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Abstract

Classical electromagnetism predicts two massless propagating modes, which
are known as the two polarizations of the photon. On the other hand, if the
Lorentz symmetry of classical electromagnetism is spontaneously broken, the
new theory will still have two massless Nambu-Goldstone modes resembling
the photon. If the Lorentz symmetry is broken by a bumblebee potential that
allows for excitations out of the minimum, then massive modes arise. Fur-
thermore, in curved spacetime, such massive modes will be created through
a process other than the usual Higgs mechanism because of the dependence
of the bumblebee potential on both the vector field and the metric tensor.
Also, it is found that these massive modes do not propagate due to the extra
constraints.
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1 Introduction

A Lorentz transformation is a linear transformation that preserves a space-

time interval. In special relativity, Lorentz transformations consist of ro-

tations and boosts; in general relativity, they are local transformations that

rotate or boost a freely falling frame. A theory that is invariant under Lorentz

transformation is said to be Lorentz symmetric. Lorentz symmetry plays an

important role in particle physics, since it is the basis of relativity, which is

in turn experimentally tested to extremely high degree of accuracy. Thus,

any other physical theory is expected to be Lorentz symmetric so as to be

compatible with relativity.

However, the general relativistic theory of gravity does not qualify as a

quantum theory, in the sense that it is not normalizable. This loophole in

general relativity motivates attempts of searching for a unified theory that

would incorporate both general relativity and the standard model. Some

well known candidates include supergravity, loop quantum gravity, as well as

string theory.

Recent developments in the quantization of gravity suggest that Lorentz

symmetry could be violated by a small amount [1]. Symmetry breaking could

be categorized into two types, namely explicit and spontaneous symmetry

breaking. We are interested in the latter possibility.

For a theory in which Lorentz symmetry is not violated, the Lagrangian

of the theory, being a scalar function of some tensors, remains invariant when
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the tensors are transformed under Lorentz transformations. This invariance

can be destroyed by introducing into the Lagrangian a potential term with

specific properties. The first possibility is that the potential term does not

obey the Lorentz invariance, in which case the symmetry is said to be violated

explicitly. The second possibility, which in our case is of more significance, is

that the potential term has non-unique vacua. If this is the case, symmetry

would be broken once the physical vacuum is picked out from all possible

ones. This leads to what is called spontaneous symmetry breaking (SSB).

The simplest example of a theory with spontaneous Lorentz breaking is

one in which a vector field acquires a non-zero vacuum expectation value

(vev). In some respects, such a theory would be similar to electromagnetism

since it describes an interacting vector field resembling the 4-potential. How-

ever, in electromagnetism (without SSB) there is an unbroken U(1) gauge

symmetry. In this case, the only modes that appear are those that corre-

spond to the massless gauge bosons. There are two massless propagating

modes in total, which can be identified as the two polarizations of photons.

Since the photon is massless, any proposed theory should always predict two

massless modes in order to account for its presence.

Nonetheless, gauge symmetry is not necessary for massless modes to exist.

Theories with spontaneous symmetry breaking also predict the existence of

massless particles. As will be shown here, this result holds as well when it

is Lorentz symmetry that is spontaneously broken. Hence it will be shown

that it is possible to have a model with broken Lorentz symmetry without
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losing massless modes, which can therefore be considered as candidates for

photons. The models that will be studied here are vector models resulted

from modifying the electromagnetic Lagrangian.

In order to find out whether there is massless or massive modes, it is im-

portant to distinguish global and local symmetries. If a continuous symmetry

is spontaneously broken, both massive and massless modes can appear. The

massless modes, if there are any, are called Nambu-Goldstone (NG) modes.

An NG mode is the result of the breaking of a global symmetry. The massive

modes, if there are any, would indicate the occurrence of the Higgs mecha-

nism. The breaking of a local symmetry is a necessary condition for the usual

Higgs mechanism to occur. In the usual Higgs mechanism, the gauge fields

acquire a mass. However, additional massive modes can arise as well due

to the form of the potential inducing the symmetry breaking. Although NG

modes and the usual Higgs mechanism for the case of spontaneous Lorentz

violation have been extensively studied [2, 3, 4, 5], relatively little is known

about these additional types of massive modes that might arise. This paper

will concentrate on discussing the effects of these additional massive modes

in the case of Lorentz violation.

In the next section, background on Lagrangian formulation and gauge

symmetry will be given. These ideas and techniques will be used to for-

mulate General Relativity (GR) in Section 3. In Section 4 we introduce

the vector model, known as a bumblebee model, that creates spontaneous

Lorentz violation. Sections 5 and 6 will examine the bumblebee model in
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flat and curved spacetime respectively. Section 7 will investigate the impli-

cations of the massive modes of the models. Finally, Section 8 will present

the conclusion.

2 Background

We will investigate our models using the Lagrangian approach. A Lagrangian

of a system is the difference between the kinetic energy and potential energy

of the system. In the case of non-field theories, the terms in the Lagrangian

are functions of position and velocity of the particles in the system. An

example is the Lagrangian that describes the system of a charged particle in

electric and magnetic fields, which is

L =
1

2
m~̇x 2 − qφ +

q

c
~̇x · ~A, (1)

where m is the mass of the particle, ~x the position vector, q the charge, φ the

electric potential and ~A the magnetic vector potential. In the case of field

theories, the terms in the Lagrangian are functions of various field tensors.

An example would be the classical electromagnetic Lagrangian

L = −1

4
F µνFµν , (2)

where F µν is the electromagnetic tensor. Note that L is used in place of L to

represent the Lagrangian density, which is the Lagrangian per unit volume.
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Nonetheless for brevity we will stick to the term Lagrangian, and whether it

stands for density or not should be obvious from the context.

We would like to be able to extract other information from the La-

grangian. From the least action principle (or extreme action principle) we

have

δS = δ

∫
L dt =

∫
δL dt = 0, (3)

which, after some manipulations, lead to the Euler-Lagrange Equation

∂L
∂φµ

− ∂

∂xν

∂L
∂φµ

,ν
= 0. (4)

By using the Euler-Lagrange Equation we can get a set of differential equa-

tions, known as the equations of motion, from the Lagrangian of the theory.

As an example, consider the classical electromagnetic Lagrangian in Eq.(2).

The Lagrangian is a function of the electromagnetic field strength tensor F µν ,

which in turns equals ∂µAν−∂νAµ where Aµ is the four potential. Hence the

Lagrangian is varied with respect to Aµ,

δL = −1

4
δ(F µνFµν)

= −(∂µδAν)(∂
µAν) + (∂µδAν)(∂

νAµ)

= δAν(∂µ∂
µAν − ∂µ∂

νAµ). (5)

The third line comes from carrying out a partial integration and setting

variations to zero at end points. Since the action should be at its extremum,
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δL equals zero and hence

∂µ∂
µAν − ∂µ∂

νAµ = 0, (6)

which give the equations of motion. Since ν can take the value of 0,1,2 or 3,

this is in fact a set of four differential equations. The solution to this set of

equations represents the modes that are predicted by the theory.

One important aspect of a theory is the set of symmetries that it pos-

sesses. If a theory has a certain symmetry, it would be invariant under

the corresponding transformation. Also, from Noether’s Theorem we are

assured that there exists a one-to-one correspondence between a symmetry

and a conserved quantity. Furthermore, it will be shown that the breaking

of a symmetry could give rise to new propagating modes. Before the symme-

tries of our theory and their violations can be investigated, however, several

concepts have to be established [6].

First of all, a symmetry can be either global or local. This difference

is related to the nature of gauge choices. A gauge choice is the removal of

redundant variables. To demonstrate the difference between global and local

symmetries, consider a simple electric circuit that consists of a resistor and

a 10V battery. Obviously, the potential at any point on the circuit can be

defined to be any value, as long as the potential difference across the resistor

is 10V . In other words, the physics remain the same if we pick a new gauge
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by doing the transformation

V → V + V0. (7)

Here, the gauge symmetry is global because when the potential is fixed at

one point, the same value of V0 will be determined for every other point. On

the other hand, in some theories the symmetry transformations depend on

the coordinates. In such cases the symmetries are said to be local. As an

example, a theory is locally symmetric if it is invariant under the transfor-

mation

φ → eiα(x)φ (8)

where φ is some scalar field of the theory and α is a phase angle that is

dependent on the one dimensional coordinate x.

A theory that has a local gauge symmetry always predicts the existence

of massless modes. Such massless particles are called gauge bosons. These

bosonic particles are carriers of fundamental forces. The photon, gluon and

graviton are all examples of gauge bosons. Earlier when we discussed the

equations of motion (6) that come from varying the Lagrangian of classical

electromagnetism, it was pointed out that the solution to the equations of

motion are the modes predicted by the theory. In this case, they represent

the massless gauge boson of electromagnetism, namely the photon. We are

about to verify this claim.

The set of equations of motion consists of four partial differential equa-
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tions, hence one would naively expect the theory to predict four modes.

Nonetheless, the study in electromagnetism shows that there are really only

two physical modes, namely the two orthogonal polarizations of the photon.

To reconcile the difference, it is important to spot the gauge redundancy in

the theory. These redundant degrees of freedom, though resulting in good so-

lutions to the equations of motion, represent non-physical modes that do not

propagate. In this case, the Lagrangian is invariant under the transformation

Aµ → Aµ + ∂µΛ (9)

where Λ is an arbitrary constant vector field. This accounts for one non-

physical mode that can be transformed away. In addition, if in Eq.(6) we let

ν = 0, then

A0 − ∂0∂µA
µ = 0

∂j∂
jA0 − ∂0∂jA

0 = 0 (10)

where ∂j denotes the spatial components of the differential operator. From

the fact that terms in the form ∂0∂0A
0 are absent we can conclude that

the field component A0 is an auxiliary mode that does not propagate and is

unphysical. Furthermore, the gauge degree of freedom can be removed by

observing from Eq.(9) that

∂µA
µ → ∂µA

µ + ∂µ∂
µΛ, (11)
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which implies that if the constant field Λ is chosen so that −∂µA
µ = ∂µ∂

µΛ,

the second term in Eq.(6) become zero, which effectively remove the gauge

degree of freedom (this procedure is known as the Lorentz gauge). We are

then left with

Aν = 0, (12)

with the two conditions

(1) A0 is auxiliary

and (2) ∂µA
µ = 0.

Hence the problem has been reduced to solving Eq.(12). At first sight

this might seem tedious, but the theory of Fourier transforms suggests that

we can require the solution to have sinusoidal form, since any other functions

can be expressed as an integral of these base functions. Therefore, we take

the solution to be

Aµ = εµe−i ~K·~x (13)

where εµ is a constant 4-vector, ~K and ~x are energy-momentum and coor-

dinate 4-vectors respectively. Even before solving the equations, we know

in advance from condition (1) that ε0 = 0, and from condition (2) that εµ

and Kµ are perpendicular to each other, i.e. Kµε
µ = 0. Also, we have the

freedom to pick a spatial direction so that Kµ = (K0, 0, 0, K3). Plugging Aµ

into Eq.12, and using the two conditions, we find that the two propagating
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modes can be expressed as

Aµ =





e−i
−→
K ·−→x




0

1

0

0


 , for polarization in the x-direction

e−i
−→
K ·−→x




0

0

1

0


 , for polarization in the y-direction,

(14)

which is consistent with the properties of the photon. In addition Eq.(12)

in Fourier space yields the condition that KµKµ = 0. This requires that

K0 = K3 and is the condition that the propagating mode is massless.

This example is worked through in such detail because it demonstrates the

procedures we will carry out in dealing with more complicated Lagrangians

in later sections.

The second concept to be introduced, besides that of global and local

symmetries, is that of symmetry breaking. Suppose that the Lagrangian

describing a scalar field

L0 =
1

2
∂µφ ∂µφ (15)

is invariant under some transformation Γ. Now, an additional potential can

be added to the theory. If this extra potential term is not Γ-invariant, then

the new Lagrangian L = L0 + Ve will not be Γ-symmetric. In this case, we

say that the Γ-symmetry is violated explicitly. Explicit symmetry breaking

of a theory does not create any new modes.

10



Explicit symmetry breaking is not the only possible way of violating a

symmetry. Suppose the potential term that corresponds to the extra poten-

tial does obey Γ-invariance. To be specific, consider the case where both L0

and Vs, the potential term, are functions of the one-dimensional scalar field

φ. If the potential is

Vs =
1

2
m2φ2 +

1

4
λφ4

with λ > 0 and m2 < 0, then the potential, being a function of φ, would have

two local minima. These minima, also known as vacuum expectation values

(vev), are denoted by

〈φ〉 = ±
√
−m2

λ
.

They signify the value of φ at which the system would attain the lowest

possible energy. Suppose the Γ-transformation sends φ → −φ. It is easy

to verify that Vs is Γ-invariant. Hence one expects that Γ-symmetry is not

broken by the introduction of Vs, except that in real world only one value of

φ can be picked as the true vacuum at any moment. Once the true vacuum

is picked, the field excitations about the vacuum would be redefined to be

φ′ = φ− 〈φ〉 (16)

which destroys the Γ-symmetry. In this case, we say that the Γ-symmetry is

violated spontaneously.

The simple model of Γ-symmetry violation shown above is an example of
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discrete symmetry breaking, as there are only finitely many possible discrete

vacuums (two in this case). We will now proceed to investigate the case of

continuous symmetry breaking. In order for this to occur, the extra potential

term Vs must depend on more than one field variable, hence we consider the

next simplest case where Vt is a function of two scalar fields φ1 and φ2.

Consider the Lagrangian

L0 =
1

2
∂µφ1 ∂µφ1 +

1

2
∂µφ2 ∂µφ2 (17)

and the potential

Vt =
1

2
m2[(φ1)

2 + (φ2)
2] +

1

4
λ[(φ1)

2 + (φ2)
2]2 (18)

with λ > 0 and m2 < 0. This potential, with its shape resembling a Mexican

hat, has its minimum when

(φ1)
2 + (φ2)

2 = −m2

λ
. (19)

Hence the vacuum of this model forms a continuous ring. Suppose a Θ-

transformation is defined as the linear transformation

(
φ1

φ2

)
→

(
cos θ sin θ
− sin θ cos θ

)(
φ1

φ2

)
.

Since the Θ-transformation is a rotation (in φ-space) by an angle θ, it is obvi-

ous that Vt is Θ-invariant. Note that Θ-symmetry is a continuous symmetry.
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Once again, only one set of φ1 and φ2 can be the true physical vacuum. Once

the true vacuum is picked, the Θ-symmetry will be violated spontaneously.

As a footnote, both Γ-symmetry and Θ-symmetry are global symmetries.

It can be shown that the spontaneous breaking of a continuous global

symmetry gives rise to massless modes known as Nambu-Goldstone modes

[7]. We are going to demonstrate this using the Mexican hat potential de-

scribed above, but the results will also apply to all cases of spontaneous

breaking of global continuous symmetries. From Eq.(19) we can write

|
〈(

φ1

φ2

)〉
|= ±

√
−m2

λ
≡ v (20)

to denote the magnitude of the vev. Obviously, the ordered pair (φ1 , φ2) =

(v, 0) is one of the possible vacua of the system. Suppose (v, 0) is the physical

vacuum that is picked. First of all it is necessary to redefine the fields, just

as we did in Eq.(16), by

(
φ′1
φ′2

)
=

(
φ1

φ2

)
−

(
v
0

)
. (21)

Since we are interested in the behavior of the system being slightly excited

about the vacuum, it is sufficient for us to consider the small excitations

about the vacuum value. This is equivalent to linearizing the theory. Small

excitation about the true vacuum are represented by

(
φ1

φ2

)
=

(
η
ξ

)
+

(
v
0

)
=

(
η + v

ξ

)
, (22)

where η and ξ are “small” quantities. Substituting this into Eq.(17) and
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dropping terms with order higher than quadratic, we obtain the Lagrangian

to quadratic order

L = L0 − Vt

=
1

2
∂µφ1 ∂µφ1 +

1

2
∂µφ2 ∂µφ2 − 1

2
m2[(φ1)

2 + (φ2)
2]− 1

4
λ[(φ1)

2 + (φ2)
2]2

=
1

2
∂µη ∂µη +

1

2
∂µξ ∂µξ − 1

2
m2[(v + η)2 + (ξ)2]− 1

4
λ[(v + η)2 + (ξ)2]2

=
1

2
∂µξ ∂µξ +

1

2
∂µη ∂µη +

m2η2

2
, (23)

where we have used Eq.(20) in simplifying the expressions. The first term in

the quadratic order Lagrangian can be identified as the kinetic term of the

ξ mode, the second the kinetic term of the η mode, and finally the third the

inertial term of the η mode. Hence in this case the spontaneous breaking

of a continuous global symmetry results in two modes, one (η) massive and

one (ξ) massless. The massless ξ mode is the NG mode. It represents an

excitation that stays in the potentail minimum. The additional massive mode

η is an excitation that does not stay in the minimum. It arises due to the

shape of the potential Vt.

The next scenario to be considered is the spontaneous breaking of a con-

tinuous local symmetry. The following example will demonstrate how massive

modes are created under this situation by the Higgs mechanism. As in the

case of continuous global symmetry violation described above, we start with
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the Lagrangian

L0 =
1

2
∂µφ1 ∂µφ1 +

1

2
∂µφ2 ∂µφ2, (24)

which has dependence on both scalar fields φ1 and φ2. However, we now

require the Θ-transformation to be a local transformation

(
φ1

φ2

)
→

(
cos θ(x) sin θ(x)
− sin θ(x) cos θ(x)

)(
φ1

φ2

)
. (25)

Notice that the angle θ is now a function of position x. Since a rotation can

be represented by the multiplication by a complex number, we may as well

express Eq.(25) as

φ → eiθ(x)T φ, (26)

where T is the generator of the symmetry group. However, it does not take

long for us to realize that the Lagrangian of Eq.(24) is not invariant under

this local transformation. The reason is that partial derivatives are present

in the kinetic term, and unlike the previous case where θ was a constant,

∂µ eiθ(x)T φ = eiθ(x)T ∂µ φ + φiTeiθ(x)T ∂µ θ

6= eiθ(x)T ∂µ φ. (27)

It is the presence of the extra term that causes the failure of maintaining

local symmetry. To save the local symmetry, we introduce a new derivative
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Dµ such that

Dµ eiθ(x)T φ = eiθ(x)T Dµ φ. (28)

The use of the gauge covariant derivative Dµ requires us to introduce a new

vector field Aµ in order to keep the derivatives covariant. Also, this gauge

field has to transform under eiθ(x)T appropriately so that Eq.(28) holds. After

some manipulation it is found that the gauge covariant derivative is defined

as

Dµ = ∂µ + igAµ, (29)

where g is the charge, and a gauge field that transforms as

Aµ → Aµ − 1

g
∂µθ (30)

does the job. Corresponding to this gauge field, a new kinetic term appears

in the Lagrangian that accounts for its propagation. And of course, this new

term has to be invariant under the local transformation as well. To sum up,

the Lagrangian

L = −1

4
FµνF

µν +
1

2
DµφDµφ (31)

is invariant under the local gauge transformation

φ → eiθ(x)T φ

Aµ → Aµ − 1

g
∂µθ
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Fµν → Fµν , (32)

where

Fµν = ∂µAν − ∂νAµ. (33)

Now that the correct local symmetry is established (by the introduction

of gauge vector field Aµ and covariant derivative Dµ), we can create local

symmetry breaking by putting into the Lagrangian the potential term

Vt =
1

2
m2φ2 +

1

4
λφ4 (34)

with λ > 0 and m2 < 0 so that the complete Lagrangian reads

L = −1

4
FµνF

µν +
1

2
Dµφ Dµφ− 1

2
m2φ2 − 1

4
λφ4. (35)

To find the modes of this model with local symmetry, we once again consider

the small excitations about the vacuum value. Expanding the Lagrangian in

Eq.(35) to quadratic order gives

L = −1

4
FµνF

µν +
g2v2

2
AµA

µ +
1

2
∂µε ∂µε + m2ε2 + I (36)

where I is a term that accounts for the interactions between Aµ and ε, where

ε is the small excitation and v is the vev as given in Eq.(20). The reason of

having only one parameter of small excitation, ε, instead of two in the case

of global symmetry, ξ and η, is that we can always set the excitation in one
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direction to be zero by re-parameterizing the field φ.

Inspecting Eq.(36), we identify the first and second terms to be respec-

tively the kinetic and inertial terms of the gauge vector field Aµ, and the

third and forth terms to be respectively the kinetic and inertial terms of the

scalar field φ. In other words, the breaking of this continuous local symmetry

does not give us any massless mode. The expected massless mode

1

2
∂µξ ∂µξ, (37)

where ξ is the excitation in the direction that we have gauged to zero through

re-parameterization, has its degree of freedom being absorbed into the inertial

term of the gauge field Aµ. This process, in which the introduction of a gauge

field creates massive modes out of the degrees of freedom of massless modes,

is known as the Higgs mechanism. Note, however, that there is an additional

massive mode ε (the Higgs particle). In gauge theory, it is not a gauge field,

but rather is an independent massive mode that arises due to the shape of

the potential.

3 Lagrangian Formulation of General Rela-

tivity

So far, we have discussed the cases where symmetry is not broken (with the

help of classical electromagnetism), where discrete symmetry is broken, where
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global continuous symmetry is broken and where local continuous symmetry

is broken (all with the consideration of a scalar model). The ideas that

are discussed will return throughout later sections. In this section, general

relativity will be derived using a Lagrangian formulation [8].

The Lagrangian of general relativity is

LGR =
1

2κ

√−g R, (38)

where κ = 8πG (in units with c = 1) is a constant, g is the determinant of

the metric tensor gµν and R is the Ricci scalar. Since the Ricci scalar can be

obtained by applying a series of differential and algebraic operations on gµν ,

LGR is really nothing more than a function of the metric tensor. Hence it is

the only quantity we will be varying LGR with respect to. Varying Eq.(38)

with respect to gµν gives us the equation of motion

Rµν − 1

2
Rgµν = 0, (39)

where R and Rµν obey the relation

R = Rµ
µ. (40)

Eq.(39) is, not very surprisingly, Einstein’s equation in vacuum. Further-

more, we assume that the curvature of spacetime is small, i.e. gµν deviates

from ηµν , the special relativity metric, by only a small amount. As an aside,
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we follow the convention that ηµν = diag(−1, +1, +1, +1).

While Eq.(39) is Einstein’s equation in vacuum, the complete Einstein’s

equation would also contain a term that accounts for the presence of matter

and energy density field. The complete Einstein’s equation reads

Rµν − 1

2
Rgµν = 8πGTµν (41)

where G is the gravitational constant and Tµν the stress-energy tensor. The

form of Tµν depends of course on the energy and matter distribution of the

universe. For our purpose, we will confine our attention to Einstein’s equation

in vacuum in this section, and demonstrate how technology helps us in solving

for the modes.

Solving for modes amounts to looking for expressions that solve Eq.(39).

The main idea is the same as in the earlier discussion concerning classical

electromagnetism, namely that we are justified in using sinusoidal waves as

the eigen-modes. Nonetheless, general relativity is a matrix theory (of the

four by four matrix gµν), so there are totally 16 equations of motion, instead of

4 in classical electromagnetism, and hence 16 modes as a result. Fortunately,

gµν is required to be symmetric, which reduces the number of independent

solutions from 16 to 10. Still, this is a large number, and technology will

prove to be useful in computing the eigen-modes.

We start by linearizing the equations of motion, with the assumption that
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the curvature of spacetime is small. If that is the case, then

gµν = ηµν + hµν , (42)

where hµν is a four-by-four symmetric matrix with small entries. Since hµν

is small, anything higher than first order in this quantity is dropped. Hence

the quantity hµν can have its indices being lowered (or raised) by contracting

simply with ηµν (instead of gµν), yielding

gµν = ηµν − hµν . (43)

Notice the sign difference compared to Eq.(42). Substituting Eq.(42) and

Eq.(43) into Eq.(39) and dropping terms with higher order than h2, the

Lagrangian to quadratic order is

LGR =
1

2
[(∂µh

µν)(∂νh)− (∂µh
ρσ)(∂ρh

µ
σ) +

1

2
ηµν(∂µh

ρσ)(∂νhρσ)

− 1

2
ηµν(∂µh)(∂νh)]. (44)

Varying this Lagrangian with respect to hµν gives us the equations of motion

1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh− hµν − ηµν∂ρ∂λh

ρλ + ηµν h
)

= 0. (45)

To solve for the modes of Eq.(45) we suppose the eigen-modes to be of
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the form

hµν = hµνe−i ~K·~x, (46)

where the hµν on the right hand side represents constant polarization matrix.

The Fourier transform turns Eq.(45) from a set of partial differential equa-

tions to non-differential simultaneous equations. Recall that there are totally

10 independent entries for gµν . We re-label the 10 independent entries as




g00 g01 g02 g03

∗ g11 g12 g13

∗ ∗ g22 g23

∗ ∗ ∗ g33


 =




h(1) h(2) h(3) h(4)

∗ h(5) h(6) h(7)

∗ ∗ h(8) h(9)

∗ ∗ ∗ h(10)


 . (47)

Using this notation, the Fourier transformed equations of motion, being a set

of 10 equations with 10 unknowns, can be expressed as a 10 by 10 matrix.

We saw from Eq.(45) that all of these equations have zeroes on the right

hand side, therefore the desired eigen-modes can be solved for indirectly by

finding the eigenvalues and eigenvectors of the 10 by 10 matrix, which can be

readily accomplished with the assistance of appropriate computer software.

Before feeding the 10 by 10 matrix to the software for the solutions,

conditions can be applied to simplify the matrix. One might be tempted to

choose a particular gauge (e.g. harmonic gauge) and simplify the equations,

but this is not necessary as it will be taken care of by the solver. On the other

hand, we can simplify the calculation by picking a nicer frame of reference

in the following way. Since Lorentz symmetry is not broken, any rotation

will leave the Lagrangian invariant. Hence we have the freedom to rotate
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the coordinate system so that the 4-momentum vector has zero x- and y-

components, by choosing an appropriate rotation matrix R such that

R




K0

K1

K2

K3


 →




K0

0
0

K3


 .

After making the simplification, the 10 by 10 matrix becomes

M =




0 0 0 0 −K3
2

2
0 0 −K3

2

2
0 0

0 K3
2

2
0 0 0 0 −K0K3

2
0 0 0

0 0 K3
2

2
0 0 0 0 0 −K0K3

2
0

0 0 0 0 K0K3 0 0 K0K3 0 0

−K3
2

2
0 0 K0K3 0 0 0 K2

2
0 −K0

2

2

0 0 0 0 0 −K2

2
0 0 0 0

0 −K0K3

2
0 0 0 0 K0

2

2
0 0 0

−K3
2

2
0 0 K0K3

K2

2
0 0 0 0 −K0

2

2

0 0 −K0K3

2
0 0 0 0 0 K0

2

2
0

0 0 0 0 −K0
2

2
0 0 −K0

2

2
0 0




,

(48)

where

K2 =




K0

0
0

K3


 ·




K0

0
0

K3




=
(
K0 0 0 K3

)



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







K0

0
0

K3




= −K0
2 + K3

2.
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Notice that Matrix(48) is symmetric. The set of 10 Fourier transformed

equations can be written as

M




h(1)
...

h(10)


 =




0
...
0


 , (49)

and so if we find the eigenvalues λ of M in terms of (K0, K1, K2, K3), Eq.(49)

ensures that λ = 0, which gives us the properties of each eigen-mode. The

eigen-modes themselves are of course given by the eigenvectors of M .

With the help of Mathematica the eigenvalues of M are found to be

λ ∈ {0, 0, 0, 0,−K2

2
,−K2

2
,
1

2
(K0

2 + K3
2),

1

2
(K0

2 + K3
2),

1

4

(
−K0

2 + K3
2 −

√
3
√

3K0
4 + 10K0

2K3
2 + 3K3

4
)

,

1

4

(
−K0

2 + K3
2 +

√
3
√

3K0
4 + 10K0

2K3
2 + 3K3

4
)
}. (50)

Setting λ to be zero, the first to the fourth eigenvalues hold trivially, which

implies that they are extra degrees of freedom that could have been gauged

away. The fifth and sixth eigenvalues give us

−K2

2
= 0,

which are two massless propagating modes (Gauge bosons), and the final

four eigenvalues, having K2 6= 0, turn out to be unphysical modes that

lead to unphysical dispersion relations. The results given by this Lagrangian
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formulation of GR agree with what is found by the geometric approach [9].

The Mathematica matrix and solutions can be found in the Appendix.

4 Lorentz Violation and Bumblebee Model

We now introduce a model, known as a bumblebee model [3], that describes

the physics when Lorentz symmetry is spontaneously broken. In this section

we investigate the idea of Lorentz violation and discuss the characteristics of

the potentials that could lead to such a symmetry breaking. In Section 5 we

will assume that the curvature of spacetime equals zero, which corresponds

to the absence of gravity, and study the modes of the model. The more

general case where gravity is present will be considered in Section 6.

Consider the Lagrangian

L = −1

4
F µνFµν , (51)

with Fµν = ∂µAν − ∂νAµ. This Lagrangian is invariant under Lorentz trans-

formations. A Lorentz transformation

Xν → Λν
µX

µ, (52)

where Xν is a 4-vector, is a transformation that preserves the spacetime

intervals. In the case of flat spacetime, Λν
µ is the same at any coordinate

point, and hence Lorentz symmetry is global. Notice that unlike in Section
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2 where Aµ was introduced as a gauge field, here we are treating it as a

propagating vector field in its own right. Now we add to this Lagrangian a

potential term that depends on Aµ

L = −1

4
F µνFµν − 1

2
α(AµAµ + a2)

2
, (53)

where α and a are undetermined constants. The potential term 1
2
α(AµAµ + a2)

2

has effects on Eq.(51) similar to that of Eq.(19) on Eq.(17). Namely, the

global Lorentz symmetry is spontaneously broken by this potential term.

It is easy to see that a preferred direction in spacetime is implied by this

potential, because if the potential is set to be zero, then

AµAµ = −a2

and obviously the timelike 4-vector Aµ = (a, 0, 0, 0) would satisfy the require-

ment. Of course, just as in the case of the Mexican hat potential, there are

infinitely many 4-vectors that satisfy the vacuum condition. Nonetheless for

simplicity we will consider the physical vacuum to be at Aµ = (a, 0, 0, 0).

5 Bumblebee Model in Flat Spacetime

The introduction of the potential term 1
2
α(AµAµ + a2)

2
causes the sponta-

neous breaking of Lorentz symmetry in the Lagrangian, as shown in Section

4. Here we carry on the analysis and investigate the consequences of the
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SSB.

Varying the full Lagrangian in Eq.(53) with respect to Aµ, the equations

of motion are

Aµ − ∂µ ∂ νAν − 2αAµ(AνA
ν + a2) = 0. (54)

Once again we are interested in the small excitation about the vacuum value,

hence Eq.(54) is to be linearized. With

Aµ = aµ + εµ

where aµa
µ = −a2, the linearized equations of motion are

εµ − ∂µ ∂ νεν − 4α aµ aν εν = 0. (55)

Before proceeding to solving for the modes, it should be pointed out that by

taking a partial derivative of Eq.(55) we get

aµ aν ∂ µεν = 0 (56)

as a constraint on our choices of the 4-vectors aµ and εµ. Take the eigen-

modes to be

εµ = εµe
−i ~K·~x, (57)

where the εµ on the right hand side is a constant polarization vector. Plugging
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into Eq.(56), we find

aµ aν ∂ µεν = 0

⇒ aµ aν Kµεν = 0

⇒ aνε
ν = 0. (58)

In summary, with this constraint and the specific choice of physical vacuum

we can analytically solve Eq.(55) by substituting

aµ = (a, 0, 0, 0)

Kµ = (K0, 0, 0, K3)

εµ = (0, ε1, ε2, ε3) e−i
−→
K ·−→x . (59)

On the other hand, the method that was used in the previous section

can also be employed. We use Eq.(57) to turn Eq.(55) into a set of non-

differential simultaneous equations, and solve them on a computer. The

advantage is that we do not have to worry about any of the constraints.

Since the Fourier transformed equations of motion are 4 equations with 4

unknowns (ε0, ε1, ε2, ε3), we can use Mathematica to solve for the eigenvalues

of the matrix

M =




−4a2α + K3
2 0 0 −K0K3

0 −K2 0 0
0 0 −K2 0

−K0K3 0 0 K0
2


 , (60)
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where

K2 = −K0
2 + K3

2.

The eigenvalues λ of the matrix M are found to be

λ ∈ {−K2,−K2,
1

2

(
−4a2α + K0

2 + K3
2 −

√
16 a2αK0

2 + (4a2α−K0
2 −K3

2)
2
)

,

1

2

(
−4a2α + K0

2 + K3
2 +

√
16 a2αK0

2 + (4a2α−K0
2 −K3

2)
2
)
}. (61)

Since we know that global Lorentz symmetry is violated, the two massless

NG modes with K2 = 0 are immediately identified. These two NG modes are

massless transverse modes and they are candidates for the two polarizations

of the photon in a universe with broken Lorentz symmetry. The two modes

with K2 6= 0 cannot be propagating modes, as they result in field strength

tensor Fµν with all zero entries.

6 Bumblebee Model in Curved Spacetime

Lorentz transformations were introduced in Section 4 as global gauge trans-

formations in flat spacetime. In other words, a single Λa
b can be applied to all

4-vectors regardless of their positions in spacetime. In Section 5 it was shown

that a model with the breaking of this global symmetry produces massless

modes as well as (unphysical) massive modes. Now suppose that in a more

general setting, the curvature of the spacetime is not zero. This is equivalent

to the presence of gravity according to Einstein’s general relativity. If that
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is the case, the spacetime is not Euclidean anymore. In this case, no single

Λa
b can preserve the spacetime interval at all positions, hence the best we

can have is a local Lorentz symmetry. Another way of expressing this is that

unlike in the flat spacetime scenario where an inertial frame is global, the

curvature of spacetime demands that any inertial frame be local.

Since the curvature is now non-zero, a new term has to be added to

the Lagrangian in Eq.(53) in order to account for it. The Lagrangian of a

bumblebee model in curved spacetime is therefore

L =
√−g

[
1

2κ
R− 1

4
F µνFµν − 1

2
α(AµAµ + a2)

2
]

, (62)

where κ is a constant, g is the determinant of the metric tensor gµν and R is

the Ricci scalar. Similar to the flat spacetime case, a preferred direction is

implied by the potential term −1
2
α(AµAµ + a2)

2
. One important difference

from the flat spacetime case is that in curved spacetime this potential term

also implicitly depends on gµν , the metric tensor that describes the curvature.

We can make it more obvious by re-writing the potential term as

−1

2
α(AµAµ + a2)

2
= −1

2
α(Aνg

µνAµ + a2)
2
.

As gµν (the gauge field) appears in the potential, it leads to consequences

that differ from the usual Higgs mechanism (where V is a function of the field

φ but not the gauge field). Hence the form of this potential term potentially

provide a new way for massive modes involving the metric gµν to appear in
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the theory.

Because of the fact that the Lagrangian of Eq.(62) depends on both Aµ

and gµν , the Lagrangian needs to be varied with respect to both of them.

Thus we expect two sets, instead of one, of equations of motion. The Aµ-

equations are

Aν − ∂µ ∂ νAµ − 2αAν(AµA
µ + a2) = 0, (63)

while the gµν-equations are

− 1

2
Fµσg

σρFνρ − α(AσA
σ + a2)AµAν +

1

8
FρσF

ρσgµν

+
1

4
α(AσA

σ + a2)
2
gµν + Rµν − 1

2
Rgµν = 0, (64)

where

R = Rµ
µ.

Since we did not expand the Lagrangian to quadratic order before doing

the variation, the two sets of equations of motion should now be linearized.

Now that we are working in a curved spacetime, gµν instead of ηµν is used

to raise and lower indices. We must be careful in defining a consistent set of

linearized components. We start by defining the vector Aµ to be

Aµ = aµ + εµ,
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thus confining it to be a small excitation εµ about the vacuum value. The

tensor gµν is defined to be

gµν = ηµν + hµν ,

which suggests that the geometry of the spacetime deviates from an Euclidean

one by only a small quantity hµν . The corresponding metric with upper

indices that is consistent with gµν would then be

gµν = ηµν − hµν .

The corresponding vector Aµ is not simply aµ + εµ, but has to be found by

using gµν and Aµ so that

Aµ = gµνAν

= (ηµν − hµν) (aν + εν)

= aµ + εµ − hµνaν , (65)

where the term hµνεν is dropped because of the assumption that both hµν

and εν are infinitesimal. Notice the presence of the extra term −hµνaν that

results from the coupling of Aµ and gµν .

Substituting these expressions of Aµ, Aµ, gµν and gµν into Eq.(63) and
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Eq.(64), the linearized equations of motion are

εν − ∂µ∂
νεµ − 2α (2aσε

σ − hσρaσaρ) aν = 0 (66)

and

− 2α (2aσε
σ − hσρaσaρ) aµaν + ∂σ∂νh

σ
µ

+ ∂σ∂µh
σ

ν − ∂µ∂νh− hµν − ηµν∂σ∂ρh
σρ + ηµν h = 0. (67)

These two sets of equations are invariant under active diffeomorphism, namely

the set of transformations

hµν → hµν − ∂µξν − ∂νξµ

εµ → εµ − (∂µξσ)aσ.

The total number of equations of motion is 14. The solutions of 10 of

them (the gµν-equations) will give the 10 independent entries of hµν and the

solutions of the other four (the Aµ equations) will give the four components

of εµ. Before carrying out the Fourier transformation, we relabel the 14

variables to be
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


h00 h01 h02 h03

∗ h11 h12 h13

∗ ∗ h22 h23

∗ ∗ ∗ h33


 =




h(1) h(2) h(3) h(4)

∗ h(5) h(6) h(7)

∗ ∗ h(8) h(9)

∗ ∗ ∗ h(10)







ε1

ε2

ε3

ε4


 =




h(11)

h(12)

h(13)

h(14)


 (68)

so that we can treat all the variables as a column vector with 14 components

h(1) to h(14). The eigen-modes are taken to be

h(k) = h(k)e
−i ~K·~x, (69)

where k ranges from 1 to 14.

The Fourier transformed equations of motion are a set of 14 non-differential

simultaneous equations with 14 unknowns h(1) to h(14). They can be arranged

to form a 14 by 14 matrix. Once again, we require that

aµ = (a, 0, 0, 0)

Kµ = (K0, 0, 0, K3). (70)

The computation by Mathematica returns 14 eigenvalues. Setting the eigen-

values to be zero, four of them hold trivially, and hence are gauge abundances;

four requires that K2 = 0 (massless modes) and six requires that K2 6= 0.
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7 Massive Modes

We have been suspending judgements on the implication of K2 6= 0 modes

in both Sections 5 and 6. In Section 6 we computed the modes in a bumble-

bee model where the continuous local Lorentz symmetry is violated sponta-

neously. Our experience from Section 2 suggests that physical massive modes

should be produced in this process because of the Higgs mechanism. And in

fact we found in the end of the previous section that six modes with K2 6= 0

are predicted. However, though the approach using Mathematica is good for

demonstrating the existence of the massless modes, it is inconclusive in de-

termining whether the terms with K2 6= 0 are physical massive modes or

unphysical auxiliary modes. The question to ask is therefore whether these

six candidates are really propagating massive modes. We will do an analytic

analysis of the equation of motion to answer this.

It would be instructive to start the discussion with the bumblebee model

in flat spacetime. It was claimed in the end of Section 5 that the K2 6= 0

modes do not propagate. To see why this is the case, recall the constraint

we have found in Eq.(58) that

aµaν∂
µεν = 0.

In the case where aµ = (a, 0, 0, 0), this constraint becomes

a2K0ε0 = 0.

35



This relation has to hold in addition to the four equations of motion. Now

suppose that K1 = K2 = 0, as it has been assumed in all timelike cases in

previous sections. The first possibility is that





K0 6= 0

K3 6= 0.

(71)

In this case, it can be shown that no solution with K2 6= 0 can be found. In

the second possibility where





K0 6= 0

K3 = 0,

(72)

the only way to satisfy all five equations is to have ε0 = ε1 = ε2 = ε3 = 0,

which is clearly unphysical. Finally there is the possibility where





K0 = 0

K3 6= 0.

(73)

In this case, either ε0 or ε3 is the only non-zero component. No matter

which one the non-zero component is, K2 would end up having the wrong

sign, which forces the total energy E to be zero. It is for this reason that

there are no propagating modes with K2 6= 0.

The situation in curved spacetime is more complicated. It was shown
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by Kostelecký and Samuel that the usual Higgs mechanism (in which hµν

acquires a mass by absorbing an NG mode) does not occur [1], hence other

possibilities must be explored. It turns out that for the bumblebee model

in curved spacetime, the key to the presence of massive modes is the form

of the potential term. In the scalar gauge theory, the local symmetry is

spontaneously broken by the potential term Vt in Eq.(18), Vt depending only

on the scalar field φ and not the gauge vector field Aµ. On the other hand,

in the bumblebee model in curved spacetime, the potential term depends on

both Aµ and gµν . It is this difference that leads to the possibility of there

being additional modes. The vector field εµ is the (non-gauge) field, while

hµν is the gauge field of the gravitational interaction.

The analysis of the curved spacetime case is similar to what is done in

flat spacetime. To recapitulate, the equations of motion are

εν − ∂µ∂
νεµ − 2α (2aσε

σ − hσρaσaρ) aν = 0 (74)

and

− 2α (2aσε
σ − hσρaσaρ) aµaν + ∂σ∂νh

σ
µ

+ ∂σ∂µh
σ

ν − ∂µ∂νh− hµν − ηµν∂σ∂ρh
σρ + ηµν h = 0. (75)
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Since Aµ and gµν are coupled, we define a new quantity

β = aµ

(
εµ − 1

2
hµνa

ν

)
. (76)

Looking at Eq.(74) and Eq.(75), we can readily identify β as the term in

parentheses. Also, it is obvious from the comparison with the U(1) gauge

model that β is responsible for the extra massive modes. Taking partial on

Eq.(74) gives us the constraint

aµ∂µβ = 0 (77)

on the massive modes. If β is taken to be a plane wave β = βe−i
−→
K ·−→x , then

the constraint would become aµKµ = 0.

Choosing the right gauge can largely simplify the calculation. In investi-

gating propagation, the most convenient gauge choice is the harmonic gauge

which requires that

∂µh̄
µν = ∂µ

(
hµν − 1

2
ηµνh

)
= 0. (78)

Now we multiply Eq.(74) by aν and Eq.(75) by −1
2
aµaν . Equating the left

hand sides of the two (both equal zero) and applying the harmonic gauge,

we have

β − 4αaνaνβ − 2α aµa
µaνa

νβ = aν∂σ∂
νεσ, (79)
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which can be interpreted as the propagation of the coupled quantity β. This

justifies our letting β to be a plane wave. Substituting β = βe−i
−→
K ·−→x into

Eq.(79) gives

−KµKµ − 4αaνaν − 2α aµa
µaνa

ν = 0. (80)

The right hand side is zero because of the aµKµ = 0 constraint. This disper-

sion relation shows that a mass parameter can be defined for β,

−KµKµ = M2
β = 4αaνaν + 2α aµa

µaνa
ν . (81)

In the case where the vacuum value is time like, we can always set aµ =

(a, 0, 0, 0). Then

M2
β = −4αa2 + 2αa4. (82)

But the aµKµ = 0 constraint forces the total energy K0 to be zero, and so the

magnitude of momentum obeys |~p| = |Mβ|, where |Mβ| is fixed as shown in

Eq.(82). Such a mode with no time dependence and fixed spatial magnitude

cannot form a physical wave packet. Hence we conclude that this mode,

although having a well defined mass parameter, cannot propagate because

the aµKµ = 0 constraint forces the total energy to be zero.

Although the massive modes fail to propagate, their effects are manifested

in the static limit. In the static limit, we consider the scenario where a

small, constant massive charge is located at the origin to act as a source of
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electromagnetic and gravitational forces. The new Lagrangian is

L =
√−g

[
1

2κ
R− 1

4
F µνFµν − 1

2
α(AµAµ + a2)

2
+ AµJ

µ

]
, (83)

where Jµ, the 4-current, accounts for the charge of the source. Its mass is

contained in the energy-momentum tensor Tµν , which is connected to Rµν

through the relation

Rµν = 8πG

(
Tµν − 1

2
Tgµν

)
.

It can be shown by making approximations on Eq.(83) that the massive

modes of the bumblebee models moderate the Newtonian gravitational po-

tential and the Coulomb potential. The seeking of the exact forms of mod-

erated potentials is however beyond the scope of this paper.

8 Summary and Conclusion

The concepts of Lagrangian and gauge symmetry were introduced. A gauge

symmetry can be global or local, and the consequences of symmetry breaking

are different for the two. In a theory with unbroken local U(1) gauge sym-

metry, massless gauge bosons were predicted. A symmetry can be violated

explicitly, but the more interesting case is when it is violated spontaneously if

a physical vacuum is picked among more than one mathematically equivalent

vacua.
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A scalar gauge model was investigated, with its symmetry being broken

by a Mexican hat potential. If the symmetry is global, then the excitation

about the vacuum value can have both massless and massive modes. Such

massless modes are called Nambu-Goldstone (NG) modes. On the other

hand, if the symmetry is local, a gauge vector field together with a gauge

covariant derivative are required so that the fields transform correctly. The

introduction of gauge field results in an extra kinetic term in the Lagrangian,

which absorbs one degree of freedom from the field. This process, known as

the Higgs mechanism, creates an extra massive mode.

This Lagrangian method was used to formulate general relativity in vac-

uum. The Lagrangian gives the correct Einstein’s equation in vacuum as well

as the two massless propagating modes.

All special relativistic theories are Lorentz symmetric. In other words,

the spacetime interval is invariant under Lorentz transformation. We showed

that the Lorentz invariance of a theory is spontaneously broken by the intro-

duction of a bumblebee potential −1
2
α(AµAµ + a2)

2
. In flat spacetime, the

bumblebee model still predicts two massless modes, which can possibly be

identified as the photon. Similarly, four massless modes are predicted by the

bumblebee model in curved spacetime.

The modes with K2 6= 0 in the bumblebee models require more care. In

the flat spacetime case, it is the extra constraint, in addition to the equations

of motion, that prevents any massive mode to propagate. In the curved

spacetime case, the conventional type of Higgs mechanism is not possible;
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however, due to the dependence of the bumblebee potential on both Aµ and

gµν an alternative mechanism becomes possible. In this alternative approach,

the coupling between Aµ and gµν could lead to other mechanisms that create

massive modes. Our analysis showed that such modes do not propagate, once

again because of the extra constraint.

There are clearly a number of additional questions that could be ad-

dressed. These include looking for phenomenological tests that could distin-

guish between photon described using U(1) gauge theory versus those arising

as NG modes when Lorentz symmetry is spontaneously broken. In addition,

although we have shown that the massive modes do not propagate as physical

modes, their effects on Newtonian gravity, cosmology and general relativity

remain open issues for future work.
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