2007

Characterization of AFN1, a Gene Associated with Cereal Grain Germination

Tenzin Tsewang
Colby College

Russell Johnson
Colby College

Follow this and additional works at: https://digitalcommons.colby.edu/ugrs

Part of the Cell Biology Commons, and the Molecular Genetics Commons

Recommended Citation

https://digitalcommons.colby.edu/ugrs/43
Characterization of *AFN1*, a gene associated with cereal grain germination

Tsewang, TD, Gilg, IC, and Johnson, RR

Colby College, Waterville, ME 04901

Abstract

The *AFN1* gene is transiently expressed in germinating oat grains. As *AFN1* is not expressed in dormant oat grains during imbibition, we hypothesize that *AFN1* may be involved in stimulating the germination process. Sequence analysis of an *AFN1* cDNA clone indicates that the *AFN1* polypeptide is similar to a previously identified abscisic acid (ABA) glucosyl transferase. This suggests that *AFN1* may be acting to glucosylate ABA, thereby inactivating it. As the hormone ABA is known to inhibit germination, ABA glucosylation/inactivation could lead to germination in grains expressing *AFN1*. To test this hypothesis, we have constructed an expression plasmid that encodes an MBP::AFN1 (maltose binding protein) fusion protein. *E. coli* cells carrying the expression plasmid were found to produce the MBP::AFN1 fusion protein as a substantial fraction of total protein. We are currently in the process of purifying the MBP::AFN1 fusion protein by affinity chromatography, so that it can be assayed for ABA glucosyl transferase activity. We also wish to test the effect of *AFN1* gene expression during grain imbibition on the germination behavior of the grains. To this end, we have constructed plasmids for the overexpression and RNAi-based suppression of *AFN1* in transgenic plants. These plasmids have been introduced into oat cells by particle bombardment and we are in the process of regenerating transgenic plants for study.

The *AFN1* cDNA encodes a 489 amino acid polypeptide. The *AFN1* polypeptide contains UDP binding domain which is also present in (ABA) glucosyl transferases. This suggests that *AFN1* may act to glucosylate ABA, thereby inactivating it.

Results

Production of *AFN1* fusion protein in *E. coli* cells. BL21(DE3)pLysS *E. coli* cells were transformed with pMALc2x/AFN1. Cell cultures were grown to an OD_{600} of 0.5 and expression was induced by addition of IPTG. The culture was allowed to incubate for 4 hours at 37°. Crude protein was obtained from the *E. coli* cells by sonication and analyzed on polyacrylamide gels.

MBP::AFN1 fusion protein has been produced in *E. coli* cells containing pMALc2x/AFN1 plasmid.

The pMALc2x/AFN1 expression plasmid has been constructed.

A substantial amount of MBP::AFN1 fusion protein has been found in the 0.5U buffer soluble fraction.

Acknowledgments

This work was supported in part by NSF Grant IOB-0443676, by NIH Grant P20-RR-016463 from the INBRE program of the National Center for Research Resources, and by a Colby College Natural Sciences Division Research Grant.