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ABSTRACT 
 
 

Despite rapid economic growth and poverty reduction, inequality in Chile has remained high and 

remarkably constant over the last 20 years, prompting academic and public interest in the subject. 

Due to data limitations, however, research on inequality in Chile has concentrated on the national 

and regional levels. The impact of cash subsidies to poor households on local inequality is thus not well 

understood. Using poverty-mapping methods to asses this impact, we find heterogeneity in the 

effectiveness of regional and municipal governments in reducing inequality via poverty-reduction 

transfers, suggesting that alternative targeting regimes may complement current practice in aiding 

the poor. 
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1. Introduction 

Chile’s economic growth may be characterized as being both rapid and sustained. Between 1986 

and 2005, for example, GDP grew at an average rate of 6 %1 and real GDP per capita increased 

by 203 %, reaching US$ 8,569 by 2006. Although the whole country grew at impressive rates, 

heterogeneity in the economic structure of individual regions largely determined local growth 

rates (Soto and Torche 2004). The engine underlying this dramatic economic performance was a 

series of economic reforms begun in the mid-1970s, many of which were deepened during the 

1990s (see, for example, Clapp 1995). 

Although privatization and deregulation were the hallmarks of these reforms, poverty 

reduction was also an important policy objective beginning in the early 1980s, and gains against 

poverty have been as impressive as Chile’s growth statistics. Using characteristics of housing to 

identify poor households, the government coupled housing subsidies with cash and in-kind 

transfers to the poor. Housing criteria were also used to identify locations for new schools and 

health care facilities. Chile thus took a multi-pronged approach to poverty reduction (Beyer 1997, 

Valdés 1999), and poverty rates fell from approximately 39.4 % in 1987 to 18.7 % in 2003; 

indigence rates also fell dramatically during this period, from approximately 14.2 % to 4.7 %.  

 Owing to Kuznets (1955), conventional wisdom holds that high or rising inequality is an 

unavoidable step in growth and development, yet governments with aggressive anti-poverty 

agendas should also be concerned about income distribution for its potential influence on growth. 

First, Ravallion and Chen (1997, 2006) argue that there is limited empirical evidence to support 

the Kuznets Hypothesis. Moreover, although Brandolini and Rossi (1998) and Dollar and Kraay 

                                                 
1 There are two distinct periods for Chile’s growth between 1986 and 2005: during the period 1986-1996, 

the average growth rate was 8%; during the period 1997-2005, it slowed to 4%. 
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(2000) argue that growth and inequality are uncorrelated, there is mounting evidence that 

inequality has a negative effect on growth (Alesina and Rodrik, 1994; Persson and Tabellini, 

1994; Clarke, 1995; Deininger and Squire, 1996; Chen and Ravallion 2004).2 Inequality may 

also hinder efforts to reduce poverty directly. For example, Chen and Ravallion (2001) simulate 

the effect of income growth on global poverty rates between 1987 and 1998; holding inequality 

constant, poverty rates are predicted to be 1 percentage point lower than the empirical rates, 

suggesting that inequality limits poverty reduction. Similarly, Besley and Burgess (2003) 

estimate that a one standard deviation decrease in inequality would reduce poverty rates in Latin 

America by 45 %. Moreover, Ravallion (2001) finds that countries that experienced concurrent 

economic growth and falling inequality experienced much greater reductions in poverty than 

countries that had growth with rising inequality. Indeed, Kakwani (1993) demonstrates that for 

very high levels of income inequality, growth may result in higher subsequent poverty rates.  

 Inequality measures from around the world have demonstrated convergence since the late 

1980s (Ravallion 2003). Chile has defied these global trends, however, as inequality has 

remained high and constant between the late 1980s and the early part of this decade (Contreras 

and Larrañaga 1999; Ferreira and Litchfield 1999; Contreras 2003).3  For example, official 

figures calculate the Gini coefficient to be 0.547 in 1987 and 0.546 in 2003 (Figure 1). Income 

                                                 
2 Interestingly, Aghion, Caroli, and Garcia-Penalosa (1999) suggest that higher inequality may positively 

impact subsequent growth in the presence of credit market failures. In particular, with decreasing 

marginal product of capital, the output loss from incomplete credit markets will rise with the proportion 

of poor in the economy.  

3 Indeed, inequality has been high for much longer; Larrañaga (2001) estimates the Gini coefficient for 

metropolitan Santiago to be between 0.47 and 0.57 from 1958 through 2001. 
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inequality has been buoyed by limited migration (Soto and Torche 2004), uneven returns to 

education (Gindling and Robbins 2001), foreign competition in labor-intensive goods (Beyer, 

Rojas, and Vergara 1999), increased labor market participation among women (Contreras, 

Puentes, and Bravo, 2005), and an increasing reliance on seasonal and fixed-contract labor 

(Amuedo-Dorantes 2005).4   

 National policies that target poverty reduction may also affect inequality. For example, 

both progressive taxation and appropriately-targeted cash subsidies may reduce both poverty and 

income inequality. That being said, Engel, Galetovic and Raddtaz (1999) demonstrate that 

targeted transfers are far more effective than tax schemes in reducing inequality at the national 

level in Chile, even for radical tax reforms. Still, poverty-reduction programs may also raise 

inequality; as a case in point, improving the quality of education has been more effective in 

reducing poverty than expanding access to education (Chumbeco and Paredes 2005), yet the 

resulting disparities in access raise income inequality. Similarly, Chile’s generous housing 

subsidies have been effective at reducing poverty, yet they have also had the undesirable effect 

of tying individuals to specific locations, thereby preventing migration to more productive areas 

with higher wages (Soto and Torche 2004).  

 Policy implementation may similarly affect inequality.5  From the theoretical perspective, 

decentralization in the administration of public goods may either decrease or increase inequality. 

On the one hand, local authorities have better information about local needs; on the other, they 

                                                 
4 Given these characteristics of the Chilean economy, it is perhaps not surprising that income mobility is 

also quite low (Chumacero and Paredes 2005). 

5 Of course, local inequality may causally affect poverty at the local level as well, especially through its 

impact on health, education, and the incidence of crime and violence (Deaton 2001). 
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may be more susceptible to influence from vested interests and local elites (Bardhan and 

Mookherjee 2005). Indeed, there is evidence of subsidies for poverty alleviation being diverted 

under decentralized administration in Bangladesh (Galusso and Ravallion 2005), Ecuador 

(Araujo, et al. 2006), and elsewhere. By contrast, Aaberge and Langoren (2006) find that 

municipally-provided public services are distribution-neutral in Norway. Regardless, elite 

capture of funding for poverty alleviation is difficult to test because detailed income data that are 

representative at low levels of aggregation are not available for most countries. For this reason, 

analyses of inequality in Chile are typically undertaken at the national or regional level (e.g., 

Contreras 1996; Contreras and Ruiz-Tagle 1997; Contreras 2001; Pizzolito 2005) rather than at 

the level of municipalities or counties. 

 Such scarcity of localized income data has motivated research into methods for 

combining survey and census data in order to obtain geographically-disaggregated estimates of 

poverty and inequality. Using explanatory variables that are available in both a nationally-

representative survey and the Ecuadorian census, Hentschel, et al. (1999) imputed income for 

every individual in the census, thereby allowing the estimation of geographically-disaggregated 

poverty rates. The statistical reliability of this method was improved by Elbers, Lanjouw and 

Lanjouw (2003), who incorporated errors from the first stage to obtain more precise estimates of 

income, and thus better estimates of poverty and inequality at the local level. This methodology 

has since been used to estimate wellbeing at the local level in Cambodia, Ecuador, Madagascar,  

Mozambique, South Africa, Tanzania and elsewhere (see, for example, Demombynes, et al. 2002; 

Elbers, et al. 2003; Elbers, et al. 2004; Demombynes and Özler 2005; Simler and Nhate 2005; 

Simler 2006; and Elbers, et al. 2007).  
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 In this paper, we adapt this methodology to the Chilean context with the goal of assessing 

how government transfers to poor households affect inequality at the county level. We find that 

the effect of transfers on inequality varies considerably by region. In Regions IV, VII, VIII, IX, 

and X, for example, transfers that exceed the national average produce statistically-significant 

reductions (at the 0.01 level) in inequality in all but two of 179 counties. Estimated inequality 

falls in 84 % of the counties in Regions III, V, and VI despite below-average to average transfers 

in these areas. In Regions I, II, and XII, very modest gains against inequality are perhaps not 

surprising given the low expected values of subsidies in these areas. Finally, Region XI sees very 

little reduction in inequality despite very high transfers, while inequality falls in 73% of counties 

in Region XIII despite having the lowest expected value of transfers. Thus, poverty-reduction 

transfers can have a sizable impact on local inequality in Chile, although alternative targeting 

regimes may have greater impacts on poverty in some locales.  

 The remainder of this paper is organized as follows: section 2 summarizes the 

methodology; section 3 describes government programs for poverty reduction in Chile, including 

the various subsidies, as well as special features of the Chilean case; section 4 discusses the data 

used in the analysis; section 5 presents the empirical results; and section 6 concludes. 

 

2. Methodology 

The methodology proposed by Hentschel, et al. (1999) and developed by Elbers, et al. (2003) 

takes advantage of the detailed data in household surveys and the universal coverage of censuses. 

The intuition is conceptually straightforward: household income is estimated using survey data, 

restricting the explanatory variables to those available in both the survey and a census from a 

similar point in time. These parameters are then used to estimate income for the entire population 
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based on the census data. Finally, poverty and inequality indicators are estimated for geographic 

areas for which the census is representative but for which the survey is not.  

The execution of the method is somewhat more complicated. We provide a brief 

overview here and a detailed accounting in Appendix 1; readers who are interested in the 

complete statistical properties of the estimators are referred to Elbers, et al. (2003). First, a 

detailed household survey is used to estimate the joint distribution of household income and a 

vector of explanatory variables. Restricting the set of explanatory variables to those available in 

the census, these “first stage” estimates are then used to generate the distribution of income for 

any subgroup of the population, conditioning on the observed characteristics of that subgroup. 

The simplest means of estimating the model is via a linear approximation of the conditional 

expectation, allowing geographic effects and heteroskedasticity in the distribution of the error 

term. It is important to note that the cluster component of the residual can significantly reduce 

the power of the estimates in the second stage, so it is important to explain the variation in 

income due to location via observable variables to the greatest extent possible; stepwise 

regression is therefore used to derive the best-fitting specification for each of Chile’s 13 regions.  

The result of this first-stage estimation is a vector of coefficients, a variance-covariance 

matrix associated with this vector, and a set of parameters that describe the distribution of the 

errors. The second stage utilizes this set of parameters along with the characteristics of the 

individuals or households in the census in order to generate predicted values of income and the 

relevant errors. For these effects, bootstrapping is used to simulate values of household income. 

The complete set of simulated values is then used to calculate the expected value of inequality 

for each subgroup. This procedure is repeated 250 times, taking a new set of coefficients and 
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errors for each simulation; the mean and the standard deviations of the coefficients constitute the 

point estimates and the standard deviations for the inequality indicator, respectively. 

Finally, the standard error of the inequality indicator must be estimated as accurately as 

possible in order to infer precise conclusions from the estimates. As shown in Appendix 1, the 

prediction error has three components: the first is given by the presence of a stochastic error in 

the first stage model, which implies that the actual income of the household deviates from its 

expected value (idiosyncratic error); the second is determined by the variance of the first stage 

parameter estimators (model error); and the third is given by the use of an inaccurate method to 

calculate the estimator of the inequality indicator (computation error). The idiosyncratic error 

falls proportionately with the size of the population in each area. This component of the error 

rises with lower levels of geographic disaggregation, limiting the extent of disaggregation 

possible. The model error is determined by the properties of the first stage estimators; its 

magnitude thus depends only on the precision of the first stage parameter estimates. For this 

reason, we made every effort to obtain the best fir in the first-stage regression. The computation 

error falls by increasing the number of simulations. Several papers that use this methodology 

specify 100 simulations. Despite the computationally-intensive simulation process, we specify 

250 simulations to reduce this component of the error as much as possible.6 

 

3. Public Policy in Chile 

Beginning in the early 1980s, the government adopted a wide-ranging set of policies to reduce 

poverty. Central to the government’s anti-poverty policy was the development of a standardized 

form (the “CAS Card,” renamed the “CAS-2 Card” after revisions in 1987) to identify poor 

                                                 
6 There are no significant gains in efficiency by further increasing the number of repetitions. 
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households on the basis of housing criteria, especially construction materials, housing density, 

access to potable water, and assets.7  Indeed, this form became the primary data point for setting 

government priorities in the provision of public housing, with the concentration of poor 

households in any given region in 1982 and 1992 directly influencing the allocation of housing 

subsidies over the subsequent decade (Soto and Torche 2004). Between 1990 and 2000, housing 

subsidies increased at an average rate of 10 % per year in real terms, and poor neighborhoods 

received additional subsidies to develop public sewerage and electric systems on the basis of 

these criteria. Although the efficacy of using housing criteria to identify beneficiaries of other 

social programs deserves scrutiny, these criteria were also used to identify locations for new 

schools and health care facilities as well as to identify indigent households to receive direct cash 

transfers.  

 Government subsidies to poor households fall into five main programs: 
 

1. Family Subsidy (SUF): A subsidy provided to pregnant women, parents with children not 
covered by social security, and parents or guardians of persons with physical disabilities. 
To be eligible, beneficiaries must agree to take children under age 6 for regular medical 
checkups and to send children aged 6 to 18 years to school. Recipients are also 
automatically eligible for free access to public health services. The benefit totals 
CH$ 4,126 per month8 per recipient, and eligibility is determined by the CAS-2 Card. 

 
2. Unemployment: A monthly payment for up to one year for unemployed workers who lost 

work through no fault of their own. The benefit decreases from CH$ 17,338 the first 3 
months to CH$ 11,560 the next three months and to CH$ 8,669 the last 6 months. 
Eligibility depends on formal employment for at least 52 weeks during the previous two 
years. 

 
3. Assistance Pensions (PASIS): Pensions are provided for adults aged 65 and over, 

physically-disabled adults, and mentally-disabled individuals regardless of age who have 

                                                 
7 Soto and Torche (2004) provide additional details on the CAS form and the criteria for poverty it 

formalizes. Officially-designated poor households are re-evaluated every three years for eligibility. 

8 In 2003, US$ 1 = CH$ 691.4 on average. 
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a total income below half of the minimum pension allowance. Recipients are also 
automatically eligible for free access to public health services. The amount of each 
pension is CH$ 45,091 per month and twice that amount for mentally disabled. Eligibility 
is determined by the CAS-2 Card. 

 
4. Solidarity Subsidy (Chile Solidario). A subsidy that targets indigent families and 

households with female heads. The subsidy takes the form of a monthly payment that 
decreases incrementally from CH$ 10,500 per month to CH$ 4,126 over two years. In 
addition, beneficiaries receive priority access to other subsidies for which they qualify. 
Eligibility is determined by the CAS-2 Card. 

 
5. Water and Sewage Subsidy (SAP): A three-year, renewable subsidy to offset the cost of 

water among poor households. This subsidy covers between 20 % and 85 % of the cost of 
water for up to 15 cubic meters per month. There is no fixed amount for this subsidy, but 
the Ministry Finance sets the total number of subsidies in each region each year. 
Eligibility is determined by the CAS-2 Card and beneficiaries must be permanent 
residents of the housing unit.  

 
 
According to Chilean law, taxes cannot be tied to individual expenditures, so there is no specific 

financing for poverty-reduction transfers. Therefore, such transfers are financed out of total tax 

revenues. In 2003, 51.6 % of total tax revenues came from the Value Added Tax, 27.4 % from 

income taxes, 12.1 % from excise taxes, 4.5 % from tariffs, and 4.4 % from transaction taxes.  

Table 1 provides summary statistics for the number of recipients in each of Chile’s 13 

regions. Nearly 954,000 individuals (6.3 % of the population) receive the Family Subsidy each 

month. Almost 13 % of the people living in Region IX benefit, while fewer than 2.3 % of 

households in region XII do. By contrast, only 3,682 individuals received Unemployment 

transfers each month on average, although this is at least partially due to the fact that the 

government replaced the transfer with mandatory unemployment insurance for those starting 

new jobs since 2002; this transfer is therefore cease to be a policy tool for addressing either 

poverty or inequality. The average monthly value of Unemployment payments is CH$ 11,491. 

Assistance Pensions dwarf the other subsidies, with an average benefit of CH$ 45,059. However, 
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only 2.8 % of Chile’s population receives these transfers. The distribution of this subsidy is 

similar to that of the Family Subsidy.  

The Solidarity Subsidy and Water and Sewage Subsidy are provided to households rather 

than individuals. Approximately 1.1 % of households receive the former, with the greatest share 

in Regions III and VII. The average monthly value of the Solidarity Subsidy is CH$ 9,842. 

Finally, the Water and Sewage Subsidy is allocated to almost 16 % of households. The subsidy is 

particularly prevalent in the arid north of Chile (Regions I, II, III, and IV) and in Region XI. 

Fewer than 7 % of the households in Region XIII receive this subsidy. Moreover, unlike many 

other subsidies, the value of the Water and Sewage Subsidy varies by region, with beneficiaries 

in Regions I, II, and XI receiving far greater subsidies than households elsewhere, reflecting the 

cost of purchasing and transporting water in these areas.9  The average value of the subsidy 

varies from CH$ 2,112 in Region VII to CH$ 7,316 in Region II. Weighting household subsidies 

by the mean number of household members in each region, the total expected monthly value of 

all subsidies for a representative person ranges from CH$ 966 in Region XIII to CH$ 3,595 in 

Region XI; the national average is CH$ 1708.  

As noted above, public policy that targets poverty may also affect inequality. For 

example, cash subsidies to poor and indigent families are likely to reduce income inequality by 

raising incomes at the lower end of the distribution. Still, poor targeting or elite capture may 

moderate inequality reduction or even lead to increased inequality. Such factors may help to 

explain why Chile has seen virtually no progress against inequality despite rapid reductions in 

poverty through targeted programs (Figure 1). Indeed, the persistence of high inequality in Chile 

                                                 
9 For example, the cost of drinking water is up to 66 % higher than the national average in Region XI 

despite heavy rainfall in the area. 
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has emerged as an important issue of public debate10 and academic interest (e.g., Contreras 1996; 

Beyer 1997; Contreras and Ruiz-Tagle 1997; Valdés 1999; Contreras, et al. 2001).  

 

4. Data 

The survey employed to impute income as described above is the November 2003 National 

Survey of Socioeconomic Characterization (Casen), administered by the University of Chile on 

behalf of the Ministry of Planning (Mideplan). Unlike the national census, the Casen collects 

detailed income data for individuals and households, including cash transfers from the 

government. The survey also collects data on demographic characteristics of household members, 

living conditions, ownership of durable goods, access to sanitation, and health and education 

characteristics. Before these data are made available, the Economic Commission for Latin 

America and the Caribbean (ECLAC) undertakes a standardized procedure to correct for 

reporting errors and discrepancies with national accounts.11  These procedures are summarized in 

Appendix 2 and detailed fully in ECLAC, IPEA, and UNDP (2002). 

The survey utilizes multistage random sampling with regional stratification and clustering. 

In the first stage, the country is divided between rural and urban areas for each of the 13 regions, 

and the primary sampling units are selected with probabilities proportional to the population. The 

sampling frame of the Casen is based on the Population and Housing Census and by local 

records of new construction. In the second stage, households are selected into the sample with 

                                                 
10 To wit, each of the three main candidates addressed the issue extensively during the 2006 presidential 

campaign. In addition, inequality was the explicit focus of one presidential debate. 

11 Although the ECLAC adjustments may theoretically introduce bias, Contreras and Larrañaga (1999) 

present evidence to the contrary. Regardless, the unadjusted data are not available. 
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equal probability.12  The final sample includes 68,153 households comprising 257,077 people. 

These households represent 315 of the 342 counties in Chile, with as few as 49 and as many as 

315 households surveyed in each county. Although Mideplan considers the Casen to be 

representative both at the regional level and at the level of the 301 self-reporting counties, there 

is no consensus with respect to representativeness at the county level; indeed, many scholars 

consider the Casen to be representative at the national and regional levels only (e.g., Valdés 1999; 

Contreras, et al. 2001; Pizzolito 2005). 

Using the Casen alone to calculate inequality yields results that allow for few conclusions 

given the magnitude of the errors; for example, the estimated Gini coefficient for Region I is 

0.495, but with a standard error of 0.053, the 95 % confidence interval is [0.392, 0.599]. 

Following the methodology proposed by Elbers, et al. (2003), Agostini and Brown (2007) 

demonstrate that imputing income from the 2003 Casen into the April 2002 census affords far 

more precise estimates of inequality.  

The census covered 4,112,838 households composed of 15,545,921 individuals. The data 

include demographic characteristics for the household members, living conditions, ownership of 

certain durable goods, access to sanitation, and health and education characteristics, but neither 

income nor consumption. A set of variables common to both the Casen and census is thus 

required to impute income. Although some explanatory variables are defined identically in both 

data sets, others were constructed. In such cases, the means and variances of the explanatory 

variables used in the analysis were evaluated to ensure that they measure the same thing. Using 

stepwise regression to detect the best fit for each region separately, we determined that 

                                                 
12 Further methodological details are provided by Pizzolito (2005) and 

http://www.mideplan.cl/casen/pdf/Metodologia_%202003.pdf 
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household demographics (e.g., the number of household members; the share of young children in 

the household), characteristics of the household head (e.g., gender; education level; ethnicity), 

characteristics of the house itself (e.g., number of rooms; construction material; type of flooring; 

water source; sewerage), and asset ownership (e.g., washing machine; water heater; fixed 

telephone; cellular phone; satellite or cable television; microwave; computer; Internet access), 

were the strongest predictors of household income. Estimates also included location dummies to 

capture latent cluster-level effects. The predictive ability of the model is high for cross-sectional 

data, with R2 values for each region ranging between 0.36 and 0.52; complete summary statistics 

and the first stage results for each region are reported in Agostini and Brown (2007). 

 

5. Empirical Results 

Figures 2 through 6 depict estimated Gini coefficients for each county derived from the 

methodology described in Section II. In each, the left panel shows the estimated Gini coefficients 

based on income prior to the receipt of any transfers from the government. The right panel 

depicts estimated Gini coefficients for total income, including poverty-reduction transfers. 

Darker shading indicates higher income inequality. 

 Based on these figures and on Table 2, it is evident that average pre-transfer income 

inequality is generally lowest for counties in central Chile, including Regions V, VI, and VII as 

well as the greater Santiago metropolitan area (Region XIII). Average county-level income 

inequality is higher in northern Chile (Regions I, II, III, and IV) and higher still south of Region 

VII. Regions VIII and XIII show the greatest variation in pre-transfer income inequality at the 

county level. By contrast, variation is extremely low in Regions I, II, and III. 
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 Poverty-reduction transfers have a pronounced impact on estimated inequality at the 

county level in Regions VIII, IX, and X. Estimated reductions in inequality were quite modest in 

Regions II, V, VI, and XIII, perhaps not surprising given the relatively low levels of county-level 

income inequality in these areas to begin with. However, Region XII also displays extremely 

modest gains against county-level inequality despite displaying high inequality. Indeed, the 

estimated Gini coefficients before and after transfers are statistically different in only two of the 

11 counties in Region XII at the 90 % confidence level and in none at the 99 % confidence level 

(Table 2). By contrast, every county in Regions IV, VII, IX, and X shows statistically significant 

differences in estimated inequality at the 99 % confidence level. Moreover, with the exception of 

Regions I, II, XI and XII, estimated inequality falls at the 99 % confidence level in at least 70 % 

of the counties in each region.  

 Confidence intervals for the whole country are depicted in Figure 7. In most cases, the 

confidence interval of the Gini when including transfers lies completely below the confidence 

intervals excluding transfers, implying a statistically significant reduction in inequality. For 

several counties, however, the confidence intervals overlap, implying improvements in 

inequality based on point estimates but not statistical significance. Overall, poverty-reduction 

transfers cause the estimated Gini coefficient to fall in 316 of Chile’s 342 counties at the 90 % 

confidence level and in 288 counties at the 99 % confidence level. 

 A representative Chilean could expect to receive CH$ 1,708 per month in government 

subsidies in 2003 (Table 1), although this figure varies widely by region. If targeting is effective 

and if the benefits of these programs do accrue to the poor, then the greatest reductions in 

county-level poverty will occur in Regions IV, VII, VIII, IX, X, and XI, where the expected 

value of transfers exceeds the national average by a wide margin. Clearly, this is the case for 
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Regions IV, VII, IX, and X, in which transfers cause estimated inequality to fall at the 99 % 

confidence level in all counties. In Region VIII, estimated inequality falls in all but two of 52 

counties at the 99 % confidence level. By contrast, transfers have comparatively little effect on 

inequality in Region XI, where only 60 % of counties see statistically significant (at the 99 % 

confidence level) reductions in inequality, suggesting that this area underperforms in terms of 

anticipated reductions in inequality. Expected transfers to a representative individual are close to 

the national average in Regions III and VI, and estimated inequality falls in 89 % and 88 % of 

counties, respectively, suggesting that targeting is effective in these regions. The expected value 

of transfers is well below the national average in Regions I, II, V, XII, and XIII, resulting in very 

modest reductions in inequality. In Regions I, II, and V, for example, reductions in estimated 

inequality are significant at the 99 % confidence level in 60 %, 33 %, and 79 % of counties, 

respectively; in Region XII, transfers do not significantly affect inequality in any county at the 

99 % confidence level. Finally, the expected value of transfers is lowest in Region XIII, yet 

estimated inequality falls significantly in 38 of the 52 counties, demonstrating that even small 

transfers may significantly impact inequality if appropriately targeted. 

 Table 3 depicts changes in inequality associated with poverty-reduction transfers by 

inequality quintile (ranked low to high). The table demonstrates considerable movement, with 

approximately 51 % of counties changing inequality cohorts as a result of the transfers. The most 

extreme change in inequality occurred in Pedro Aguirre Cerda (Region XIII), which fell from the 

2nd quintile to the 5th quintile. Nevertheless, poverty-reduction transfers improve relative income 

inequality in 95 counties and reduce relative inequality in 73, suggesting that the transfers reduce 

inequality on balance. Still, the effectiveness of poverty-reduction transfers in reducing 

inequality is clearly uneven. 
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 To formally examine the impact of poverty-reduction transfers on income inequality at 

the national level, we estimate the non-parametric density of the county-level Gini coefficients 

before and after transfers using the Epanechnikov Kernel estimator. The poverty-reduction 

transfers shift the distribution to the left (Figure 8), implying a reduction in inequality, and the 

Shapiro-Wilk test for normality strongly rejects the hypothesis that both distributions are normal. 

Moreover, the Kolmogorov-Smirnov test for equality of distribution functions rejects that the 

hypothesis that the two distributions come from the same data-generating process.13   

 As noted above, Chilean law stipulates that taxes cannot be directly tied to expenditures, 

so poverty-reduction transfers are financed out of total tax revenues. Because over half of total 

transfers are derived from the Value Added Tax and because confidential income tax data are not 

available from the Chilean Internal Revenue Service, it is difficult to assess the tax burden of 

individual households, and thus the impact of taxes on inequality. However, consumption taxes 

are regressive, suggesting that our estimates of inequality may be biased downward if taxation 

does affect inequality.  

 

6. Conclusion 

The rapid economic growth that Chile has experienced since the 1980s has been accompanied by 

a rapid decline in poverty rates. Central to the government’s success in alleviating poverty is a 

                                                 
13 The first step of the test does not reject the hypothesis that the distribution of Gini coefficients for total 

income contains smaller values than the distribution of Gini coefficients for autonomous income. The 

second step of the test rejects the hypothesis that the distribution of Gini coefficients for total income 

contains larger values than the distribution of Gini coefficients for autonomous income. As a result, the 

joint test rejects the hypothesis that the two distributions are equal. 
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series of cash and in-kind transfers provided to pregnant women, female heads of household, the 

elderly, the handicapped, the unemployed, the indigent, poor parents, and those unable to 

purchase sufficient drinking water. Eligibility for most of these transfers is determined by a 

standardized form that evaluates housing characteristics and household assets. 

While poverty has fallen dramatically, inequality has remained doggedly high, with the 

national Gini coefficient hovering around 0.55 since the late 1980s. Cash transfers to poor, 

indigent, or vulnerable households can reduce income inequality by increasing the resources 

available to the lower end of the income distribution, but only if targeting is effective and if the 

incentive to generate autonomous income is not destroyed. That is, if transfers for poverty-

alleviation fail to reach the poor, then income inequality may stagnate or even rise. Poor 

targeting may arise if the eligibility criteria for poverty-reduction transfers (i.e., housing 

characteristics and household assets) fail to accurately identify the poorest members of a 

community. It is also conceivable that government spending that is designated for poverty 

reduction may be misappropriated or captured by elites or pressure groups, particularly at the 

local level where government oversight may be limited. 

Fortunately, theoretical advances in poverty-mapping proposed by Elbers, et al. (2003) 

allow income to be imputed with a high degree of statistical accuracy, even at very low levels of 

aggregation. These income estimates then allow us to assess the effect of cash transfers from the 

government for poverty reduction on local inequality.14  We find that poverty-reduction transfers 

reduce the estimated Gini coefficient at the 99 % confidence level in 288 of Chile’s 342 counties. 

This is true of all 118 counties in Regions IV, VII, IX, and X and in all but seven of the 94 

                                                 
14 Unfortunately, it is not feasible to asses the effect of in-kind transfers provided by the government, 

because the values of these transfers are not specified in the survey data.  
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counties in Regions III, VI, and VIII. By contrast, just 15 of the 29 counties in Regions I, II, and 

XI saw statistically significant reductions in income inequality resulting from government 

transfers. None of the 11 counties in Region XII had statistically significant reductions in 

inequality with poverty-reductions transfers, although 30 of the 38 counties in Region V and 38 

of the 52 counties in Region XIII did.  

The expected monthly subsidy was higher than the national average in Regions IV, VII, 

VIII, IX, and X, suggesting that poverty-reduction transfers were well-targeted in these areas. 

However, the average subsidy was also higher than the national average in Region XI, which 

saw far more modest progress against inequality. Average transfers produced above-average 

reductions in inequality in Regions III and VI, while below-average transfers nevertheless 

produced significant reductions in estimated inequality in 76 % of the counties in Regions V and 

XIII. In Regions I, II, and XII, low subsidies had very little impact on inequality. These findings 

suggest that there exist considerable disparities in the effectiveness of poverty targeting across 

Chile, implying either that housing characteristics and asset ownership are flawed indicators of 

poverty or that government spending for poverty alleviation is being diverted to alternative 

purposes in some places. Policy options for better targeting therefore include revising the 

eligibility criteria and incorporating geographic considerations.  

The Bachelet government has already taken important steps to better identify poor 

households by eliminating the CAS-2 card as the determinant of eligibility: because the CAS-2 

Card emphasizes housing and asset ownership in identifying the poor, it may have missed 

transitory poverty and may have penalized borderline households that had had improved their 

living conditions. Thus, effective April 2007, eligibility is based on the “Social Protection Card” 

(SPC), which evaluates households based on income stability, educational level, labor experience, 
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age structure, disabilities, health status, number of people (including relative to the size of the 

housing unit), housing ownership, urban/rural location, and regional unemployment levels. The 

new criteria will likely therefore result in more effective targeting.  

Although urban/rural status and regional unemployment levels are important 

considerations, there is nevertheless room to incorporate geography more fully to improve the 

targeting of cash transfers. Indeed, our results show considerable heterogeneity in both the level 

of inequality in individual counties and in the effectiveness of regional and municipal 

governments in reducing inequality via poverty-reduction transfers; focusing on specific high-

inequality counties where targeting has been poor may be an effective means of simultaneously 

reducing poverty and inequality.  

Taxes may also be used to reduce inequality, although data limitations make this analysis 

difficult in practice. Nevertheless, we believe that our results would be robust to the inclusion of 

transfer financing for two reasons: first, financing for poverty-reduction transfers is drawn from 

the total budget, of which income taxes comprise a relatively small share; second, Engel, et al. 

(1999) show that the impact of taxes on income distribution in Chile is negligible, even when 

simulating large tax reforms. Finally, cash transfers may have an intertemporal effect on 

inequality. This type of dynamic analysis requires a panel of households, which as yet does not 

exist for Chile, so this remains an important consideration for future research.
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Appendix 1 

This Appendix provides a brief overview of the methodology proposed by Hentschel, et al. (1999) 

and developed by Elbers, et al. (2003). In the first stage, a model is created that relates the 

income per capita of household h (Yh) in cluster c with a group of observable characteristics (Xh):  

hchchchchchc uXuXYEY +=+= β]|[lnln  

where the error vector u is distributed F(0,∑). To allow correlation within each cluster, the error 

term is further assumed to consist of a cluster component (η) and an idiosyncratic error (ε): 

hcchcu εη +=  

The two components are assumed to be independent of each other and uncorrelated with the 

observable variables Xhc.  

 It is not necessary to specify a restrictive functional form for the idiosyncratic component 

of the error, 2
εσ . Indeed, with consistent estimators of β, the residuals of the decomposition of 

the estimated error, 

hccchcchc uuuu εη ˆˆ)ˆˆ(ˆˆ .. +=−+=  

can be used to estimate the variance of ε.15  The functional form commonly used for estimating 

the variance of the idiosyncratic error is: 

⎥
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The upper and lower limits, A and B, can be estimated together with the parameter α using the 

standard pseudo-maximum likelihood; the advantage of this approach is that it eliminates 

negative and excessively high values for the predicted variances. 

                                                 
15 The subindex “.” in the equation represents the average over the index. 
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 The simplest means of estimating the model is to use a linear approximation of the 

conditional expectation, allowing geographic effects and heteroskedasticity into the distribution 

of the error term. It is important to note that the cluster component of the residual can 

significantly reduce the power of the estimates in the second stage, and that it is thus important to 

explain the variation in income or consumption due to location via observable variables to the 

greatest extent possible.  

 The result of this first-stage estimation is a vector of coefficients, β, a variance-

covariance matrix associated with this vector, and a set of parameters that describe the 

distribution of the errors. The second stage utilizes this set of parameters along with the 

characteristics of the individuals or households in the census in order to generate predicted 

values of the log of income and the relevant errors. For these effects, bootstrapping is used to 

simulate values of income of each household or each individual. These simulated values are 

based on the prediction of the income and the error terms, η and ε: 

)ˆˆˆexp(ˆ
hcchchc XY εηβ ++=  

 For each household, the two components of the error term are taken from the empirical 

distribution described by the parameters estimated in the first stage. The coefficients β̂  are taken 

from a normal multivariate distribution described by the estimators of β in the first stage and the 

associated variance-covariance matrix. The complete set of simulated values of hcŶ  is then used 

to calculate the expected value of poverty or inequality measures by area. This procedure is 

repeated n times, taking a new set of coefficients β and errors for each simulation; for each 

geographic area, the mean and the standard deviation of the inequality indicator are calculated 

over the whole set of simulations, which constitute  its point estimate and its standard deviation, 

respectively. 



 23

 We will call the inequality indicator G(nc, Xc, β, uc), where nc is a Nc vector of the number 

of household members in county c, Xc is a Ncxk vector of their observable characteristics, and uc 

is a Nc error vector. Thus, the expected value of the inequality indicator is estimated given the 

characteristics of the individuals and the households and the model estimated in the first stage, 

i.e.: 

[ ]ξ;,| XnGEG E
c =  

where ξ  is the vector of parameters of the model, including the parameters that describe the 

distribution of the error term. Replacing the unknown vectorξ , with a consistent estimator ξ̂ , we 

get: 

[ ]ξ̂,,| XnGEG E
c =  

This conditional expected value is generally impossible to resolve analytically, making it 

necessary to use Monte Carlo simulations to obtain an estimator, E
cG~ . 

One complication associated with this methodology is calculating the correct standard 

errors, which is not trivial. Because it is not possible to calculate them analytically, the 

methodology again resorts to bootstrapping techniques and Monte Carlo simulations. 

Suppressing the subscripts, the difference between the estimator of the expected value of G, E
cG~ , 

and the actual level of the inequality indicator for the geographic area can be decomposed into: 

)~ˆ()ˆ()(~ EEEEEE GGGGGGGG −+−+−=−  

The prediction error thus has three components: the first is due to the presence of a stochastic 

error in the first stage model, implying that the actual household incomes deviate from their 

expected values (idiosyncratic error); the second is due to the variance in the estimators of the 
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parameters of the model from the first stage (model error); and the third is due to the use of an 

inexact method to calculate cĜ (computation error). 

 The variance of the estimator due to the idiosyncratic error shrinks proportionally with 

the population in each geographic area. Thus, smaller populations within each geographic area 

are associated with larger idiosyncratic errors, introducing a limit to the extent of disaggregation 

that may be achieved. The variance of the estimator due to the model error can be calculated 

using the delta method: 

∇∇= )ˆ(ξVV T
Model  

where [ ]ξ∂∂=∇ /EG , ( )ξV is the variance-covariance matrix of the first stage estimators, and 

ξ̂ is a consistent estimator of ξ , also obtained from the first stage. This component of the 

predicted errors is determined by the properties of the first-stage estimators and therefore doesn’t 

systematically change with the population in each geographic area; its magnitude depends only 

on the precision of the first-stage estimates. The variance of the estimator due to computational 

error depends on the computational methodology used. Since Monte Carlo simulations are 

employed here, it is possible to reduce this error component by increasing the number of 

simulations; we use 250 simulations to minimize the error component to the greatest extent 

possible. 

 The expected value of the inequality indicator coefficient is thus conditional on the first 

stage regression, the variance due to the idiosyncratic component of income per capita of the 

households, and the gradient vector. The Monte Carlo simulation generates 250 vectors of error 

terms from the distribution estimated in the first stage. With each set of vectors, the inequality 

indicator is calculated. Then, the expected value simulated for the inequality indicator is the 

average of the 250 responses: 
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The variance of G is estimated using the same simulated values as: 
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Finally, it is important to underscore the crucial assumption that the models estimated 

using survey data are applicable to the observations of the census. This assumption is reasonable 

enough if the year of the census and the survey coincide or are close. In the case of this particular 

study, the 2002 census is matched with the 2003 Casen survey, making the assumption implicit 

in the methodology reasonable. 
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Appendix 2 

This Appendix describes the adjustments to the Casen undertaken by ECLAC. See also ECLAC, 

IPEA, and UNDP (2002).  

The first type of adjustment made by ECLAC is related to non-response and invalid 

answers. In particular, ECLAC makes adjustments in three cases: people who declare themselves 

as employed but who do not report income from their main occupation; people who declared 

themselves to be retired or living on a pension but who do not report the amount of the pension; 

and households living in owner-occupied housing but who do not report an imputed rental value. 

In the first and second case, ECLAC imputes to each employed and retired person the value of 

the mean income reported by people of similar characteristics.16 In the third case, ECLAC 

imputes an implicit rental value using the “hot deck” technique, wherein the data set is ordered 

geographically and households are selected based on the housing tenancy situation, the type of 

housing and other household characteristics. By contrast, when households report a positive 

value for imputed rent despite not being owners, the value reported is subtracted from the 

household income.  

The second type of adjustment made by ECLAC is related to under or over reporting of 

some types of income. The procedure followed to correct for misreporting basically consists in 

adjusting income from some specific sources to match the corresponding value in the national 

accounts. Specifically, the adjustment is made to match the aggregate income of the Households 

and Expenditures Account of the National Accounts System of the Central Bank of Chile. To do 

                                                 
16 In the case of employed persons, six variables are used match characteristics: family relationship, 

gender, educational level, occupational category, type of economic activity and region. In the case of 

retired person, only the first three variables are used. 
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this, the data from National Accounts is converted to match the income categories included in the 

Casen. Then, the total values by each specific income category are compared to the ones in the 

Casen (using expansion factors). Finally, the proportional differences for each income category 

are imputed uniformly to each individual receiving income in the Casen. There are two 

exceptions to this last step: adjustments to capital income are made only to the top quintile of 

households, and income from transfers and gifts are not adjusted at all. 
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Figure 1. Income Inequality and Poverty in Chile: 1987-2003 
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Figure 2. Pre- and Post-Transfer Gini Coefficients in Northern Chile (Regions I, II, III, & IV) 
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Figure 3. Pre- and Post-Transfer Gini Coefficients in Santiago and Valparaiso (Regions V & XIII) 

 
 

Figure 4. Pre- and Post-Transfer Gini Coefficients in Central Chile (Regions VI, VII, & VIII) 
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Figure 5. Pre- and Post-Transfer Gini Coefficients in Southern Chile (Regions IX & X) 

 
 

Figure 6. Pre- and Post-Transfer Gini Coefficients in Chilean Patagonia (Regions XI & XII) 
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Figure 7. 90% Confidence Intervals for Pre-Transfer Gini (Blue) and Post-Transfer Gini (Yellow) 
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Figure 8. Epanechnikov Kernal Estimation of the Nonparamtric Density of Estimated Gini Coefficients 
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Table 1. Poverty-Reduction Transfers by Region 
 

 Family SubsidyA UnemploymentA Assistance PensionsA 
Region Recipients† Share‡ Amount* Average** Recipients† Share‡ Amount* Average** Recipients† Share‡ Amount* Average** 
I 19,122 4.50% $ 76,603 $ 4,006 135 0.03% $ 1,524 $ 11,291 6,249 1.47% $ 282,220 $ 45,163 
II 15,454 3.21% $ 61,169 $ 3,958 47 0.01% $ 540 $ 11,498 5,862 1.22% $ 263,641 $ 44,975 
III 18,328 7.24% $ 74,011 $ 4,038 70 0.03% $ 797 $ 11,388 5,980 2.36% $ 270,571 $ 45,246 
IV 50,402 8.36% $ 200,837 $ 3,985 149 0.02% $ 1,716 $ 11,514 20,273 3.36% $ 920,557 $ 45,408 
V 81,648 5.33% $ 326,416 $ 3,998 519 0.03% $ 6,053 $ 11,663 32,502 2.12% $ 1,461,835 $ 44,977 
VI 52,494 6.77% $ 208,443 $ 3,971 114 0.01% $ 1,297 $ 11,374 23,730 3.06% $ 1,065,764 $ 44,912 
VII 100,010 11.05% $ 396,176 $ 3,961 144 0.02% $ 1,651 $ 11,468 30,825 3.40% $ 1,388,065 $ 45,030 
VIII 180,915 9.73% $ 717,320 $ 3,965 544 0.03% $ 6,266 $ 11,517 77,195 4.15% $ 3,450,309 $ 44,696 
IX 109,755 12.65% $ 447,964 $ 4,081 190 0.02% $ 2,270 $ 11,949 54,944 6.33% $ 2,490,582 $ 45,329 
X 117,391 11.01% $ 471,432 $ 4,016 203 0.02% $ 2,358 $ 11,617 56,699 5.32% $ 2,570,569 $ 45,337 
XI 8,732 9.70% $ 35,546 $ 4,071 9 0.01% $ 109 $ 12,056 4,144 4.61% $ 187,565 $ 45,262 
XII 3,296 2.23% $ 13,059 $ 3,962 29 0.02% $ 342 $ 11,776 2,107 1.43% $ 96,191 $ 45,653 
XIII 196,350 3.25% $ 799,425 $ 4,071 1,475 0.02% $ 16,768 $ 11,368 103,829 1.72% $ 4,672,439 $ 45,001 
Total 953,897 6.34% $ 3,828,403 $ 4,013 3,628 0.02% $ 41,691 $ 11,491 424,339 2.82% $ 19,120,309 $ 45,059 

             
 Solidarity SubsidyB Water SubsidyB   
Region Recipients† Share‡ Amount* Average** Recipients† Share‡ Amount* Average** Expected Value of Subsidy  
I 1,690 1.51% $ 16,739 $ 9,905 32,595 29.14% $ 181,758 $ 5,576 $ 1,317  
II 910 0.73% $ 8,749 $ 9,615 37,787 30.45% $ 276,450 $ 7,316 $ 1,267  
III 1,683 2.45% $ 16,425 $ 9,760 25,355 36.91% $ 87,661 $ 3,457 $ 1,775  
IV 1,809 1.08% $ 17,837 $ 9,860 43,160 25.86% $ 169,403 $ 3,925 $ 2,173  
V 4,559 1.03% $ 45,113 $ 9,895 81,311 18.45% $ 315,421 $ 3,879 $ 1,408  
VI 2,562 1.20% $ 24,642 $ 9,618 33,872 15.81% $ 90,136 $ 2,661 $ 1,792  
VII 4,900 1.94% $ 47,824 $ 9,760 63,292 25.10% $ 133,662 $ 2,112 $ 2,173  
VIII 6,612 1.31% $ 65,342 $ 9,882 103,670 20.61% $ 368,358 $ 3,553 $ 2,478  
IX 3,815 1.60% $ 38,189 $ 10,010 52,692 22.11% $ 139,084 $ 2,640 $ 3,595  
X 4,881 1.65% $ 48,541 $ 9,945 50,919 17.21% $ 194,525 $ 3,820 $ 3,083  
XI 371 1.44% $ 3,710 $ 10,000 9,253 36.01% $ 47,448 $ 5,128 $ 3,049  
XII 528 1.22% $ 5,134 $ 9,723 8,612 19.93% $ 28,475 $ 3,307 $ 971  
XIII 9,898 0.60% $ 96,938 $ 9,794 109,236 6.59% $ 251,741 $ 2,305 $ 966  
Total 44,218 1.07% $ 435,184 $ 9,842 651,752 15.74% $ 2,284,122 $ 3,505 $ 1,708  

A Source: Superintendent of Social Security. The Family Subsidy, Unemployment, and Assistance Pensions are given to individuals. 
B Source: Executive Committee, Chile Solidario, Ministry of Planning. The Solidarity Subsidy and Water Subsidy are given to households.  
† Represents the average number of beneficiaries each month.  
‡ Indicates the percentage of individuals or households in the region that receive the subsidy. 
* Represents the total monthly value of the transfer, by region, in thousands of Chilean Pesos. 
** Indicates the average monthly value of the transfer for all recipients in the region. 
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Table 2. Changes in Income Inequality by Region 
 

 
Region  

I 
Region  

II 
Region 

III 
Region 

IV 
Region 

V 
Region 

VI 
Region 

VII 
Region 

VIII 
Region 

IX 
Region 

X 
Region 

XI 
Region 

XII 
Region 

XIII 
Counties 10 9 9 15 38 33 30 52 31 42 10 11 52 
Pre-Transfer Income Inequality            
  Maximum 0.544 0.501 0.531 0.541 0.492 0.487 0.540 0.641 0.587 0.577 0.574 0.561 0.556 
  Minimum 0.527 0.475 0.508 0.467 0.445 0.439 0.483 0.510 0.521 0.495 0.533 0.517 0.442 
  Average 0.534 0.489 0.519 0.507 0.460 0.458 0.507 0.548 0.549 0.532 0.556 0.538 0.489 
Change in Estimated Gini            
  Average -9.43% -4.84% -9.06% -8.83% -4.41% -6.15% -10.03% -11.84% -11.85% -11.38% -11.02% -3.48% -2.63% 
  Std. Dev. 0.358% 0.311% 0.324% 0.678% 0.154% 0.430% 0.729% 1.944% 0.810% 0.885% 0.299% 0.138% 0.973% 
  Counties w/ Different  
  Gini (90% confidence) 

10 6 9 15 37 32 30 50 31 42 9 2 43 

  Counties w/ Different  
  Gini (95% confidence) 

10 6 9 15 36 31 30 50 31 42 8 1 40 

  Counties w/ Different  
  Gini (99% confidence) 

6 3 8 15 30 29 30 50 31 42 6 0 38 
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Table 3. Changes in Inequality by Inequality Decile 
 

  Percentile, Post Transfer 
  1 2 3 4 5 

Pe
rc

en
til

e,
 

Pr
e-

T
ra

ns
fe

r 1 84 16 0 0 0 
2 15 38 29 16 2 
3 1 43 25 13 18 
4 0 3 46 38 13 
5 0 0 0 42 68 
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