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Abstract 

Temperature and magnetic field dependent absorbance spectra were taken on the 

Ni2+ chain compound NINO (Ni(C3H10N2)2NO2(ClO4)) in the range from 8,500 to 25,000 

cm-1.  The identification of an effective C4v symmetry about the nickel ions is supported 

by assignment of the low temperature absorbance bands.  The intensity of many bands is 

found to be temperature dependent, and in several bands, a shift to higher energy is 

observed at lower temperatures.  A correlation is noted between the field dependence of 

the spin forbidden electronic transitions and the magnetic properties of NINO.  Below a 

crossover magnetic field, Hc ≈ 10 T, the absorbance is nearly constant; above Hc, the 

intensity of the spin forbidden transitions decreases linearly with increasing field.  A 

qualitative explanation for the suppression of the spin forbidden transitions above Hc is 

suggested.   
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I. Introduction 
 

Much research has been devoted by Long et al. to the study of a group of Ni2+ 

compounds with similar electronic excitations.1  NENP (Ni(C2H8N2)2NO2(ClO4)) and 

isostructural sister compounds NENB (Ni(C2H8N2)2NO2(BF4)) and NTNB 

(Ni(C3H10N2)2NO2(BF4)) have been studied to determine the temperature and magnetic 

field dependence of their optical properties.  This paper will present the temperature and 

magnetic field dependent absorbance spectra of a fourth, closely related compound, 

NINO (Ni(C3H10N2)2NO2(ClO4)), which will complement the previous work.  The long 

range goal is to highlight similarities and differences among the members of this group of 

nickel compounds.   

 

Structure 
The crystal chain structure of NINO2 can be seen in Figure 1, where the hydrogen 

atoms have been omitted for simplicity.  Perchlorate (ClO4 
–) counter ions, which separate 

the chains comprised of Ni2+ ions bridged by nitrite groups (NO2 
–), are likewise absent 

from the figure because they are along the c-axis, which points out of the page.  Also 

bonded to each nickel ion, in an approximate plane, are two trimethylenediamine rings 

(C3H10N2).3  The three related nickel compounds are structurally very similar to NINO,4 

differing only by the type of counter ion isolating the chains (BF4
 – in NENB and NTNB) 

or the organic rings bonded to each nickel ion (ethylenediamine (C2H8N2) in NENB and 

NENP).   
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FIG. 1.  The crystal chain structure of NINO with the hydrogen atoms 
omitted for clarity.  The six ligand atoms surrounding each nickel ion form 
the vertices of an approximate octahedron.  Perchlorate ions, which isolate 
the chains, are not visible in this view because they are along the c-axis 
(out of the page).  Figure from Takeuchi et al.2     

As illustrated in Figure 1, the six ligand atoms that surround each nickel ion form 

the vertices of an approximate octahedron.  In the results section of this paper, however, 

we will confirm that the effective symmetry about each nickel ion is actually C4v, slightly 

lower than octahedral.  In fact, due to a lack of perfect symmetry about any axis,3 the 

molecule belongs to the C1 point group,5 although the effective symmetry is found to be 

somewhat higher.     

    

Magnetic Properties 
Despite the structural similarities among the group of four Ni2+ chain compounds, the 

magnetic behavior of NTNB differs from that of the others.   In fact, it was the 
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unexpected apparent behavior of NTNB as a spin glass6 that motivated the study of this 

set of four nickel complexes.  The remaining three compounds, including NINO, are 

Haldane compounds, and are therefore made of spin = 1 antiferromagnetic chains.  In 

NINO, as in all Haldanes, there exists an energy gap between the correlated ground state 

(singlet, spin = 0) and the first excited state (triplet, spin = 1) of approximately 1 meV.2  

It is possible to close this gap by an applied magnetic field, H, because the Zeeman effect 

causes the three degenerate energy triplet states to split with increasing field, as shown in 

Figure 2.  At the crossover field, Hc, the lowest energy sublevel of the excited triplet 

becomes the ground state, and the system can gain an induced magnetic moment if the 

field strength exceeds Hc.  Magnetization measurements are designed to determine the 

induced magnetic moment as a function of applied magnetic field.  As shown in Figure 3, 

 

E 

H Hc 

S = 0 (ground 
state energy) 

S = 1 (excited 
state energy) 

FIG. 2.  This schematic diagram shows the energy of the spin states versus 
the applied magnetic field H.  An energy gap on the order of 1 meV exists 
between the ground state and the first excited triplet state of NINO in the 
absence of a magnetic field.2  Zeeman splitting of the triplet state energies 
in an applied field causes the lowest triplet level to become the lowest 
energy state at the crossover field, Hc.  Below Hc the spin = 0 system 
cannot be magnetized, but above Hc the system gains an induced magnetic 
moment as the field is increased.
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FIG. 3.  The magnetization of NINO as a function of magnetic field for the 
three principal crystal axes.  Below the crossover field, the magnetization 
is approximately zero; thereafter, the magnetization increases linearly with 
magnetic field.  The average crossover field value for the three axes is 
approximately 10 T.  Figure from Takeuchi et al.2     

   

Takeuchi et al. have provided values of the crossover magnetic field for the three 

principal crystal axes in NINO.2  The average crossover field value for the three axes is 

approximately 10 T. 

 

Electronic Transitions 
Electronic transitions are produced by the absorption of light.  When the 

difference between the energy level occupied by an electron and a higher potential energy 

level is equal to the energy of an incident photon, the electron can be excited to the higher 

energy level.5  It is possible for multiple energy levels to have the same orbital quantum 

number.  For instance, the presence of ligand atoms around a central ion with electrons in 

the d orbital (  = 2), like the Ni2+ ions in NINO, causes the five degenerate energy levels 

of the d orbital to split because the repulsion from ligand anions is greater for electrons in 

the outer energy levels.7  As a result of this splitting, a d-d transition can occur, during 

l
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which an electron is excited to a higher energy level within the d orbital.  Another type of 

electronic excitation is when a charge is transferred from the central ion to the ligand 

atoms, or vice versa.  The likelihood of such a charge transfer is governed by the overlap 

of the wave functions for the two sites.8   

Our goal was to investigate the electronic transitions and their dependence on the 

parameters of temperature and magnetic field.  In molecular compounds such as NINO, 

electronic transitions are localized on atomic or molecular sites9 and when electrons are 

excited from one energy level to a higher energy level, these excitations are governed by 

selection rules.  This section will discuss both the electric dipole and the spin selection 

rules as they relate to Ni2+ ions.  In addition, we will consider mechanisms that allow 

forbidden transitions to appear in the spectrum.   

 

Electric Dipole Selection Rule 
The electric dipole selection rule can be expressed in many ways.  Put simply, in 

order for light to be absorbed, there must be a change in the electric dipole moment of a 

molecule.10  The dipole moment is intricately tied to the symmetry of a molecule; if the 

ground state of a given molecule is centrosymmetric about an inversion center, then the 

electron distribution has no distinct orientation and the molecule has no dipole moment.  

For example, the electron cloud for an s orbital configuration is spherical and therefore 

symmetrical about its center.  An ion with an outer electron in an s orbital will have no 

electric dipole moment.  For a transition from this state to be allowed, the final state must 

have a nonzero dipole moment.  One such allowed transition is to a p orbital, whose 

electron cloud is anti-symmetric, and therefore has a dipole moment.  The transition from 
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an s to a p orbital results in a change in the orbital quantum number, , since the initial 

value of l  is zero (s orbital) and the final value is one (p orbital).  The generalization of 

this example states the electric dipole selection rule mathematically as Δ  = ± 1.  

Another reformulation of the selection rule, called the Laporte rule, states that transitions 

that preserve the parity of a molecule with respect to an inversion center are forbidden.11  

This formulation implies that the molecule in question must have a definite parity for the 

selection rule to apply.  The term “forbidden” can be explained by the fact that the 

intensity of an electric dipole allowed transition is proportional to the magnitude of the 

change in the electric dipole.10  Hence a forbidden transition means that the change in the 

dipole moment is so small that the excitation is too weak to be observed.   

l

l

In anisotropic samples, the electronic transitions may likewise be anisotropic.  A 

change in the charge distribution from the ground state of a molecule to an excited state 

must cause a change in the dipole moment that is in the same direction as the oscillating 

electric field of the electromagnetic wave.10  Consequently, polarizers can be used to 

orient the oscillating field so that the dipole moment can be changed in the direction of a 

chosen axis.  For a completely isotropic molecule, the same absorption should occur 

along any of the axes of symmetry, but because most molecules have some anisotropy, a 

difference is observed between various orientations.8  Thus, the spectrum taken when the 

light is aligned parallel to the length of the crystal chain may have different features than 

when the chain direction is perpendicular to the incident light.   
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Spin Selection Rule 
The absorption of a photon does not affect the spin of an electron, so the spin 

should not change between the ground and excited electronic state.5  This is an 

expression of the spin selection rule, which states that for an allowed transition, the net 

change in spin state for an atom must be zero, expressed mathematically as Δs = 0.  For 

example, the ground state of Ni2+, which has a 3d8 electronic configuration, is spin = 1 

because the eight electrons in the outermost d orbital are arranged as shown 

schematically in Figure 4 (a).  As required by Hund’s rules,12 there are three paired sets 

of electrons and then two unpaired electrons of the same spin orientation, chosen 

arbitrarily to be spin up.  One of the paired electrons can make an allowed transition to a 

 

S = 0 
 

excited state 

S = 1 
 

excited state 

S = 1 
 

ground state 

(a) (b) (c) 

FIG. 4.  The eight electrons in the 3d orbital of the Ni2+ ion in the ground 
state (a) and two excited states (b) and (c).  A transition from (a) to (b) is 
allowed by the spin selection rule because the total spin is unchanged 
during the transition.  Transitions from (a) to (c) are forbidden by the spin 
selection rule because the net change in the spin state is not zero.   
 

higher orbital level so the excited state is as shown in Figure 4 (b).  In this case, two 

orbital levels still have unpaired spin up electrons, and the total spin for the excited state 
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is again spin = 1.  If, however, as shown in Figure 4 (c), the lower of the two unpaired 

electrons in the ground state was excited to the highest orbital level occupied by the other 

unpaired electron, the Pauli Exclusion Principle states that the two electrons must have 

opposite spin orientations.13  Thus, the transition just described to the spin = 0 state 

illustrated in Figure 4 (c) is said to be spin forbidden, because the final spin state of the 

system is different from that of the ground state.   

 

Mechanisms that Allow Forbidden Transitions 
Although the electric dipole selection rule forbids all d-d transitions in a 

centrosymmetric complex (since  = 2 for all d orbitals), such forbidden transitions are 

often observed in a variety of molecular compounds.5  Given that the selection rule 

applies only to centrosymmetric complexes, any (even temporary) distortion of the 

structure that causes a change in parity will allow transitions to take place.10  As 

mentioned in the section on structure, NINO has no actual center of symmetry, but we 

seek to determine what effective symmetry governs the behavior of the transitions.  If 

NINO has no effective center of symmetry, we expect to see evidence of d-d transitions 

in the spectra of our samples.  On the other hand, if NINO behaves like a 

centrosymmetric molecule, a d-d transition will not occur unless a temporary distortion, 

such as an odd vibration, breaks the symmetry of the complex and induces an electric 

dipole moment.  If an odd (symmetry-breaking) vibration occurs at the same time as the 

forbidden electronic transition, then the d-d transition becomes weakly allowed.  This 

process is known as vibronic coupling, and the band intensity of the vibronically 

l
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activated transition is known to be dependent on the temperature, T, as described by the 

relation10 

⎟
⎠
⎞

⎜
⎝
⎛∝

2kT
hνcothIntensity ,    Eq. 1 

where ν  is the frequency of the odd vibration, and h and k are the Planck and Boltzmann 

constants, respectively.  Inspection of this relation reveals that the intensity of the 

transition increases with temperature, which is consistent with a greater occurrence of 

vibrations at higher temperatures.8     

In general, spin forbidden transitions are far less likely than spin allowed 

transitions, although they can occur by means of either a spin orbit coupling or spin 

exchange mechanism.  The phenomenon of spin orbit coupling occurs because the spin 

angular momentum and the orbital angular momentum of a particle are not independent.13  

Coupling of the two types of momentum in the cation Ni2+ results in a mixed spin state 

that is neither a pure spin = 0 nor a spin = 1 state.  Thus the spin selection rule does not 

rigidly apply, and a small intensity peak exists in the spectrum where the spin forbidden 

transition is weakly allowed.  A spin forbidden peak is said to borrow some of its 

intensity from a nearby allowed band in such a way that the strength of a spin forbidden 

transition to the state with energy ESF in the neighborhood of a spin allowed band with 

energy ESA is given by14  

2
SASF )E(E

1Intensity
−

∝ .    Eq. 2 

Consequently, the intensity borrowing is weaker for two states far apart in energy. 

The other mechanism that permits spin forbidden transitions is spin exchange.  

Coupling between nearby magnetic ions can change the total spin of the ground or 

 9    



excited state.15  In the case of an isolated Ni2+ ion, a transition from the ground state (spin 

= 1) to a spin = 0 excited state is forbidden.  Nevertheless, coupled ions like those in the 

correlated ground state of Ni2+ Haldane compounds are collectively in a spin = 0 state, 

and the transition to an excited spin = 0 state becomes allowed weakly, depending on the 

strength of the spin coupling.  In isolated atoms, there is no spin exchange since there are 

no nearby ions with which to couple.  In such isolated ions, any spin forbidden transitions 

that occur must be due to spin-orbit coupling.  In a chain such as NINO, however, the 

spin forbidden transitions could be due to either spin-orbit coupling or spin-exchange.   
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II. Experimental Procedures 
 

Transmittance spectra were measured to determine the electronic excitations of 

the NINO samples in the near infrared (NIR) and visible regions (8,500 to 25,000 cm-1).  

Room temperature optical measurements were taken using Colby’s Bruker IFS66V 

Fourier transform spectrometer.  The temperature dependence of the NINO absorptions 

was then determined for a range from 6 to 300 K using a cryostat insert in the Bruker 

spectrometer.  Low temperature magnetic field dependent measurements were made at 

the National High Magnetic Field Laboratory in Tallahassee, Florida, using a McPherson 

grating spectrometer.  The details of each type of measurement will be discussed below.   

All NINO samples were grown in solution by the slow evaporation method as 

previously described by Takeuchi et al.2 and provided by Chris Landee of Clark 

University.  The dark red crystals were cleaved into smaller pieces with dimensions on 

the order of a few millimeters per side and thickness varying by sample from 0.5 to 1 

mm.  Rubber cement was used to mount the samples onto holders with a circular hole 

approximately 1.5 millimeters in diameter in such a way that light would pass through the 

hole perpendicular to the long dimension of the crystal.  Based on previous crystal axis 

assignments,2 it is assumed in this paper that the crystal chains are perpendicular to the 

length of the crystal, although this has not been confirmed experimentally for our 

samples. 
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Temperature Dependent Measurements 
To measure the transmittance in the NIR and visible regions at Colby College, a 

mounted sample was placed inside a Fourier transform spectrometer.  The unique feature 

inside this type of spectrometer is the Michelson interferometer, which creates a known 

optical path difference between two split parts of a beam of light.  For a typical schematic 

diagram of such an interferometer, refer to the text by Halliday, Resnick, and Walker.16  

A beam splitter, or half-silvered mirror, is used to divide the light emitted from a source 

into two beams.  One beam travels to a fixed mirror and back.  The other beam reflects 

off a moving mirror so that when the two parts of light reunite, the intensity of the 

recombined beam recorded as a function of the optical path difference creates an 

interferogram.  A path difference of an integer multiple of the wavelength results in 

constructive interference, whereas a half-integer multiple of the wavelength results in 

destructive interference.  For example, the interferogram produced by a single 

wavelength source, such as a laser, would look like a cosine wave, with maximum 

intensity for a path difference of zero and integer multiples of pi.  All Fourier transform 

spectrometers, however, use a broadband source so that transmittance data can be 

measured for all wavelengths at the same time.  Since a zero path difference results in a 

maximum intensity for light of any wavelength, a broadband source has a center burst 

where all wavelengths interfere constructively and wings on either side of the center burst 

where the wavelengths undergo deconstructive interference.17   

In order to regain the spectral information, the computer numerically performs an 

inverse Fourier transform on the interferogram to give a single beam spectrum, which is a 

plot of intensity versus wavenumber.  Wavenumber (cm-1) is a common spectroscopic 

unit and is proportional to frequency and energy.  Scans are taken both with and without 
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the sample in place, producing a sample and a reference single beam spectrum, 

respectively.  The computer then calculates the transmittance by dividing the sample 

spectrum by the reference spectrum so that all features in the plot are due to the sample 

and not artificially caused by the optical components of the instrument.17  A plot of 

transmittance versus wavenumber can easily be converted to an absorbance plot by 

applying to each transmittance point the equation18  

Absorbance = -ln(Transmittance).    Eq. 3 

To ensure the best spectral results, we maximized the signal-to-noise ratio before 

each measurement.  Whereas the noise level due to detector fluctuations remains 

constant, the signal level depends only on the light incident on the detector.  Too much 

light can saturate a detector, but too small a signal count results in overly noisy spectra.  

Translation stages within the spectrometer made it possible to adjust the sample position 

so as to optimize the amount of light penetrating the sample.  The signal count was also 

optimized by changing the size of the aperture, to allow more or less light to pass through 

the sample to the detector.  When necessary, an optical filter was added to the setup to 

block some light and prevent the detector from saturating.   

To further improve the signal-to-noise ratio, multiple scans were taken and 

averaged, which took considerably more time than the mere seconds or less for a single 

scan.  The choice of resolution setting could also increase the total time needed to 

complete a measurement.  Improving the resolution by a factor of two, for example, 

requires that the moving mirror travel twice as far for each scan.  For the majority of the 

transmittance measurements in the NIR and visible regions, 32 scans were taken at a 

resolution of 16 cm-1.  With these parameters, the total scan time was no more than 
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approximately 15 seconds using the scanner velocity appropriate for the silicon diode 

detector.   

As stated in the introduction, for a perfectly isotropic molecule, incident light 

polarized along any of its three crystal axes produces the same absorbance spectrum.  In 

order to detect the anisotropy of our NINO samples, polarized measurements were taken 

with the oscillating electric field oriented either perpendicular or parallel to the Ni2+ 

chains.  Once the polarizer is in place between the source and the sample, the angle of 

polarization can be changed automatically by a polarizer rotator controlled by the 

software to find the maximum or minimum transmittances corresponding to the two 

polarizations.  With the correct angles determined, transmittance spectra were measured 

on three different NINO samples at room temperature in the NIR-visible region at both 

polarizations.  In order to complete the polarized measurements in the full range from 

8,500 to 25,000 cm-1, two thin film polaroid polarizers were necessary, one each in the 

NIR and visible regions, due to their limited functional ranges.   

Measuring the transmittance of three NINO samples at room temperature allowed 

us to make a comparison of the three samples and determine the preferred samples for 

low temperature and magnetic field dependent measurements.  Typically the thinnest 

sample is the best choice for zero field measurements, since the most light can pass 

through it, whereas a slightly thicker sample often produces the best results in higher 

magnetic fields because the change due to the magnetic field is a larger percentage of the 

total signal.   

The low temperature measurements necessitated some additional equipment than 

that which was required for the room temperature measurements.  To cool the system, a 
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continuous flow cryostat was attached to the sample chamber of the spectrometer.  A 

custom Janis cryostat sample holder was used that could accommodate two identical 

sample plates.  A NINO crystal sample spanned the hole of one plate, while the reference 

hole was left uncovered.  With the holder inside the cryostat, translation stages in all 

three directions allowed us to switch between centering the light beam either on the 

sample or the reference hole without removing the sample.  A set of windows in the 

cryostat allowed light from the source to pass through the sample and continue on to the 

detector.   

Before the cooling process could begin, the cryostat and sample chamber were 

evacuated with the sample holder in place inside.  A transfer line was then connected to 

the cryostat and lowered very slowly into a dewar filled with liquid helium.  Inserting the 

room temperature transfer line too quickly would boil off liquid helium and force us to 

release the buildup of gas inside the dewar, thus wasting the expensive liquid.  The 

temperature around the sample was monitored by two thermometers, one on the sample 

holder and the other where the cold gas entered the sample chamber of the cryostat.  

Within approximately half an hour of beginning to lower the transfer line, the two 

thermometer readings agreed to within 2 K that the sample chamber was cooled to 

approximately 6 K.   

With the intended temperature reached, the position of the reference hole was 

optimized using the translation stages.  A reference scan was taken after the reference 

hole was positioned such that the maximum number of counts was read by the detector.  

The translation stages were then used to move the sample into the path of the light and 

position it so that the number of counts was again maximized, at which point sample 
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scans were taken.  When satisfactorily reproducible results were attained at that 

temperature, the sample chamber was slowly heated in 50 K steps, with transmittance 

measurements being taken and repeated at approximately  6, 50, 100, 150, 200, 250, and 

300 K (room temperature).  The temperature was controlled inside the cryostat with a 

heater that balanced its heating power with the cooling power of the helium flowing from 

the dewar such that the target temperature was reached and kept constant.   

 

Magnetic Field Dependent Measurements 
In order to measure the magnetic field dependence of electronic excitations in 

NINO in fields up to 30 T, a week was spent at the National High Magnetic Field 

Laboratory (NHMFL) in Tallahassee, Florida.  All data were collected at low temperature 

(approximately 4 K), but the cooling process was somewhat different from that at Colby 

College.  With a NINO sample in place at the end of a long sample probe, the probe was 

encased by a long cylindrical airtight “can”.  This can was evacuated and subsequently 

filled with a small amount of helium exchange gas, and then slowly lowered into a 

cryostat filled with liquid helium.  The exchange gas allowed the sample to attain the 

same temperature as the liquid helium bath.  A liquid nitrogen bath surrounding the 

cryostat slowed the evaporation of the liquid helium and reduced the number of helium 

refills necessary in a work day.  When a refill was required, a transfer line was gradually 

let down into a dewar filled with liquid helium.  The other end was not inserted into the 

cryostat until the entire transfer line was cooled and the gaseous outpour of helium 

exiting the transfer line liquefied.  Once the helium level was replenished, the transfer 

line was removed and the cryostat resealed with rubber stoppers.  In contrast to the 
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helium refill, topping off the liquid nitrogen was a simple process consisting of pouring 

the fluid from a small dewar directly into the open bath of nitrogen and covering it with 

some cloth rags.   

 

FIG. 5.  A cross section of the basic magnet setup for measuring magnetic 
field dependent absorbance difference spectra at NHMFL.  Light travels 
from a source inside the spectrometer (A) and down the length of the probe 
(B) to the sample (C) and back to the detector via optical fibers (D).  A 
large magnet coil (E) surrounds the probe.  The system is cooled using 
both a liquid nitrogen bath (F) and a liquid helium bath (G).  A small 
amount of helium gas (H) is used as an exchange gas to transfer heat from 
the sample probe to the surrounding liquid helium.   

A

 C

B

D

E E 

    F F
G

 H

Figure 5 shows the basic setup used for transmittance measurements at NHMFL 

and the details of the cryogenic system described above.  The cryostat was positioned 

inside a large superconducting coil magnet and away from the spectrometer.  The 

physical separation between the light source and the sample was only allowed by the use 
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of optical fibers that ran from the spectrometer, down the sample probe to the sample, 

and back to the detector.  Two different probe types, Faraday and Voigt, were used to 

obtain transmittance measurements, with the magnetic field applied perpendicular or 

parallel to the sample face, respectively.  No distinct differences were observed in results 

obtained by the two geometries.  Before measuring a spectrum with the Voigt probe, a 

vertical translation stage was utilized to adjust the height of the sample in the cryostat 

relative to the optical fibers, until a maximum number of counts was achieved.  No such 

optimization process could be done on the Faraday probe because the fibers were fixed in 

place.   

The spectrometer available at NHMFL was a McPherson grating spectrometer 

and thus functioned quite differently than the one used at Colby College.  Unlike a 

Fourier transform spectrometer, a grating spectrometer has no interferometer, and instead 

relies on a grating to separate light into its component wavelengths.  Most grating 

spectrometers have a small exit slit to allow only a very narrow range of wavelengths of 

light to be incident on the detector, thus requiring the spectrometer to step through every 

wavelength in the desired range, with step size determined by the desired resolution.19  

The spectrometer used at NHMFL, however, made use of a charge-coupled detector 

(CCD), which was calibrated to simultaneously detect a range of wavelengths across 

1,024 pixels.  This range was determined by the specifications of diffraction grating, the 

width of the slit through which light entered the spectrometer, and the choice of a center 

wavelength.  A grating of 150 lines per millimeter was used for all transmittance 

measurements, and the slit width was varied from approximately 100 to 500 micrometers, 

depending on the other parameters and the desired resolution.  Since the resolution was 
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inversely proportional to the slit width, a narrower slit was sought for higher resolution 

measurements, with the caveat that enough light ultimately reached the detector to 

produce a decent signal count.  Even with the use of the CCD, it was necessary to overlap 

four smaller spectra in order to observe the entire region from 8,500 to 25,000 cm-1.   

Our goal at NHMFL was to observe the effect of an applied magnetic field on the 

electronic excitations in NINO.  Instead of dividing a sample scan by a reference scan, a 

high field transmittance measurement was divided by a correspondent zero field 

measurement, and a transmittance ratio was determined, which was later converted to an 

absorbance difference using Equation 3.  Since no reference scans were taken, the only 

time constraint was due to the exposure time of the CCD.  When the CCD was exposed to 

light for a longer time, more signal counts were detected, resulting in a more reliable 

spectrum.  On the other hand, a longer exposure time for each measurement not only took 

more time, but also increased the chance that a long-term drift in the system could skew 

the data.  Ideally, a large signal count would be acquired in a short exposure time without 

overexposing the detector.  The CCD exposure time for our magnetic field dependent 

measurements ranged from 0.5 to 30 seconds, depending on the sample and setup.   

Transmittance measurements at NHMFL followed a standard procedure to ensure 

reproducibility of results and stability in the system throughout the course of the 

measurements.  Once a sample was in place inside the magnet and cooled, three zero 

field spectra were recorded.  The magnetic field was then increased in constant steps of 1 

T, with a spectrum being taken at each field value up to 30 T.  A repeat measurement was 

taken at the highest field, and then the magnet was slowly ramped back down to zero 

field, where three final spectra were taken to compare with the original zero field ones.  
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With satisfactory agreement between all zero field spectra, transmittance ratios were 

calculated and the changes due to the magnetic field were studied.   

Due to unexplained drifts in the system and low signal counts with polarizers in 

place, no satisfactory polarized transmittance measurements were attained at NHMFL.  

The signal-to-noise ratio was much improved, however, by removing the polarizers from 

the beam, which allowed more light to reach the sample.  The best sets of unpolarized 

data were taken on the Voigt probe, and measurements took between approximately 8 

and 20 minutes.   Longer sets of measurements, with 30 second CCD exposure times, 

lasted upwards of 40 minutes, taking spectra at all the field steps.  Occasionally, the 

magnetic field would be increased to high field in 2, 3, or 5 T increments for data sets 

with these longer exposure times, thus saving time by taking fewer measurements.   
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III. Results and Discussion 
 

In this section we present the temperature and magnetic field dependent 

absorbance spectra of our NINO samples.  We begin by identifying the electronic 

transition associated with each absorbance peak observed in the zero field temperature 

dependent spectra.  Our observations will help us determine an effective symmetry about 

the nickel ions in the chains of NINO, which we will show is consistent with the 

temperature dependence of the absorbance band intensities.  We will also account for 

band shifts to higher energies as the temperature decreases.  Lastly, a comparison of the 

low temperature zero field spectra with the magnetic field dependent spectra will reveal a 

correlation between the electronic transitions and the magnetic properties of NINO. 

 

Temperature Dependence of the Absorbance Spectra 
The polarized temperature dependent absorbance spectra were measured at Colby 

College using the setup described in the previous section.  Figure 6 shows the 

temperature dependence of the absorbance spectra of NINO for the temperature range 

from 6 to 300 K in the NIR-visible range, which is the energy range where several Ni2+ 

excitations are known to occur.10  The polarizer was either parallel (Figure 6, left) or 

perpendicular (Figure 6, right) to the chains.  Five large, distinct absorbance bands are 

present in the spectra located approximately at 10,000, 13,500, 16,000, 19,000, and 

21,000 cm-1, with the second lowest energy large band absent in the parallel orientation.  

Additional subtle features between 12,000 and 14,000 cm-1 can be seen in both 

orientations.  It becomes apparent from the insets, which contrasts just the 6 and 300 K 
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spectra, that these features become sharper at lower temperatures.  Two small peaks at 

approximately 12,610 and 13,130 cm-1 are common to both orientations, and will be of 

particular interest when comparing the temperature and magnetic field dependent results.   
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FIG. 6.  Temperature dependent absorbance spectra of NINO from 6 to 300 
K with the Ni2+ chains oriented parallel (left) and perpendicular (right) to 
the polarizer.  Several bands are present, including four spin allowed d-d 
transition bands approximately centered at 10,000, 13,500, 16,000, and 
19,000 cm-1 and a charge transfer band around 21,000 cm-1.  Many of the 
d-d bands shift to higher energy at low temperatures, and the intensity of 
several bands increases with temperature.  The insets show that the two 
spin forbidden d-d transition peaks located at approximately 12,610 and 
13,130 cm-1 are more prominent at lower temperatures.   
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Figure 6 also reveals that the center positions of many bands shift to higher 

energy as temperature decreases.  One consequence of this shift is that nearby bands may 

increasingly overlap.  For instance, the fourth band in the perpendicular orientation is 

centered near 19,000 cm-1 at 300 K, but at the lowest temperature, it has shifted such that 

it lies at approximately the same position as the higher energy fifth band.  In contrast to 

the case of two separate bands, whose respective intensities can be measured by simply 
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integrating under their curves, the intensities of two overlapping bands add, and it 

becomes difficult to distinguish the intensity contributions from each band.  Due to the 

overlap of bands in our spectra, integrating directly to find the intensity of any one band 

and its dependence on temperature is not possible, but we can make some qualitative 

observations.  Based on the fact that the sample is more absorbing at higher temperatures 

over nearly the entire frequency region in the parallel polarization (left), it is clear that 

several of the bands have temperature dependent intensities.  In the perpendicular 

orientation (right), the band shift may account for certain changes with temperature, 

although some band intensities appear to be temperature dependent as well.   
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FIG. 7.  Comparison of the 6 K perpendicular and parallel polarized 
absorbance spectra of NINO.  Four spin allowed d-d transition bands are 
visible at approximately 10,000, 13,500, 16,000, and 19,000 cm-1, with the 
second lowest energy band absent in the parallel orientation.  Vibrational 
fine structure is present on the charge transfer band centered near 21,000 
cm-1, with peaks separated by approximately 470 cm-1 in the perpendicular 
orientation and 730 cm-1 in the parallel orientation.   
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By looking at the two polarizations of the 6 K absorbance spectra in Figure 7, we 

observe that the highest energy band centered at approximately 21,000 cm-1 in both the 

parallel and perpendicular orientations is overlaid with a set of small, evenly spaced 

peaks known as vibrational fine structure.  This fine structure is most apparent in the 6 K 

spectra because at this low temperature, nearly all of the electrons in the nickel ion are in 

the lowest vibrational energy level of the ground electronic state.  An incident photon 

may have the minimum energy required for an electron to transition to an excited state 

plus additional energy to excite a vibration.  Since the vibrational energy levels are 

quantized and evenly spaced,13 the energy of the absorbed photons is likewise quantized 

in the same regularly spaced steps, and the low temperature spectra exhibit the vibrational 

fine structure visible in Figure 7.  At higher temperatures, the electrons have sufficient 

energy to occupy various vibrational levels in the ground state.  Therefore there are many 

more possible energies of photons that can be absorbed, so the fine structure is smeared 

out.   

The presence of vibrational fine structure on this band at 21,000 cm-1 gives us 

clues as to what type of transition produced it.  The peak spacing is approximately 470 

cm-1 in the perpendicular orientation and 730 cm-1 in the parallel orientation, which 

correspond to vibrational frequencies too high to involve the heavy nickel ion.20  The 

research literature on Ni2+ complexes containing nitrogen-bonded nitrite groups 

commonly assigns bands located near 21,000 cm-1 as charge transfer bands.  In most 

cases, the fine structure has approximately 600 cm-1 spacing, and is reportedly due to an 

electron transfer from the Ni2+ to the neighboring NO2
– group.21  Additionally, 

absorbance peaks at approximately 1,325 and 829 cm-1 have been attributed to nitrite 
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vibrations in NaNO2.10  Since the vibrational frequency of the parallel polarized spectra 

in NINO is significantly lower than in reported compounds, we suggest that an electron 

may be transferred instead to a trimethylenediamine ring, which has known vibrations 

around 450 and 740 cm-1.22  Regardless of which group is the recipient of the charge, the 

band cannot correspond to a nickel vibration, so hereafter, we shall refer to this band as 

the charge transfer band.   

To determine the origin of the remaining bands, it will be helpful to consider the 

possible electronic excitations that can take place within the d orbital of a nickel ion like 

the ones present in the chains of NINO.  The schematic diagram in Figure 8 shows the 

spin allowed and spin forbidden d-d transitions of 3d8 Ni2+ in two different crystal field 

symmetries: octahedral (Oh) and C4v.  A complex belonging to the point group C4v 

possesses only the symmetry of a four-sided pyramid and therefore has fewer symmetry 

operations than an octahedral complex.8  As such, we expect the degenerate excited 

energy levels of an Oh complex to split in the lower C4v symmetry, as shown in Figure 8, 

where the superscript 1 or 3 on each energy level denotes either a spin = 0 singlet state or 

a spin = 1 triplet state, respectively.  The basic energy ordering of this diagram was taken 

from a discussion of various C4v nickel complexes by Hitchman.23  Higher energy excited 

states are possible for a Ni2+ ion, but are left out of this diagram because their energies lie 

outside the NIR-visible range.  Based on the number of absorbance peaks in our spectra, 

the lower symmetry assignment of C4v is in closer agreement with our observed spectra 

of Ni2+ excitations in NINO.  We identify the four remaining large absorbance peaks, 

centered near 10,000, 13,500, 16,000, and 19,000 cm-1, as the four spin allowed d-d 
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transition bands, namely, from lowest energy to highest, 3B1 → 3E(1), 3B1 → 3B2, 3B1 → 

3A2, and 3B1 → 3E(2). 

 

FIG. 8.  Schematic diagram of the possible electronic transitions between 
energy levels of 3d8 Ni2+ in octahedral (Oh) and C4v crystal field 
symmetries.23  Electrons begin in the ground state energy level and make a 
transition to higher energy levels.  Transitions labeled in blue are allowed 
by the spin selection rule; those labeled in red are spin forbidden.  An 
effective C4v symmetry about the nickel ions in NINO is more consistent 
with our observed spectra. 
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The two spin forbidden transitions labeled in the C4v symmetry in Figure 8 can 

also be accounted for in the temperature dependent spectra.  These coincide with the two 

small absorbance peaks located at 12,610 and 13,130 cm-1 in Figure 7, which we 

therefore identify as the spin forbidden d-d transitions 3B1 → 1A1 and 3B1 → 1B1, 

respectively.  As mentioned in the introduction, in contrast to an isolated nickel ion, 

NINO is composed of chains of nickel ions, so the spin forbidden transitions could be 

allowed by either spin-orbit coupling or spin exchange.  Based on the spectra of NINO 

alone, we cannot attribute the presence of the spin forbidden peaks to one mechanism 

over the other, but comparison to the spectra of a Ni2+ paramagnetic analog to NINO may 

be useful in distinguishing the contributions due to each.  
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As a further indication that C4v is the appropriate effective symmetry assignment, 

a parallel polarized 3B1 → 3B2 transition is forbidden by vibronic selection rules in this 

symmetry group,23 which may explain the absence of the second absorbance peak in the 

parallel polarized spectrum.  An effective C4v symmetry assignment is also consistent 

with the known crystal structure of NINO.  The bond length from the Ni2+ ion to the 

neighboring oxygen atom of the nitrite group is longer than the bond of the Ni2+ to the 

nitrogen on the opposite nitrite group.3  The existence of two different bond lengths 

effectively breaks the mirror symmetry across the plane of the octahedron, leaving the 

symmetry of a four sided pyramid (C4v).  The vertices of such a pyramid consist of the 

five nitrogen atoms that surround each nickel ion.   

Let us consider the temperature dependence of absorbance bands in the two 

crystal field symmetries.  Recall that all d-d transitions are forbidden by the electric 

dipole selection rule in centrosymmetric complexes, with vibronic activation a necessary 

mechanism for the transitions to occur, and that vibronic activation implies increasing 

band intensity with temperature.  All d-d transition bands in the spectrum of a complex 

with Oh symmetry will therefore be sensitive to temperature.  In contrast, for a complex 

in a C4v point group, the two 3B1 → 3E transitions for the perpendicular orientation are 

allowed d-d transitions,23 and therefore only those bands should be temperature 

independent.  A quantitative comparison of the temperature-dependent band intensities in 

NINO to the temperature dependence predicted by Equation 1 is thwarted by the 

considerable overlap of neighboring bands.  Nevertheless, we have observed that the 

intensities of all the d-d transition bands in the parallel orientation increase with 

temperature, as is expected for vibronically activated bands.  In the perpendicular 
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orientation, the two forbidden transitions (3B1 → 1A1 and 3B1 → 1B1) appear to be 

temperature dependent as well.  The second 3B1 → 3E transition band overlaps too 

strongly with the charge transfer band to analyze its temperature dependent intensities.  In 

contrast, the first perpendicular polarized 3B1 → 3E transition band has an intensity that is 

independent of temperature.  The fact that the intensity of at least one d-d transition band 

is temperature independent indicates that the electric dipole selection rule does not apply, 

thus confirming the noncentrosymmetric point group about the nickel ions.   

We will now address the observation that several of the absorbance bands shift to 

higher energies with decreasing temperature.  The observed shift is a result of the fact 

that materials contract at low temperatures because the average bond length between 

atoms decreases.24  If we consider our nickel system as a particle in a box, where the 

width of the box around the Ni2+, L, is represented by the average bond length between 

atoms, then we can relate the spacing between energy levels to the temperature dependent 

bond lengths.  The nth energy level of a particle in a box is given by13  

2

222

2mL
nEn

πh
= ,     Eq. 4 

where the particle has mass m.  Thus at lower temperatures, the smaller average bond 

length will result in greater separations between energy levels.  An electron will therefore 

require more energy to make the transition to an excited state than at a higher 

temperature, and the center positions of the absorbance bands will consequently shift to 

higher energies as the temperature decreases.    
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Magnetic Field Dependence of the Absorbance Spectra 
In Figure 9 we can see the familiar low temperature polarized absorbance spectra 

from Figure 7 (scaled on the right axis) displayed along with the unpolarized magnetic 

field dependent absorbance difference spectra (left axis) for easy comparison.  The 

wavenumber range is limited to that for which field dependence was measured.  To 

highlight the magnitude of the changes with applied field, only the highest field and the 

zero field spectra are shown in red and black, respectively, on this graph.  An absorbance 

difference of zero indicates that the magnetic field had no effect on the ability of the  

 

FIG. 9.  Overlay of the 6 K polarized absorbance spectra, also shown in 
Figure 7, (right scale) with the unpolarized low temperature magnetic field 
dependent absorbance difference spectra (left scale) for 0 T (black) and 30 
T (red).  The absorbance difference calculated in a field with strength H is 
equal to the zero field absorbance subtracted from the absorbance at H.  
The temperature dependent spectra were measured on a separate, thinner 
NINO sample than the magnetic field dependent spectra.   
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NINO sample to absorb light.  A positive value for the absorbance difference signifies 

that the sample was more absorbing at higher fields, and a negative value indicates that 

the field suppressed the absorption of light.   

Figure 9 shows that in the frequency region from approximately 11,000 to 14,000 

cm-1 the absorbance difference decreases at high field.  The spectrum exhibits several 

sharp features in that region, the largest of which constitutes approximately 1-2% of the 

total absorbance at that point in the zero field spectra.  There appears to be no 

considerable effect from magnetic field at frequencies above 18,000 cm .  Both the 0 T 

and 30 T absorbance difference spectra deviate randomly from the 0 line, indicating that 

the shape likely results from insufficient light striking the detector rather than any feature  

-1

 
 

FIG. 10.  Absorbance difference spectra for NINO in selected magnetic 
fields up to 30 T.  In the region below 14,000 cm-1, the absorbance of light 
is suppressed by an applied field, with distinct dips present at 
approximately 12,610 and 13,130 cm-1.   
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in the spectrum.  The low signal is probably due to the strongly absorbing charge transfer 

band as well as reduced signal throughput at high frequencies.   

An enlarged depiction of the magnetic field dependent results can be seen in 

Figure 10.  Spectra were taken in H = 1 T steps, but only selected ones are shown for 

clarity.  We observe that two sharp dips in absorbance difference occur at 12,610 and 

13,130 cm-1, precisely the frequencies corresponding to the two spin forbidden transition 

peaks.  At approximately 12,310 cm-1 there is a less pronounced dip in absorbance 

difference, and three similar features are present at 13,310, 13,510, and 13,710 cm-1.  

By making a comparison between the same magnetic dependent absorbance 

difference spectra and the low temperature zero field absorbance spectra, it becomes 

apparent that a correlation exists between the magnetic properties and the electronic 

transitions occurring in NINO.  Figure 11 highlights the fact that each dip in absorbance 

difference corresponds to a feature in the zero field spectra.  The three weaker features 

identified in the previous paragraph are spaced at nearly regular separations of 200 cm-1 

above the dip at 13,130 cm-1, implying that they may correspond to vibrational replicas of 

the spin forbidden transition.   Likewise, the extra feature near the dip at 12,610 cm-1 may 

be related to a lower vibrational replica of the first spin forbidden transition.   It is clear 

that an applied magnetic field suppresses the absorption of photons corresponding only to 

the spin forbidden transitions in NINO.   

In order to quantify the magnetic field dependence of the spin forbidden 

transitions, we integrated under the curve from 12,000 to 14,000 cm-1 in each absorbance 

difference spectrum and plotted the integration areas versus magnetic field.  The resulting 

graph is shown in Figure 12.  Since the integration area of the absorbance difference is 
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FIG. 11.  Overlay of the 6 K polarized absorbance spectra (right scale) with 
selected unpolarized low temperature magnetic field dependent absorbance 
difference spectra (left scale) up to 30 T.  Each dip in absorbance 
difference coincides with a peak in the zero field absorbance spectra, 
where the two sharpest dips at 12,610 and 13,130 cm-1 correspond to the 
two spin forbidden transitions and the other features are related to 
vibrational replicas of these transitions.   
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equal to the change in intensity produced by the applied field, Figure 12 illustrates the 

relation between the absorbance intensity and the magnetic field strength.  Below a 

certain magnetic field value of approximately 10 T, denoted Hc for crossover field, the 

absorbance intensity is relatively unaffected by the strength of the field.  Above this 

crossover field, however, the absorbance decreases linearly as the field is increased.  

Recall that magnetization measurements performed on NINO2 (shown in Figure 3) 

showed a crossover field near 10 T.  Also recall that such a crossover field is unique to 

materials with an energy gap between singlet and triplet magnetic states, whereas most 
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FIG. 12.  The integrated areas under the curves of each absorbance 
difference spectrum of NINO from 12,000 to 14,000 cm-1 versus magnetic 
field.  Below a crossover field (Hc) of approximately 10 T, the absorbance 
intensity is nearly constant; above Hc the absorbance decreases linearly 
with increasing field.  The integration region corresponds to the two spin 
forbidden peaks, so it appears that the spin forbidden transitions become 
less likely in higher magnetic fields.   
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materials respond immediately to an applied field.1  Thus, it is interesting to note that the 

spin forbidden electronic transitions in NINO are somehow correlated to the compound’s 

magnetic properties.   

 We refer to Figure 2 for a feasible qualitative explanation for this connection 

between the electronic transitions and the magnetic properties of NINO.  As described in 

the introduction, spin exchange causes the correlated ground state of NINO to be a spin = 

0 state.  Taking this into account, the transitions to the two singlet states 1A1 and 1B1 can 

be weakly allowed in the spin coupled chain, although forbidden by the spin selection 

rule on the isolated Ni2+ ion.  When the lowest energy triplet of the first excited magnetic 
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state (spin = 1) becomes the ground state at the crossover field, Hc, the transitions to the 

two spin = 0 states once again become spin forbidden.  The intensity of the spin 

forbidden absorbance peaks could thus be expected to decrease above the crossover field.  

Admittedly, such a complex system cannot be simplified to this extent.  While our 

speculative description seems to account for the presence of a crossover field in the 

absorbance difference intensities, it is not clear that it can explain why the spin forbidden 

transitions are increasingly less likely to occur at fields above Hc.   

 

 34    



IV. Conclusion 
 
 We have determined the temperature and magnetic field dependence of the 

electronic excitations for the Ni2+ chain compound NINO.  Each absorbance band in the 

NIR-visible region was identified either as a d-d transition band or a charge transfer band.  

These assignments were in good agreement with an effective C4v symmetry about the 

nickel ions, which was further supported by the temperature independence of at least one 

d-d transition band.  The effect of an applied magnetic field was restricted to the spin 

forbidden transitions, which were suppressed by fields above Hc ≈ 10 T.  Without 

accounting for the linear relation between magnetic field strength and absorbance 

difference above Hc, a qualitative explanation was suggested for the intensity reduction 

above the crossover field.   
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