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for annual rates imposed by renting an acre of land to use for agricultural 

production. This data was procured at the county level for each state and depicts 

average price paid to a landowner in that county for renting either an acre of 

cropland (tillable) or pasture (perennial grass for grazing or hay) during the 2012 

growing season. I then subtracted the rental rate of pasture from cropland to 

enumerate the discount associated with renting out pasture. The discount then 

becomes the per-acre cost used in this model since the model’s foundation analyzes 

turning cropland into perennial grassland. 

 

3 – Methods 

 

 Burke et al. 

(1987) published a 

model that describes the 

impact precipitation 

(APT, cm/yr), mean 

annual temperature 

(MAT, ºC) and soil 

composition (fraction 

made up of silt and clay) 

have on soil organic 

carbon content (SOC). 

Burke developed an 

OLS-based model that 

used a population of 945 

samples of agricultural 

soils throughout the great plains region, and models SOC content for two groups: 

grassland (perennial grass) soils and cultivated (cropland, tilled) soils. The 

coefficients for this model can be seen in Table-1. 

 

Variables Grassland Soils  Cropland Soils  

MAT -0.827 -0.750 
(MAT)2 0.0224 0.0210 
APT 0.127 0.0581 
(APT)2 -0.000938 -0.000458 
APT x Silt (silt = 0.6) 0.000899 0.000494 
APT x Clay (clay = 0.2) 0.000600 0.000582 
Constant (SOC intercept) 4.09 5.15 

Table-1: Two models that describe predicted SOC of a soil based on mean annual 

temperature (MAT) and precipitation (APT) developed by Burke et al., 1987. 
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Eq-1: SOC (kg m-2) = α0 + α1(MAT) + α2(MAT2) + α3(APT) + α4(APT)2 + α5(APTxSilt) + 

α6(APTxClay) 

 

 Spatially distributed data for the soil’s clastic composition (% silt, clay and 

sand) remained challenging to find and was found to be randomly distributed 

throughout the study area and not controlled by climate or geographic position 

(Amelung et al, 1999). Instead of a variable, the dominant benchmark soil found 

throughout the great plains and upper Midwest was used in all iterations of this model. 

The benchmark soil would be a silt-loam soil, which is composed of 20% clay, 60% 

silt and 20% sand (these classes refer to the size of each of the siliclastic soil particles, 

with clay being the smallest and sand the largest). This resulted in the absence of 

interaction variables in my analysis and the silt fraction (0.6) was then multiplied by 

the APT x Silt coefficient, that along with the fixed clay fraction (0.2) multiplied by 

the its respective coefficients, were added to the coefficient in front of the linear APT 

variable, with the whole aggregate value multiplied by APT to find the predicted SOC 

content (eg, the product of ((0.00060*.2)+(0.000899*0.6)+1.27)*APT was used as the 

linear APT term to find the SOC of a rangeland). Burke et al (1987) reveal that the silt 

and clay composition showed much less of a relationship with SOC than the 

relationships precipitation and temperature have on SOC. 

Each county used the average value of the predicted SOC rates of the data points that 

were located with said county. Some of the very rural counties of Nebraska and the 

 

 
Fig-4: Cost-benefit of cropland-grassland conversion in terms of carbon sequestration 
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Dakotas did not have any weather stations located in them, and a resulting cost-

effectiveness value could not be found for these counties. This is reflected in the 

absence of data points in fig-1. The predicted SOC was then divided by the average 

cropland rental price for every county (that there was data for), resulting in the cost-

benefit value for each county (fig-4). 
 The above map (fig-4) depicts the spatial-distribution of the cost-benefit of 

cropland-grassland conversion at the county level. There is a generally a trend of highly 

cost-effective land in the west and northwest to poorly cost-effective land to the 

southeast.  

The entire state of Iowa is in the highest cost per ton-C-acre-1 sequestered category, of 

costing more that $33.33 per ton carbon sequestered per acre per year. There are many 

counties where just one variable was missing, and had to be omitted from the analysis, 

but overall the results shown in fig-4 provide a strong representation of geographic 

trend of the cost of the sequestering carbon. 
 

4.2 – Implications, uses and caveats 

This study provides a result for the predicted spatial distribution of carbon 

sequestration (and relative costs) in the Upper Midwest, United States. A more accurate 

cost-benefit analysis would be able to compare the results found in this model with 

carbon sequestration costs found in other studies. The main caveat with the results 

found in this model (in terms of cost($) per ton-C sequestered) is that the cost is 

incurred annually as an upkeep cost, where as other researchers who also assess the 

costs of different methods carbon sequestration look at the cost as a per-ton cost, not 

an annual upkeep. For this reason, the results in this study can not be compared relative 

to the results from other studies, since this study reflects the cost in terms of annual 

cropland rental fees. Furthermore, the benefit of grazing has not yet been applied to 

this model but is obviously a strong benefit that is currently contributing to upwards 

bias in the per county cost estimates. The grazing of ruminants provides a further 

provisioning ES (in addition to the regulating ES of carbon sequestration) that will 

reduce the overall cost of converting cropland to grasslands, but this remains 

unaccounted for in the above model. 

 

 

4.2.1- Applications – Site selection and carbon sequestration optimization 
The spatial distribution of this model still marks the relative differences of 

predicted costs of carbon sequestration across Upper Midwestern counties. The relative 

costs between counties in this region could have several significant and important 

applications. At first they provide a general framework for cost-effectiveness of 

sequestering carbon through change in agriculture. The most notable aspect of this 

study is that it controls for spatially-varying attributes of each county. The ability to 

see how cost-effectiveness of agricultural soil carbon-sequestering initiative varies 

through space is unprecedented in literature. 
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In addition these results suggest that when accounting for cost in a soil carbon-

sequestering initiative it is best to make the most out of abundant cheaper land, rather 

than attempting to use highly-sought after land priced at premium. This is seen in Fig-

2 where nearly the entire state of Iowa--a state of world-renowned and unparalleled 

agricultural productivity--is in the least cost-effective category, while the fringes of the 

Dakotas and western and central Nebraska have many counties in the dark blue 

category, sequestering at least five times more marginal carbon per dollar spent on 

land. This phenomenon is better explored when the data derived from my analysis is 

used to solve a site-selection problem. 
 Now that space-dependent variables have been taken into consideration, the 

next step will be to use a more highly parameterized model to address how management 

practices and potentially other space-dependent variables can be used to further 

increase carbon sequestration per acre. The updated CENTURY 4.0 model 

incorporates a fire parameter to evaluate grassland burning (Parton et al., 2001). This 

assesses the effect that periodic burning of a grassland has on the health and aggregates 

of the soil as well as the effect on the soil’s total SOC. It may seem counterintuitive, 

but research has shown that quick, high-temperature managed burning converts the 

cellulosic plant material into charcoal, which is a longer-lived and more stable form of 

carbon than organic carbon, since microbes have a much harder time respiring the 

particles (Schuman et al., 2001). Future research concerning the spatial distribution of 

cost-benefits of carbon sequestration should incorporated models like CENTURY 4.0 

that take management practices into consideration. A cost-benefit analysis should then 

be applied to these results in a similar framework that I have presented above, exploring 

how the relationship between opportunity costs of management practices and carbon 

sequestration vary through space in the Upper Midwest. 

 

Part II – Assessing the impact carbon sequestration potential has on land price 

The results found in Part-I of this paper will be used to assess the impact 

that the potential for carbon sequestration may have of farmland demand, as 

measured in the land's price. A market for sequestered carbon does not yet exist, 

but the expectations that such a market will develop may drive investors to seek out 

cost-effective methods for sequestering carbon, putting increased pressure on the 

demand for agricultural lands in counties that are predicted to yield a high return in 

terms of carbon sequestration. A hypothesis is presumed that, after controlling for 

the dominant controls that affect land price, the amount of carbon expected to 

become stored in soil after a cropland-grassland conversion will relate to a positive 

change in land price, which would represent a shift in the quantity of farmland 

demanded.  
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5- Data 

 

Land Price is the dependent used in regression table-5. This is the county average 

price for an acre of agricultural land in 2010.  

Change20102014 is the dependent variable used for the regression model shown 

in table-4. This is the percent change in each county's agricultural land prices 

between 2010 and 2014. 

Independent Explanatory Variables- All measurements were taken at the county 

level. 

saleacre Agricultural Sales of agricultural products per acre of cultivated cropland, 

proxie for productivity and expected earning potential for farmland in a given 

county. 

Growth_sales Agricultural product sales growth percent, between 2007 and 2012. 

Pop_growth population growth percent, 2000 to 2010. 

POP10_SQMI The county's population density from the 2010 census. 

farmssqmi the number of farms per square mile. 

AVG_SIZE07 is the average size, in acres, of farms. 

tonCacre is the predicted change in tons of soil carbon sequestered per acre after 

cropland-grassland conversion, modeled using Burke et al's (1987) function. 

 
Table 1: Summary Statistics for regressing IA and MN farmland prices 

Variables Min Max Mean STD 

 Minnesota 

Land Price 605 64,414 4,225 7,186 

Change20102014 -0.2941 1.406 0.5385 0.4695 

Saleacre 1.273 62.13 6.766 6.483 

Growth_sales -1.025 2.556 -0.002304 0.5515 

Pop_growth -1.592 3.407 0.1917 1.057 

POP10_SQMI 1.7 3005 122.4 392.9 

farmssqmi 0.003892 2.896 1.279 0.6479 

AVG_SIZE07 31 993 340.2 174.1 

tonCacre 3.257 5.343 4.379 0.4213 

 Iowa 

Land Price 2085 7,148 5,049 1,199 

Change20102014 0.4433 0.7781 0.5809 0.0851 

Saleacre 21.29 463.5 175.48 79.688 

Growth_sales -0.6729 0.6934 -0.1486 0.2986 

Pop_growth -1.2934 3.531 -0.1530 0.6860 

POP10_SQMI 9.600 740.1 53.0510 89.64 

farmssqmi 0.9286 2.538 1.6525 0.2939 

AVG_SIZE07 203.0 606.0 339.1735 74.35 

tonCacre 1.411 4.282 3.0546 0.6218 
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5.1 – RESULTS 

The following OLS regression was evaluated to decompose tonCacre’s 

relationship on the change in agricultural land prices (2010 – 2014) across 

Minnesota and Iowa counties. 

 (Minnesota) (Iowa) 

VARIABLES Δ(Ag Land Price) Δ(Ag Land Price) 

   

Percent cropland 1.310*** -0.289*** 

 (0.105) (0.0417) 

tonCacre -0.00728 -0.0179** 

 (0.0164) (0.00831) 

Population growth -0.0869*** -0.0127 

 (0.0281) (0.00983) 

Ag sales growth 0.0713* 0.0343 

 (0.0412) (0.0219) 

No. of Farms/sq. mi.  -0.108** 0.106*** 

 (0.0520) (0.0218) 

Constant 0.0313 0.671*** 

 (0.0997) (0.0477) 

   

Observations 86 99 

R-squared 0.844 0.547 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 Table-3 shows a the estimated coefficient and their variables used to explain 

the change in average per-acre agricultural land prices at the county level in 

Minnesota and Iowa.  

 

5.2.1 – Interpretation  

 In Minnesota, we find the tonCacre (the predicted average increase in 

sequestered carbon from cropland-grassland conversion for a given county) has no 

effect or relationship with the dependent variable in the above model, ΔAg Land 

Price, as the parameter’s estimated coefficient fails to reject the null hypothesis, 

H0: βtonCacre = 0 and is shown to be statistically insignificant. Alternatively, the 

coefficient for the parameter representing the same explaining variable in the 

estimated regression model using data from Iowa counties shows that at the county 

level increased levels of predicted carbon sequestration (from cropland-grassland 

conversion) is associated with a negative excursion of average cropland prices, 

which is statistically significant to the 5% level.  

 These results from Iowa are somewhat troublesome as they show that 
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farmland that is predicted to have greater potential for carbon storage relates to a 

slower rater of growth in price (and demand) in comparison to land with a lesser 

potential for carbon sequestration, holding all else fixed. Ideally, the data would 

depict a positive correlation between change in land price and carbon sequestration 

potential. The above model explains the change experience in Iowa land prices 

from 2010 to 2014 across counties, and thus only reflects the trend seen over the 

last four years. Considering the temporal trend over the last four years, the results 

above may support the following hypothesis. 

Hypothesis addressing and value and carbon sequestration potential 

The demand for lands that are predicted to sequester relatively more tons 

per acre of carbon through grassland-cropland conversion may have been in higher 

demand prior to 2010, when there were greater aspirations and expectations for 

developing a carbon cap-and-trade system in the United States. Thus the 

sequestration of carbon was then expected to hold future economic value as markets 

for sequestered carbon would become developed. Unfortunately for many 

environmentalists and conservationists, such a system was never implemented in 

this country and the failure of a similar system in the EU (Kossoy and Guigon, 

2012) began to lead investors to speculate that their would never be such a private 

market that puts an economic value on sequestered carbon. Pessimism then began 

to spread between 2010 and 2014 that greatly decreased the expectation of 

developing markets for carbon credits. Lands that may have once held a premium 

price for their expected carbon sequestration potential (through cropland-grassland 

conversion) may now be receding in value relative to those that are predicted to 

have less carbon sequestration potential as the expected future value of carbon 

sequestration erodes. 

Unfortunately, this hypothesis is not supported by the modeling of 

Minnesotan data, which suggests that the carbon sequestration potential of 

agricultural lands has no effect on the growth in price of these agricultural lands. 

Thus there is no increased (or decreased) demand for agricultural lands of high 

carbon-sequestration value. If the direction that carbon sequestration potential 

effects Iowa land prices is due to nationwide market forces and investors 

speculations on future markets then the same trend should be reflected in the 

changes in Minnesota farmland prices based on the ability of carbon sequestration. 

As mentioned, the trend in Minnesota farmland prices from 2010 to 2014 are not 

sensitive to the lands predicted carbon sequestration, which does not support the 

aforementioned hypothesis. 

This hypothesis can be tested by looking back and analyzing the controls in 

2010 farmland values. Upon controlling for other variables, we can assess whether 

carbon sequestration had a positive effect on raw land prices. Support of this 

hypothesis would show that after originally having a positive effect, the relationship 

has degraded as the markets for sequestered carbon did not develop as expected, 
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and likewise has since shown a negative correlation with the change in land price 

over the last four years. 

 

 

6 - Results II: Explaining raw 2010 land values 
 (Iowa) Minnesota (Iowa) 

VARIABLES 2010 Agricultural Land Price 

percent_cropland 3,926*** 1,042 3,985*** 

 (916.3) (982.7) (562.0) 

tonCacre 142.9** -33.48 504.7*** 

 (68.69) (96.10) (116.8) 

POP10_SQMI 1.667*** 10.06*** 1.866*** 

 (0.623) (0.626) (0.569) 

AVG_SIZE07 -1.973 -2.850* -3.709*** 

 (2.649) (1.506) (1.061) 

Saleacre 318.2*** 519.7*** 304.7*** 

 (54.74) (37.27) (51.84) 

Avg_LONGIT   -66.48** 

   (30.01) 

Avg_LATITU   -187.6*** 

   (69.13) 

farmssqmi -102.2 -398.2 95.60 

 (544.5) (367.9) (515.1) 

Constant 528.2 538.5 1,527*** 

 (1,347) (757.8) (452.9) 

Observations 99 87 99 

R-squared 0.847 0.978 0.869 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table-4: Assessing the control predicted carbon sequestration has on 2010 land 

prices 

 

Eq-2: 2010_AgLandPrice_IA_county = β0 + β1(percent_cropland) + β2(POP10_SQMI) + 

β3(AVG_SIZE07) + β4(Saleacre) + β5(Avg_LONGIT) + β6(tonCacre) + u 
 

Equation-2 depicts the model used to assess the controls affecting predicted 

average agricultural land prices in Iowa counties the variable farmssqmi has been 

dropped after the estimated coefficient was found to be insignificant, possibly in 

part due to multicollinearity issues with AVG_SIZE07 (the average size in acres of 

each farm in given county) and percent_cropland, which exhibit stronger 

relationships with land price. Together, these two variables may depict the same 
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trend that farmssqmi was hypothesized to show; the size and abundance of farms in 

each county. The other estimated coeffecients were all found to be significant of 

the parameters used in this model are shown in column three of the Table-4. The 

signs of these estimates all make intuitive sense, with the productivity proxy 

percent_cropland and salesacre showing strongly positive and significant 

relationships. The location variables Avg_LONGIT and Avg_LATITU depict a trend 

of increasing land prices from the northwestern to the southeastern regions of the 

state, which reflects increasing precipitation (see Fig-1) and length of the growing 

season; attributes that intuitively lead to increasing agricultural production 

potential. Most importantly, we see a positive and significant relationship between 

land price and tonCacre, the parameter that describes the predicted carbon 

sequestration from cropland-grassland conversion. 

 

6.1 Assumptions 

Global and national scale variables- Many national scale parameters exist that 

would hypothetically have influence on Iowa agricultural land values. However, 

such variables would influence all farmland the same way and would not 

differentiate across individual counties. Such variables would include new federal 

mandates on the amount of ethanol used in American gasoline, driving up the 

demand for corn and in turn farmland. Any other type of change in the market for 

global agricultural commodities will intuitively influence the price and demand of 

farmland, but such variables are assumed not to change across the counties. 

Aesthetic value- This model also omits any cross-county variation in the average 

aesthetic value of agricultural lands. Other research has found that aesthetic 

values—proxied by the relative abundance of rivers, wetlands and natural areas 

with a land area—can play a significant role in controlling southwest Michigan 

agricultural land prices (Ma and Swinton, 2011). However, in this model we are 

assuming that such variation in aesthetics either does not occur in Iowa or is not 

reflected in agricultural land prices. This assumption is backed up by the extremely 

homogenous nature of the state of Iowa; unlike Michigan, Iowa does not border 

any Great Lakes and is likely less popular amongst tourists. This idea is supported 

by the differences between the results of the Iowa and Minnesota models. 

Minnesota, much like Michigan, is far more topographically diverse. Known as the 

“Land of 10,000 Lakes”, Minnesota likely has much more variation of aesthetic 

controls between counties. The omission of aesthetic controls in the above model 

may lead to omitted variable bias (OVB) in our results, but without scrutinizing 

research using satellite imagery I can not enumerate accurate attributes that reflect 

the aesthetics of land within Iowa counties.  
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7. Conclusion 
The positive correlation seen between estimated carbon sequestration 

(through cropland-grassland conversion) and land price across counties, after 

accounting for spatial variability that directly effects agricultural production and 

profits, suggests that investors may have increased prioritized high-carbon 

sequestration lands versus over similar lands that can not potentially sequester as 

much carbon. Much of this paper remains speculative and there is potential for 

omitted variable bias (OVB) in these results, this trend is empirically shown in this 

analysis and should be addressed. 

In comparison Minnesota, where the initial model predicted had the most 

cost-effective counties in terms of carbon sequestration potential, showed no 

correlation between carbon sequestration potential and land price (in both the 

change in land price and raw 2010 value data). This could mark other external 

factors in Minnesota land prices that our model did not control. As mentioned, there 

are many more lakes in Minnesota and the relative abundance of lakes varies 

spatially across the state, and the presence of lakes in a county may effect the 

aesthetic value imposed on land prices in that county (Ma and Swinton, 2011). 

Minnesota may not show a significant, positive correlation between carbon 

sequestration potential and land price because there is OVB from the absence of a 

control on aesthetic value, while Iowa—being a much more uniform and 

homogenous state in topography—does not experience the same degree of OVB 

because there is not as much variation in the relative abundance of lakes across 

Iowa. 

To summarize, the first model of this paper shows a unique framework that 

can be used to assess the relative differences cost-benefits of soil carbon 

sequestration across space. This can then be used to help solve site-selection 

problems when trying to optimize carbon sequestration through cropland-grassland 

conversion using a method such as the Greedy Algorithm. After these initial results 

were found, I applied this results to agricultural land price regressions to find out if 

there was any relationship between carbon sequestration potential and Midwest 

land price trends. I found that in Iowa, a very homogenous state by nature with few 

external variables effecting land prices outside agricultural productivity proxies, 

there is a negative relationship with the change in land prices, but a significantly 

positive relationship in the raw 2010 price data, with all else held fixed. This result 

suggests that before and up the late-2000’s recession investors placed a premium 

price on carbon sequestration potential. After 2010 however, this price premium 

began to recede, which temporally correlates with the lowered expectations that the 

United States would implement a carbon cap-and-trade system, creating an 

economic market for carbon sequestration products (Kossoy and Guigon, 2012).  
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