic characteristics. I believed that this happened when a plane split. A plane is logical because all points on it are on the same level, but once the plane is split into two pieces all points are no longer on the same level. This shape creates the sense of movement and is less logical than a continuous plane. These conceptual themes
inspired the forms I made. Each piece in this series is a physical representation of what I pictured in my head. I was not interested in the physical aspects of the pieces, instead, I saw them as models for ideas. As far as I was concerned, the material and scale were irrelevant.

I constructed many forms that had slight variations in their formal deviation and their physical representation. Each structure was made by attaching welding rods with a gas welding torch. I used welding rods because they were relatively easy to work with, and the pieces could be constructed quickly. This allowed me to explore many different types of deviations in only a few weeks of work. Scale was not important in these pieces. I chose the scale I did for practicality: the size was easiest to work with. Although each piece was approximately 6” x 6” x 10”, I saw them as sizeless. Similar to my description of geometric forms, these objects were not dependent on size or material. The only physical qualities that were important were the proportions within the piece, and the geometric shapes that were created. No concern was given to how each piece would be viewed. To me, each object floated in space, and any attempt to put one on a base or ground one in a specific environment was ignored. Physically, the planes were transparent. They were defined by lines or, were cross hatched to allude to a solid plane. The only aesthetic decisions I made in this series was the alternating between hatching the positive plane (plates 12,13), the negative planes (plates 8,9), or neither (plates 4-7).

Farther into the series I began reacting more to the objects rather than exclusively to my ideas. I discovered the possibility of not only creating negative planes, but negative volume. I define negative volume as space that is created by implying boundaries. It is the empty space that exists inside an object, such as inside the walls of a building. Using the same
format, I added another line connecting the two corners, which created a transparent volume defined by the exterior planes (plates 10, 11, and 14, 15).

After meeting with both Professor Imi Hwangbo, my tutor, and Professor Nancy Goetz, one of my readers, I decided to create a piece that was designed to have a specific point of contact with its environment (plates 16-19). This piece combined many of the ideas previously explored and made a good end to the first series. Creating a base for this piece made it the first piece that was supposed to be seen with our eyes and not just interpreted with our minds. This piece had many unsuccessful qualities. The lines and twisting planes were too complicated. Although they had energy, they lacked the simple logic that the other pieces had. Also, as soon as I made a base for it, it was given a specific physical scale and became grounded in the physical world. No longer was the piece purely conceptual. It needed a certain perspective, a certain vantage point to view it. It certainly could never be placed on the floor. Instead, it needed to be viewed from one to two feet below eye level. I was not ready for this physicality in my pieces, and was not yet able to figure out how, or if, I wanted my pieces to be physical; so I changed directions.
Plate 1: Leonardo di Vinci
Plate 2 a: Naum Gabo

Plate 2 b: Naum Gabo
The second series I worked on this year adopted a different format. This series was inspired by the work of Sol Lewitt. Sol Lewitt worked obsessively with cubes (plate 4). He would find a format that he liked and then explore every possible variation. One of the variations of his single cube series interested me very much (plate 20). Of all the variations, this arrangement of the six lines logically made the most sense to me. I borrowed this shape and explored the further possibilities of representing, and altering this particular six-lined-cube deviation. Again, the philosophy behind the shapes was the idea of slightly altering a perfect geometric shape: the cube.

Originally, these pieces physically resembled those of the first series. They were made of transparent planes implied by welding rods (plates 21-28). I chose this material for the same reason as before: it was quick and relatively easy to manipulate. As with the first series, the forms I made were completely conceptual; I had no concern for their relationship to the viewer and I still looked at the pieces as having no definite scale or material. I worked on a slightly larger scale: approximately 10" x 10" x 10", but again, I saw the pieces as sizeless. Possibly as a result of the quantity of work that I had produced, I became aware of the physicality of the pieces themselves. As I became a viewer of the work, I realized that the relation of the piece to the viewer was important. In many ways I was dissatisfied with what I saw. I did not like the small scale of the objects that I created. I found that their scale and forced points of contact with the ground took away from their impact as conceptual statements. Although I thought I had been creating purely conceptual art, I realized that by neglecting the relation of the viewer to the object, the physical properties of each object took away from the power of the piece. This new awareness of the importance of
the viewer motivated me to create sculptural objects, in other words, pieces
that were conscious of scale, height, contact points, and aesthetic treatment
of the material.

This awareness motivated me to experiment with different formats. I
decided to add a new physical property to the cubes: solid planes (plates 29-
38). I used flat eighth-inch-thick steel with welding rods. With this new
physical property to look at, the pieces became heavier and more physical.
Towards the end of this series, I began experimenting with new formats
and new ways of positioning the pieces relative to the ground (plate 39-43).
One piece in particular was rather successful (plate 44-45). This piece's
strength came from its interesting contact with the ground.

I continued experimenting with the forms, and with my growing
awareness of physical presence came the awareness of the importance of
scale. The relation of each piece to the viewer became critical. The pieces
were not working the way I wanted. Even though I saw them as scaleless,
the viewer was liable not to relate to the pieces because of their size. I
decided to increase the scale, and switched media from steel to wood. First,
I constructed a test piece of the same scale (plate 46-47). Wood was a more
appropriate media for a larger scale because it was less expensive and
lighter, making it easier to work with. The final piece (plate 48) was
reworked many times before it was resolved. It is approximately 3' x 3' x
3'. I encountered many issues that I had not expected. Since I switched to
wood I attached the boards with glue and screws. Each was visible, and
became physical distractions to the form. The wood, unlike steel, had a
thickness: .75", which was too big to ignore. It made joints sloppy, and gave
a third dimension to each two dimensional plane. Each of these physical
distractions was amplified by the stain, making the piece a wood object, and no longer a purely geometric form.

These physical qualities were not what I wanted to achieve in my pieces. Instead, I sought a balance between object and concept. After extensive work with the first two series I became dissatisfied with the total lack of objectness, but, my first attempt to create a physical object was also dissatisfying because the piece was too much of an object. At this point I became interested in finding a balance between object and concept.
The problems that I encountered with the increase in scale in the second series led me to my third series (plates 49-54). I realized that I needed more experience with both larger scale and with wood. My approach to this series was completely different from the previous two. I was primarily interested in the relation of each piece to the viewer. I worked with forms first and attempted to figure out how I could physically work with wood. Having limited skills and tools for precise wood working, I figured out what types of structures I could physically construct that would not cause aesthetic or structural complications. Although these pieces were rough, they lay the foundation for my first successful large-scale work.

I was inspired by a steel piece that I made two years before (plate 55) which was about 12" x 4" x 4". The piece was a steel strip that bent and twisted balancing on two points, and implied the shape of a sphere. The final piece of the third series was a geometrical “line gesture” sculpture (plates 56, 57). It was made of pine that I glued and screwed together. I did not stain it because the natural wood drew less attention to the surface of the wood, and made the form easier to see. Stain brings out the definition of the grain and knots and therefore draws attention to the surface of the wood instead of the shape. I spent a lot of time with the joints; sanding them even, and cleaning up dried glue so it did not attract attention. The figure, similar to the steel piece, balanced on two points. The design was influenced by the forms of the cube series. The lines and right angles are used to manipulate space similar to the cubes.

This piece is successful as a sculptural form. It holds the viewer's attention from every angle. It is a completely three-dimensional piece in the sense that no two perspectives are identical. The form of the figure is a
line with bent at eight points. Although the structure of the form is very
geometric the gesture is lifelike and the scale interacts with the viewer.
The figure combines awkwardness and grace, which Professor Hwangbo
has compared to a newly born calf trying to stand for its first time.
The fourth series I worked on this year began in January. I drew over winter break and was attracted to circles and spheres. After working strictly with straight lines and sharp angles during the first semester, I was anxious to incorporate these curved shapes into my work. When I returned to campus began building models with cardboard. The figures I created related to pieces I manipulated shapes that I had used in pieces two years before (plates 58-61). These older pieces, however, were unfocused; each contained too many ideas.

I built the models out of cardboard and duct tape (plates 62-71). Cardboard was free, and easy to work with. It was also made of a thickness that could represent both steel and wood. After building an object I could spin it around, look at it from all sides, and see how it reacted to various environments. I built models on two scales: 8" x 8" x 8" (plates 62-65,68-71), and 3' x 3' x 3' (plates 66,67) to get a feel for the appropriate dimensions for bigger pieces and examine how the pieces reacted to their scale. Through working with models I was able to accomplish two things. First, I was able to construct many different pieces, instead of forcing all my ideas into a single piece. I built many models, trying to build a different model for each new idea. This gave me a wide variety of pieces to look at and from which acquire ideas for future pieces. Second, by physically actualizing each idea, I was able to examine each figure from a sculptural perspective. While examining each model, I inevitably had more ideas which I would then draw or build. I found that it was easier for me to react to models, regardless of scale, than to drawings or conceptual ideas in my head.

After completing several models on varying scales, one model emerged as clearly the strongest (plates 70,71). This piece created a simple harmony of movement, shape, and scale by using curved planes and
straight lines. The figure, similar to the rest of the models in the series, was based on the three planes of a sphere, the literal planes defined by the geometrical "X", "Y", and "Z" axes. The proportions and dimensions of the piece were determined by the radius of the sphere.

The piece had three physical objectives. First, I wanted to distinguish between solid planes and planes implied by lines. Each of the curved panels was treated as a solid, the lines implied triangular planes. The second objective was to imply negative volume using the negative space created by the three implied planes. This "volume" is difficult to see, and even harder to describe, but, by moving around the figure and seeing through the implied lines, one notices a strange volumetric presence created in the interior of the piece. Third, I wanted to focus on the simple rhythmic movement along the perimeter of the concave, convex, and straight lines. This rhythm was augmented by the aesthetic presence of suspended solid planes above the empty ones.

The final piece (plates 72-75) took a long time to create. It is approximately 4' x 4' x 4', and made of 1/4 inch steel sheets. I chose to work with steel because it gave me the physical qualities that I had in my first two series. This, however, was not an easy medium to work with; on such a scale I had extensive complications with the steel warping as I welded.

The weight of the piece also became a factor in deciding how I wanted to engineer the supportive structure so that the steel would not buckle. Originally, I wanted to attach wood planes to the outside of form. This idea was not purely structural. I was interested in highlighting the movement along the perimeter of the piece as well as clearly defining the contrasts between solid plane and line. I built temporary borders out of cardboard, and after attaching them to the piece (plates 76-79) I decided against using
wood. It was too thick and gave an unwanted third dimension to the flat planes of the straight lines. It also would have created many complicated joints. Although I was drawn to the aesthetic of wood with steel, the combination of materials would have drawn attention away from the form.

I resolved the shape by attaching a 2.5" wide steel strip that ran around the perimeter of the piece. This addition not only added more than enough strength to the structure, but it also hid the rough edges of the perimeter, and resolved the important transition points at the corners of the perimeter. This piece was the largest, most complicated piece that I created. The entire process was lengthy, but the final form was a success. The success of the piece came from the use of the models and the intense reworking that the piece went through along the way.
My final series explored a completely different endeavor. An installation piece is one that is built for a specific, typically preexisting, site. It can be inside or outside, and can be built for a natural, or man-made site. An installation sculpture is completely tied to the space it is in. It is designed to react to the space that it exists in. I was drawn to this type of work because of the necessary relationship of the installation to the viewer. Installations have a familiar relationship to the viewer that is created by the scale of the piece relating to its surrounding environment.

The environment I chose for my installation was the interior of the art gallery at Colby. I wanted to create a piece that could be presented with the rest of my work. I was immediately attracted to two locations inside the gallery: the staircase and the balcony. I was drawn to the architecture of these locations because, to me, they were the most dynamic and interactive spaces in the building. The entire gallery is made of white walls, high ceilings, and right-angled corners. The balcony opens the lower level to the top and visually separates the top floor from the bottom. The shape of the staircase creates the only space that was not strictly composed of right angles.

The design for the staircase took time to figure out. The space is used as transition space in the gallery. It is a difficult space to display art work, and typically people walk through the space blindly moving from one area of displayed work to another. I was interested in the variation of the lines bordering the walls and ceiling. I wanted to make people aware of this interesting architectural form that is typically unnoticed. I spent much time walking around the space and drawing it from various angles until I completely understood the architecture. After feeling comfortable with the space I built two rough models of the gallery and created pieces to fit in
each space. This approach proved to be very successful. Similar to the fourth series, it enabled me to create many different ideas and observe how each would look if built. I decided that I wanted to highlight the angles and lines of the walls of the staircase.

A linear structure was most appropriate. I constructed eight possible solutions (plates 80-87), two of which worked better than the others (plates 82,83). Each created a volume in the elbow of the staircase. The borders were defined by the lines of the walls, and complemented the dynamic diagonal movement of the staircase. The only slight difference between these two was the placement of the bottom diagonal line. The first one went from corner to corner (plate 83); the second ended at the angle before the corner (plate 82). Although it is difficult to see the difference, the second better highlights the top angle under the staircase from a frontal view; the first better highlights the angle from underneath (plate 88 is the underside of plate 83, and plate 89 is the underside of plate 82). Eventually I decided on the second of the two (plates 82, 89). The logic of the volume was clearer, and the ambiguity of the diagonal added an aesthetic twist that was intriguing to the viewer. The full-scale piece was never built, but I had intended to use 1.5" thick copper or steel piping to create the lines. This thickness would have been the proper scale for the dimensions of the space.

My idea for the balcony piece was to arrange a design that highlighted the planes of the balcony, the adjacent wall, and the floor. The idea was conceptualized soon after looking and reacting to the space. The basic form came from the three lines of my last steel piece, which defined three perpendicular planes. I worked out the small details with models (plates 90,91), and quickly became satisfied with the final form. The piece is simple and easy to read; each line highlights a different plane of the corner
and in a different way. The top board is flush against a flat wall, while the other two create transparent planes that relate to the balcony wall and floor. In this way the lines bring out the planes of the existing architecture without being too literal.

The piece took two weeks to create and stands approximately 15' high and 5' wide (plates 93-95). The top part is bolted to the wall, and the bottom segment rests on the floor. The middle segment is bolted with steel brackets to the other two boards, and suspended with wire from a steel clasp that sits on the balcony wall. The lines are made of stained pine and are designed to resemble the wood railings in the gallery and on top of the balcony wall. The wood has the same thickness and stain, but, was chosen 2" wider than the railing because it was most appropriate for the scale. With these physical qualities the piece continues the lines of the railing down the wall, across the corner, and down to the floor.

Unfortunately only one of the installation pieces was created. Had both been erected in full size in the gallery they would have interacted well with each other (plate 92). Most important about this series was what I learned from it. I worked through both pieces completely, resolving all physical and structural requirements for both. Each piece was an exercise that increased my understanding for architectural space and sculptural installation. In this way both pieces were successful. Not only was the piece a successful sculptural installation, but, because of the scale, and attention to detail through all aspects of construction, I believe it had the greatest impact of any of my pieces in the show.
This year, not only have I learned about sculptural forms, but also about the process of creating art. It is not an easy process. We are taught in school how to communicate through vocal and written dialogue. Communicating visually is very different. It is a skill that most students are never introduced to, and is often more challenging to liberal arts students who are less exposed to it. I have found that my creative process relies on exploring many possible ideas through physical models. Models help me to communicate with the viewer by enabling me to put myself in the viewer's place. I am then able to develop the formal aspects of each piece along with the conceptual ideas. By working conceptual ideas along with physical relationships, it is possible to find a balance between the two. Once a balance is achieved, the viewer is able to understand the conceptual nature of the piece.

My Senior Scholar experience has been extremely rewarding. The structure of the program has enabled me to develop self motivation, organization, and initiative. I have found that my greatest artistic motivator is my desire to create successful sculptures. This year I have studied the relationships between geometric and organic shapes, the creation of space with lines and planes, and the importance of obtaining a balance between concept and physicality in sculptural forms. I have also acquired an awareness and an appreciation for the viewer. I am excited to continue my sculptural investigations after I leave Colby.