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Abstract 

The “chaos game” is a well-known algorithm by which one may construct a pictorial 

representation of an iterative process.  The resulting sets are known as fractals and can be 

mathematically characterized by measures of dimension as well as by their associated 

recurrence relations.  Using the chaos game algorithm, is it possible to derive meaningful 

structure out of our own genetic encoding, and that of other organisms?  In this paper, I 

will present one method of applying the chaos game to biological data and subsequently 

will discuss both the mathematical and biological implications of the results.   

 Keywords: chaos game, fractional dimension, gene structure 
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Recurrence Relations, Fractals, and Chaos: Implications for Analyzing Gene Structure 

 

I. Introduction 

In the past thirty years, research exploring the relationship between biology and chaos 

theory has intensified.  Recursive sequences were initially used to model populations.  

Later, however, more and more biological processes and topics began to be modeled, 

explained, and predicted by using fractals and chaotic systems (e.g., Dastgheib et al., 

2011; Devaney, 1990; Esteller et al., 1999; Fiser et al., 1994; Kuroda & Tsuda, 2004; 

Levy & Pollack, 2001; Paramanathan & Uthayakumar, 2007; Pollack, 1991; Tino, 1998; 

Werner, 2010).  Some may be traced back to a single publication, which proposed the 

idea of using a method of fractal generation called the chaos game to describe gene 

sequences (Jeffrey, 1990).  I will provide the reader with a general mathematical 

foundation regarding recurrence relations, fractals, and fractional dimension before 

describing this application and its consequences more specifically.   

 

II. Recurrence Relations 

Every infinite sequence of numbers 

  

is associated with an infinite series  

, 

which is called its generating function.  For a finite sequence 

 , 

the generating function simply becomes 

 . 
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The fact that every sequence has an associated generating function is useful when solving 

recurrence relations.  A recurrence relation is of the form 

 

for some function f and integer m.  As an example, consider the recurrence relation  

  

given that  and .*  In order to find a closed-form (non-recursive) 

solution of this equation, consider  

. 

Then, since a0 = 0, 

, and 

. 

Thus, 

 

 

 

by the given conditions.  Hence, we conclude that since 

 

 

 for ,  

and subsequently that 

                                                
* The observant reader may notice this recurrence relation describes the Fibonacci sequence. 
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the closed-form solution of the original recurrence relation is 

 

       

Notice that c and d are the roots to the characteristic equation r2 – r – 1 = 0 that has the 

same coefficients as the original recurrence relation when written in the form an – an-1 – 

an-2 = 0.   

Some recurrence relations, such as the logistic equation  

, 

are nonlinear and cannot be solved analytically. This is related to the fact that nonlinear 

systems may be chaotic.  Notably, a chaotic system is one that exhibits sensitivity to 

initial conditions, in that small changes to its initial conditions will produce drastically 

different results with no discernable pattern.  Given an initial condition x0, the sequence 

of points obtained (x0, x1, …) is called the orbit of x.  If the orbit is periodic, then the 

repeating sequence p1, p2…pk in the orbit is a cycle of length K.  Then, in addition to 
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sensitive dependence on initial conditions, a chaotic system has the following properties 

(Cull et al., 2005): 

(1) the existence, depending on x0, of cycles of every length, 

(2) the existence of bounded but aperiodic orbits, and 

(3) for every open set A and every open set B there is an x  A such that if x0 = x 

then xk  B for some k. 

The graph of a recurrence relation is obtained by plotting values of xn versus n, and the 

roots of the characteristic equation for a given recurrence relation are directly related to 

properties of its graph (Fig. 1).  The magnitude of a root, for instance, determines the 

“steepness” of a graph’s curve.  Having all real positive roots tends to result in a smooth, 

asymptotic curve, whereas oscillations result from the presence of negative or complex 

roots.  Trivially, negative roots will cause oscillations with a period of 2, whereas 

complex roots will generate oscillations with a period of 4.  Initial conditions also affect 

the appearance of the graph of a recurrence relation; they may cause “initial oscillations” 

in the graph or help to determine whether the graph tends toward negative or positive 

infinity. 
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Figure 1. Sample graphs of simple recurrence relations.  In (A), an equation with positive real roots  

( ) is shown with closed-form solution , whereas in (B), an 

equation with negative real roots ( ) is shown with closed-form solution 

.  In (C), an equation with complex roots (3xn – 4xn–1 + 10xn–2 = 0) is shown, with closed-

form solution . 
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III. Fractals 
 

A fractal is informally defined as a pattern with parts that are statistically characteristic of 

its entirety, i.e., a pattern that looks the same regardless of the degree of magnification.  

In contrast, a pattern is self-similar if it is congruent to a uniform scaling of itself.  

Fractals tend to be self-similar, but do not have to be.  Some fractals are merely self-

affine (Fig. 2), which means that their subunits are scaled by different amounts for 

different directions upon successive iterations.   

 
Figure 2. An example of a self-affine fractal (Prokofiev, 2009).** 

 

The Cantor set has been described as the simplest fractal, and is constructed by 

iteratively removing the open middle thirds of a set of line segments.  Mathematically, 

the nth set Xn is expressed as 

  

The Cantor set is defined as the intersection of this sequence of sets. 

                                                
** Fractional dimension will be described in a later section, but it is worthwhile to note here that this fractal 
is an example of a set whose Hausdorff dimension and Minkowski-Bouligand dimension are not equal.     
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Figure 3. The first five iterations of the sequence that leads to the Cantor set. 

 

The (quadratic) Julia set is also commonly known.  Given some constant c, the forward 

iterations of a complex point x0 are generated using the recurrence relation:  

.*** 

The set of points generated is the Julia set and can be plotted in the complex plane.  Not 

all values of c will result in a fractal (Dufner et al. 1998).  For instance, a fractal will not 

be produced if c is -2 or 0.  When a fractal does result, it will be self-similar (Peitgen & 

Richter, 1986).  The Mandelbrot set is the set of all complex c such that | xn | is bounded 

when starting with initial condition x0 = 0 (Fig. 5).  

 

Figure 4. The quadratic Julia set implemented in Python, using c = -0.4 + 0.6i. 

 
                                                
*** By inspection, the reader may notice this relation is comparable to the logistic equation mentioned 
earlier. 
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Figure 5. The Mandelbrot set implemented in Python, where c = a + bi with the window 0.5 < a < 1 and  

-1 < b < -0.95. 

 

The Sierpinski gasket, or “Sierpinski triangle”, can be easily compared to the Cantor set 

in that it is constructed by beginning with any closed triangle on a plane, splitting the 

triangle into four smaller triangles of equal size, and removing the open set of the middle 

triangle (Fig. 6).  We will address how to construct the Sierpinski gasket via recurrence 

relations in the next section.    

 

Figure 6. The well-known “Sierpinski gasket” (Jeffrey, 1990). 
 
IV. Generating Fractals 

Consider the following situation: start at the ½ mark on the unit interval [0,1] and toss a 

fair coin.  If the coin lands heads up, plot a new point two-thirds of the way toward the 

endpoint 0.  If the coin lands tails up, plot a new point two-thirds of the way toward the 

endpoint 1.  As one continues to flip the coin and plot new points based on the location of 
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the previous point, the plotted points eventually begin to resemble the Cantor set.   

 

To understand why this happens, imagine that any possible point in the interval could 

serve as an initial point.  The two outcomes of the coin flip guarantee that the next point 

will be within a range of  

, 

leaving a prominent gap.  Upon the second toss of the coin, there are four connected 

regions where the next possible point may land, namely, 

. 

Continuing this process, we notice that each time we are removing the open middle third 

of each remaining closed interval, which is exactly the procedure that leads to the 

construction of the Cantor set.****   

 

We can play a similar “game” by starting at the center of a triangle and choosing a vertex 

at random towards which to move halfway.  Continuing to choose and move towards new 

vertices at random from each preceding point will generate the Sierpinski gasket.  Similar 

to playing the game on the unit interval, there are areas where points will never be plotted 

due to the nature of the game’s conditions.   

 

The situations just described are examples of using an iterated function system (IFS) to 

generate a fractal.  An IFS can be expressed via linear equations that provide a recursive 

                                                
**** In fact, every point produced through this game is an accumulation point of the Cantor set.  A point x is 
called an accumulation point of a set S if there exists a sequence xn in S which converges to x (i.e., limn→∞ 
xn = x).  Often, fractals represent the accumulation points of iterated functions. 
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sequence (Barnsley & Demko 1985).  For instance, the Sierpinski gasket can be produced 

using following equations, where xn and yn represent the new coordinates, xn–1 and yn–1 

represent the preceding coordinates, and vx and vy represent the x- and y-coordinates of 

the chosen vertex, respectively:  

   

This method of approximate fractal generation is sometimes known as the chaos game.  

 

When a pair of equations from the stated IFS is selected at random in the chaos game, we 

can make an assertion about whether a fractal will form with defined gaps.  For instance, 

consider the fact that the process of moving halfway towards a vertex of a given figure 

maps the entire figure into one half of its height (Fig. 7).  In any given odd-sided 

polygon, the point equidistant from each of the vertices is vertically lower than the 

central point located at half of the polygon’s height.  In an even-sided polygon, this 

central point is positioned at exactly one-half of the polygon’s height.  For these reasons, 

we do not observe “gaps” with even-sided polygons; after sufficient iterations, the entire 

shape becomes filled with points.     
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Figure 7. Odd-sided (A, C) and even-sided (B, D) polygons when they are mapped to polygons half their 

size, depending on which vertex is chosen in the chaos game.  The point equidistant from each vertex in a 

given even-sided polygon is exactly its central halfway point, whereas the point equidistant from each 

vertex in an odd-sided polygon is lower than the halfway point.  Hence, the odd-sided polygons display 

“gaps”, while the even-sided polygons do not.   

 

V. Fractional Dimension 
 
The dimension of an object is, informally, the number of coordinates necessary to specify 

a point on the object.  Thus, for example, a line is said to be 1-dimensional because only 

one variable is needed to specify position along a line.  Similarly, a rectangle has 

dimension 2, and a cube has dimension 3.  The dimension of some sets must be expressed 

as a fraction.  In these instances, we say the sets have fractional dimension.  Many 

fractals have fractional dimension.  A fractal’s dimension serves to describe its 

complexity and how its pattern changes with scale.   

 

Two common types of dimension measures used are Minkowski-Bouligand (aka “box-

counting”) dimension and Hausdorff dimension.  For many sets, the Minkowski-

Bouligand and Hausdorff dimensions are equivalent.  We will use the Minkowski-

A     B   C      D 
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Bouligand dimension in this paper, which is defined as follows for a set S.  Given x, let 

N(x) be the number of boxes of side length x that it takes to cover S.  Then, the 

Minkowski-Bouligand dimension of a set S is defined as 

. 

We can use this definition to verify the previously asserted dimension values for a line, a 

square, and a cube (Fig. 8).  Further, we obtain the following when calculating the 

dimension of the Cantor set.   

 

 

 

 

 

By the Minkowski-Bouligand definition, the Cantor set is less than 1-dimensional and 

has fractional dimension.  We can similarly compute the dimension of the Sierpinski 

gasket. 
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Thus, the Sierpinski gasket also has fractional dimension, but is of higher dimension 

relative to the Cantor set.   

 

 

Figure 8.  Calculation of the Minkowski-Bouligand dimension for a line, a square, and a cube. 

 

VI. Chaos Game Representation (CGR) 

Jeffrey proposed that the chaos game could be used to represent RNA or DNA sequences 

(1990).  He used four vertices to represent the appropriate four nucleotides, and plotted 

points by reading through a variety of genetic sequences.  One begins the game by 

starting in the center.  As in the generation of the Sierpinski gasket (Section III), each 

ensuing point is halfway between the most recent preceding point and current the vertex 

being read.  Thus, the square grid would display no prominent pattern if the gene 

sequence were completely random (refer to Fig. 7).   
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Figure 9. Chaos game representation of the first 6 bases of the Human Beta Globin Region on 

Chromosome 11, also known as HUMHBB (Jeffrey, 1990).  Each vertex represents one nucleotide out of 

four: cytosine (c), guanine (g), adenine (a), and uracil (u). Biologically, HUMHBB is crucial for the 

creation of hemoglobin, which helps to carry oxygen from our lungs to the rest of our body. 

 

Interestingly, a “double-scoop” pattern emerged in virtually all of the vertebrate 

sequences analyzed (Fig. 10).  This pattern was not found in any group other than 

vertebrates aside from specific viruses (e.g., the HIV virus).  
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Figure 10. Jeffrey’s completed CGR of HUMHBB after reading through 73,357 bases (1990).  Note the 

repeating “double-scoop” pattern appearing throughout the figure, beginning in the upper right corner.     

 

 

Figure 11. Subdivisions of the chaos game representation grid as presented by Jeffrey, with the “CG” 

subdivision highlighted (1990).   
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Consider dividing the CGR grid into four equivalent squares.  Let the upper-left, upper-

right, lower-left, and lower-right squares be termed the C, G, A and U quadrants of the 

grid respectively.  Then, a point in the C quadrant represents a sequence ending with C, a 

point in the G quadrant represents a sequence ending with G, and so on.  Let each of 

these quadrants be further divided into four squares, or “sub-quadrants”, of equivalent 

size (Fig. 11).  Then, for example, a point in the “CG” subquadrant is associated with a 

sequence ending in the dinucleotide CG.  The grid can be further divided in this fashion, 

revealing subdivisions containing points that must be associated with sequences 

containing specific nucleotides.*****       

 

Observe that a fractal with the double-scoop pattern is generated by removing all 

instances of guanine, “g”, following cytosine, “c”, in a sequence, but otherwise playing 

the game with randomly generated vertices.  The set of “no CG” is obtained after 

infinitely many iterations (refer to Fig. 12).   

 

If the entire grid is assumed to be a square with a side length of 4, the number of boxes 

(with a certain box side length) needed to cover this “no CG” set are as follows. 

 

 

 

  

In counting the number of boxes of a certain side length x needed to cover a set, it is 

worth noting that only the approximation that includes missing squares of size x and 

                                                
***** By this interpretation, the exact center of the square is associated with a null sequence. 
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larger is required.  (Later approximations missing squares of side length less than x are 

unnecessary.) 

 

Letting xn = N(1/2n), the number of boxes to cover the set is described by the recurrence 

relation  

 . 

However, we must be sure that this recurrence relation holds for all values of n, not just 

the values of n shown above.  First, notice that because of self-similarity, the upper-left, 

lower-left, and lower-right quarter subdivisions of the grid are identical (refer to Fig. 12).  

Further, in any one of the aforementioned subdivisions, the upper-left, lower-left, and 

lower-right quarter subdivision is identical, and so on.   

 

Next, refer to Fig. 12C for a visual example.  Assume that when counting boxes of size 

, the set with holes of sizes  and larger, only, was used.  If there were no gaps, 

then clearly xn = 4xn–1.  However, box-shaped gaps of size  exist.  We must determine 

how many gaps there are and subtract this number from 4xn–1 to obtain the true value of 

xn. 

 

     

Figure 12.  The first three iterations in the development of the set for no “CG”.       

A           B            C 
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Considering the smallest gaps in Fig. 12C to be of size , the number of gaps of size  

would be one per black square of size  if we did not retain the gaps formed in Fig. 12 

A and B.  However, there are exactly xn–2 not-all-white squares of size .  Because the 

number of gaps of size  in Fig. 12C is equivalent to the number of black boxes of size 

, in Fig. 12A, there are xn–2 gaps of size .  Thus, subtracting xn–2 from 4xn–1 will 

produce the true xn. 

 

By using this recurrence relation, we can obtain a closed-form solution. 

 

 

  

  

  

  

  

We can now calculate the dimension for the chaos game representation of a typical 

vertebrate gene sequence.   
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VII. Verifying the Invariance of Fractional Dimension under Label Arrangement 

Now that we possess a sufficient method to determine the fractional dimension of CGRs, 

an important question to answer is whether fractional dimension is invariant under the 

arrangement of the labeled vertices.  We can resolve this inquiry by examining the 

fractional dimensions when other dinucleotides (namely, AG, UG, GG, AA, UU, CC, and 

GG) are eliminated but the sequence is otherwise random. 

 

The “no UG” case is a trivial one, because a grid with the UG subdivision missing is 

identical to a grid with the CG subdivision missing, except rotated ninety degrees to the 

right and reflected around the central horizontal axis.  The “no AG” case is less intuitive, 

but the same recurrence relation holds, and the proof arises much in the same way we 

derived the recurrence relation for no “CG”.  One may also confirm this equivalence 

between the two situations to some extent visually by noting that the same number of 

gaps exists in the no “AG” case as in the no “CG” case; they have simply shifted (Fig. 

13). 
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Figure 13.  The first three iterations in the development of “no CG” (A), “no UG” (B), and “no AG”, 

respectively.  These situations share the same fractional dimension (≈ 1.89997) and can be represented by 

the same recurrence relation, xn = 4xn–1 – xn–2. 

 

We now turn our attention to “no GG”.  If the entire grid is assumed to be a square with a 

side length of 4, the number of boxes (with a certain box side length) needed to cover this 

“no GG” set are 

 

 

 

and so on.  Letting xn = N(1/2n), the number of boxes to cover the set can be described by 

the recurrence relation  

 

A 
 
 
 

B 
 
 
 
 

C 
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To show this equation holds for all n, we must again assume that when counting boxes of 

size , the set with holes of sizes  and larger, only, was used (refer to Fig. 12C 

for a visual example).  Define xn to be the number of boxes of size .  If there were no 

gaps, then clearly xn = 4xn–1.  However, box-shaped gaps of size  exist. We must 

determine how many gaps there are and subtract this number from 4xn–1 to obtain the true 

value of xn.  In each not-all-white square of size , gaps of size  are located in all 

but three of the not-all-white squares of size .  The equation for the number of gaps 

then becomes 

  

 Subtracting this amount from 4xn–1 yields 

 

       . 

As before, we obtain a closed-form solution for the recurrence relation. 
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We then use this solution to determine the dimension of dinucleotide repeats. 

 

 
 

By inspection, we find that the remaining grids lacking dinucleotide repeats are identical 

to that of “no GG”.  Visually, each of these grids is a “flipped” version of the “no GG” 

case (Fig. 14): “no AA” is a reflection about the diagonal between vertex c and u, “no 

CC” is a reflection about the line that divides the grid in half vertically, and “no UU” is a 

reflection about the line that divides the grid in half horizontally. 
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Figure 14. The first three iterations for dinucleotide repeats: “no AA” (A), “no CC” (B), “no UU” (C), and 

“no GG” (D). These situations share the same fractional dimension (≈ 1.92269) and are represented by the 

same recurrence relation, N(1/2n) = xn = 3xn–1 + 3xn–2. 

 

VIII. Conclusion 

The “double-scoop” pattern described by Jeffrey (1990) can be approximated by a 

sequence that has no “CG” dinucleotides in the gene sequence but is otherwise randomly 

generated.  It is likely that the consistency of this pattern among vertebrates is due to the 

selective disadvantage of CG dinucleotides, which are prone to methylation and 

subsequent mutation (Aswathi, 2009).  However, now that we have reason to believe 

chaos game representation is a viable means of evaluating gene structure, many open 

questions remain.  For instance, what happens to the CGR if we only examine the exons 

or the introns at one time?  What additional methods could we use to quantify CGRs 

A 
 
 
 

B 
 
 
 
 

C 
 
 
 
 

D 
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mathematically, and what additional correlations can we make between patterns seen in 

CGRs and scientific taxonomy?  Further, do other valid “types” of CGRs exist, and if so, 

what can they demonstrate about gene structure?  Future research should seek to resolve 

these questions and more deeply explore the relationships between mathematics and 

biological science.   
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