2007

A Pollen Chase Experiment; Examining Varying Levels of Embryonic Inbreeding Depression

Emily Wilson
Colby College

Judy Stone
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/ugrs

Part of the Biology Commons, and the Cell and Developmental Biology Commons

Recommended Citation
https://digitalcommons.colby.edu/ugrs/48

This Article is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Undergraduate Research Symposium (UGRS) by an authorized administrator of Digital Commons @ Colby. For more information, please contact mfkelly@colby.edu.
A Pollen Chase Experiment; Examining Varying Levels of Embryonic Inbreeding Depression

Emily Wilson and Judy Stone
Department of Biology, Colby College, Waterville, ME 04901

Abstract

A pollen chase experiment was performed upon three Costa Rican populations of Witheringia solanacea to examine the breakdown of genetically enforced self incompatibility (SI) and the extent of embryonic inbreeding depression.

- BOHS plants are selfing with no observable inbreeding depression.
- BOHS readily accepted self pollen and suffered from very low inbreeding depression.
- BOHS–no significant difference between self-precedence (treatment) and outcross (control) fruit sets (non-parametric t-test, N=3, z=0.22, p=0.05, Fig. 2), and no significant difference between self and outcross seed numbers (non-parametric t-test, N=2, z=1.5, p=0.05, Fig. 2)
- Monteverde–significantly lower treatment fruit set than the control (non-parametric t-test, N=18, z=2.67, p=0.007, Fig. 2)
- Monteverde–significantly lower treatment seed number than control (non-parametric t-test, N=8, 14, z=2.66, p=0.008, Fig. 2)
- Las Cruces–significantly lower treatment fruit set than control (non-parametric t-test, N=11, z=2.25, p=0.03, Fig. 2), no significant difference between treatment and control seed number (non-parametric t-test, N=4, 8, z=0.34, p=0.05, Fig. 2)

- More pollen tubes reach base of the style, lower stylar RNase activity (Stone et al, 2006)
- Supported by pollen tube and RNase data (Stone et al, 2006)
- Predict seeds from Las Cruces will be outcrossed due to the death of selfed seeds from a combination of stronger SI and severe embryonic inbreeding depression (Fig. 4)
- Monteverde self precedence seeds may be selfed and not outcrossed due to a weaker SI response (Fig. 5)
- More pollen tubes reach base of the style, lower stylar RNase activity (Stone et al, 2006)
- Two plants from Monteverde (MV24 and MV2) are strong selfers with little inbreeding depression and inflated the Monteverde ratio
- Genotyping the surviving progeny will show whether more self seeds do survive in the Monteverde population than for Las Cruces

Materials and Methods

- Performed bud pollinations on greenhouse Witheringia solanacea plants from three locations in Costa Rica: Monteverde, Las Cruces and BOHS.
- Treatment: force almost fully developed bud open, self pollinate with mature anther, outcross 24 hours later when mature (Fig. 1)
- Control: force almost fully developed bud open, outcross with mature anther, outcross 24 hours later when mature (Fig. 1)
- Monitored the status of flowers while maturing, noted if aborted or became fruit
- Harvested any fully developed fruits of self and outcrossed flowers and counted seeds
- Performed non-parametric t-tests on fruit set and seed number for the three populations

Results

- BOHS–no significant difference between self-precedence (treatment) and outcross (control) fruit sets (non-parametric t-test, N=3, z=0.22, p=0.05, Fig. 2), and no significant difference between self and outcross seed numbers (non-parametric t-test, N=2, z=1.5, p=0.05, Fig. 2)
- Monteverde–significantly lower treatment fruit set than the control (non-parametric t-test, N=18, z=2.67, p=0.007, Fig. 2)
- Monteverde–significantly lower treatment seed number than control (non-parametric t-test, N=8, 14, z=2.66, p=0.008, Fig. 2)
- Las Cruces–significantly lower treatment fruit set than control (non-parametric t-test, N=11, z=2.25, p=0.03, Fig. 2), no significant difference between treatment and control seed number (non-parametric t-test, N=4, 8, z=0.34, p=0.05, Fig. 2)

Materials and Methods

- Performed bud pollinations on greenhouse Witheringia solanacea plants from three locations in Costa Rica: Monteverde, Las Cruces and BOHS.
- Treatment: force almost fully developed bud open, self pollinate with mature anther, outcross 24 hours later when mature (Fig. 1)
- Control: force almost fully developed bud open, outcross with mature anther, outcross 24 hours later when mature (Fig. 1)
- Monitored the status of flowers while maturing, noted if aborted or became fruit
- Harvested any fully developed fruits of self and outcrossed flowers and counted seeds
- Performed non-parametric t-tests on fruit set and seed number for the three populations

Conclusion and Discussion

- BOHS plants are selfing with no observable inbreeding depression
- Las Cruces and Monteverde both have a lower fruit set for the treatment, suggesting that the bud pollinations are successful at overcoming the self-incompatibility response (Fig. 3), and that inbreeding depression is leading to embryonic death, causing failure of the fruit set
- Las Cruces plants have a higher ratio of treatment:control fruit set, which shows that they have a stronger SI response
- Supported by pollen tube and RNase data (Stone et al, 2006)
- Predict seeds from Las Cruces will be outcrossed due to the death of selfed seeds from a combination of stronger SI and severe embryonic inbreeding depression (Fig. 4)
- Monteverde self precedence seeds may be selfed and not outcrossed due to a weaker SI response (Fig. 5)
- More pollen tubes reach base of the style, lower stylar RNase activity (Stone et al, 2006)
- Two plants from Monteverde (MV24 and MV2) are strong selfers with little inbreeding depression and inflated the Monteverde ratio
- Genotyping the surviving progeny will show whether more self seeds do survive in the Monteverde population than for Las Cruces

Figure 1: For pollen chase experiment, open an almost fully mature bud with forceps (A), locate the stigma (B), and pollinate with a mature anther from an open flower

Figure 2: Fruit set and seed number for BOHS (1), Las Cruces (2), and Monteverde (3) control and treatment flowers.

Figure 3: Bud pollinations permit pollen tubes to overcome SI (Stone et al, 2006).

Figure 4: Predicted for plants with strong embryonic inbreeding depression, but bud pollinations overcome SI, allowing self pollen tubes to grow (Monteverde)

Figure 5: Predicted for plants with strong embryonic inbreeding depression, whose bud pollinations do not completely overcome SI, killing self pollen tubes and allowing outcross pollen to reach ovules (Las Cruces)

Works Cited